1
|
Gu W, Hu J, Li L, Hong M, Yang C, Ren G, Ye J, Zhou S. Natural AIEgens as Ultraviolet Sunscreens and Photosynergists for Solar Fuel Production. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:20434-20443. [PMID: 39390730 DOI: 10.1021/acs.est.4c05605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Bio-nano hybrids (BNH), combining semiconductors and microorganisms, have shown great promise for effective solar-to-fuel energy conversion. However, the high-energy ultraviolet (UV) photons in the solar spectrum can cause severe photocorrosion of semiconductors and irreversible photodamage to microorganisms within BNH. Here, we developed an encapsulation strategy using natural luminogens with aggregation-induced emission characteristics (AIEgens) to construct a protective layer for BNH, effectively shielding them against high-energy UV photons. We incorporated natural berberine (BBR) into the BNH composed of Methanosarcina barkeri and polymeric carbon nitrides (CNx). The self-assembled BNH-BBR system displayed a 2.75-fold higher CH4 yield than BNH under simulated solar irradiation. Mechanism analysis revealed that BBR acted as a UV sunscreen for BNH by converting high-energy short wavelengths into low-energy long wavelengths, thereby reducing the accumulation of reactive oxygen species and alleviating the photocorrosion of CNx. Furthermore, BBR functioned as a photosynergist for BNH by regulating photoelectron production and utilization, enhancing the intracellular energy formation in M. barkeri for growth and metabolism. This work provides important insights into the effective and scalable conversion of CO2 into valuable biofuels with BNH under light illumination containing high-energy photons.
Collapse
Affiliation(s)
- Wenzhi Gu
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Jing Hu
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Lei Li
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Mingqiu Hong
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Chaohui Yang
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Guoping Ren
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Jie Ye
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Shungui Zhou
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| |
Collapse
|
2
|
Utomo RNC, Palkowitz AL, Gan L, Rudzinski A, Franzen J, Ballerstedt H, Zimmermann M, Blank LM, Fischer H, Wolfart S, Tuna T. In vitro plaque formation model to unravel biofilm formation dynamics on implant abutment surfaces. J Oral Microbiol 2024; 16:2424227. [PMID: 39529861 PMCID: PMC11552293 DOI: 10.1080/20002297.2024.2424227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/15/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024] Open
Abstract
Background Biofilm formation on implant-abutment surfaces can cause inflammatory reactions. Ethical concerns often limit intraoral testing, necessitating preliminary in vitro or animal studies. Here, we propose an in vitro model using human saliva and hypothesize that this model has the potential to closely mimic the dynamics of biofilm formation on implant-abutment material surfaces in vivo. Methods A saliva stock was mixed with modified Brain-Heart-Infusion medium to form biofilms on Titanium-Aluminum-Vanadium (Ti6Al4V) and Yttria-partially Stabilized Zirconia (Y-TZP) discs in 24-well plates. Biofilm analyses included crystal violet staining, intact cell quantification with BactoBox, 16S rRNA gene analysis, and short-chain fatty acids measurement. As a control, discs were worn in maxillary splints by four subjects for four days to induce in vivo biofilm formation. Results After four days, biofilms fully covered Ti6Al4V and Y-TZP discs both in vivo and in vitro, with similar cell viability. There was a 60.31% overlap of genera between in vitro and in vivo biofilms in the early stages, and 41% in the late stages. Ten key oral bacteria, including Streptococcus, Haemophilus, Neisseria, Veillonella, and Porphyromonas, were still detectable in vitro, representing the common stages of oral biofilm formation. Conclusion This in vitro model effectively simulates oral conditions and provides valuable insights into biofilm dynamics.
Collapse
Affiliation(s)
- Romualdus Nugraha Catur Utomo
- Department of Prosthodontics and Biomaterials, Center of Implantology, RWTH University Hospital Aachen, Aachen, Germany
| | - Alena Lisa Palkowitz
- Department of Dental Materials and Biomaterials Research, RWTH Aachen University Hospital, Aachen, Germany
| | - Lin Gan
- Genomics Facility, Interdisciplinary Center for Clinical Research (IZKF) RWTH Aachen University Hospital, Aachen, Germany
| | - Anna Rudzinski
- Genomics Facility, Interdisciplinary Center for Clinical Research (IZKF) RWTH Aachen University Hospital, Aachen, Germany
| | - Julia Franzen
- Genomics Facility, Interdisciplinary Center for Clinical Research (IZKF) RWTH Aachen University Hospital, Aachen, Germany
| | - Hendrik Ballerstedt
- Institute of Applied Microbiology-iAMB, Aachen Biology and Biotechnology-ABBt, RWTH Aachen University, Aachen, Germany
| | - Martin Zimmermann
- Institute of Applied Microbiology-iAMB, Aachen Biology and Biotechnology-ABBt, RWTH Aachen University, Aachen, Germany
| | - Lars Mathias Blank
- Institute of Applied Microbiology-iAMB, Aachen Biology and Biotechnology-ABBt, RWTH Aachen University, Aachen, Germany
| | - Horst Fischer
- Department of Dental Materials and Biomaterials Research, RWTH Aachen University Hospital, Aachen, Germany
| | - Stefan Wolfart
- Department of Prosthodontics and Biomaterials, Center of Implantology, RWTH University Hospital Aachen, Aachen, Germany
| | - Taskin Tuna
- Department of Prosthodontics and Biomaterials, Center of Implantology, RWTH University Hospital Aachen, Aachen, Germany
| |
Collapse
|
3
|
Guan X, Erşan S, Xie Y, Park J, Liu C. Redox and Energy Homeostasis Enabled by Photocatalytic Material-Microbial Interfaces. ACS NANO 2024. [PMID: 39056348 DOI: 10.1021/acsnano.4c05763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
Material-microbial interfaces offer a promising future in sustainable and efficient chemical-energy conversions, yet the impacts of these artificial interfaces on microbial metabolisms remain unclear. Here, we conducted detailed proteomic and metabolomic analyses to study the regulations of microbial metabolism induced by the photocatalytic material-microbial interfaces, especially the intracellular redox and energy homeostasis, which are vital for sustaining cell activity. First, we learned that the materials have a heavier weight in perturbing microbial metabolism and inducing distinctive biological pathways, like the expression of the metal-resisting system, than light stimulations. Furthermore, we observed that the materials-microbe interfaces can maintain the delicate redox balance and the energetic status of the microbial cells since the intracellular redox cofactors and energy currencies show stable levels as naturally inoculated microbes. These observations ensure the possibility of energizing microbial activities with artificial materials-microbe interfaces for diverse applications and also provide guides for future designs of materials-microbe hybrids to guard microbial activities.
Collapse
Affiliation(s)
- Xun Guan
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, California 90095, United States
| | - Sevcan Erşan
- Department of Chemical and Biomolecular Engineering, University of California Los Angeles, Los Angeles, California 90095, United States
| | - Yongchao Xie
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, California 90095, United States
| | - Junyoung Park
- Department of Chemical and Biomolecular Engineering, University of California Los Angeles, Los Angeles, California 90095, United States
| | - Chong Liu
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, California 90095, United States
- California NanoSystems Institute, University of California Los Angeles, Los Angeles, California 90095, United States
| |
Collapse
|
4
|
Bishara Robertson IL, Zhang H, Reisner E, Butt JN, Jeuken LJC. Engineering of bespoke photosensitiser-microbe interfaces for enhanced semi-artificial photosynthesis. Chem Sci 2024; 15:9893-9914. [PMID: 38966358 PMCID: PMC11220614 DOI: 10.1039/d4sc00864b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 05/20/2024] [Indexed: 07/06/2024] Open
Abstract
Biohybrid systems for solar fuel production integrate artificial light-harvesting materials with biological catalysts such as microbes. In this perspective, we discuss the rational design of the abiotic-biotic interface in biohybrid systems by reviewing microbes and synthetic light-harvesting materials, as well as presenting various approaches to coupling these two components together. To maximise performance and scalability of such semi-artificial systems, we emphasise that the interfacial design requires consideration of two important aspects: attachment and electron transfer. It is our perspective that rational design of this photosensitiser-microbe interface is required for scalable solar fuel production. The design and assembly of a biohybrid with a well-defined electron transfer pathway allows mechanistic characterisation and optimisation for maximum efficiency. Introduction of additional catalysts to the system can close the redox cycle, omitting the need for sacrificial electron donors. Studies that electronically couple light-harvesters to well-defined biological entities, such as emerging photosensitiser-enzyme hybrids, provide valuable knowledge for the strategic design of whole-cell biohybrids. Exploring the interactions between light-harvesters and redox proteins can guide coupling strategies when translated into larger, more complex microbial systems.
Collapse
Affiliation(s)
| | - Huijie Zhang
- Leiden Institute of Chemistry, Leiden University PO Box 9502 Leiden 2300 RA the Netherlands
| | - Erwin Reisner
- Yusuf Hamied Department of Chemistry, University of Cambridge Cambridge CB2 1EW UK
| | - Julea N Butt
- School of Chemistry and School of Biological Sciences, University of East Anglia Norwich Research Park Norwich NR4 7TJ UK
| | - Lars J C Jeuken
- Leiden Institute of Chemistry, Leiden University PO Box 9502 Leiden 2300 RA the Netherlands
| |
Collapse
|
5
|
Guan X, Xie Y, Liu C. Performance evaluation and multidisciplinary analysis of catalytic fixation reactions by material-microbe hybrids. Nat Catal 2024; 7:475-482. [PMID: 39524322 PMCID: PMC11546438 DOI: 10.1038/s41929-024-01151-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 03/20/2024] [Indexed: 11/16/2024]
Abstract
Hybrid systems that integrate synthetic materials with biological machinery offer opportunities for sustainable and efficient catalysis. However, the multidisciplinary and unique nature of the materials-biology interface requires researchers to draw insights from different fields. In this Perspective, using examples from the area of N2 and CO2 fixation, we provide a unified discussion of critical aspects of the material-microbe interface, simultaneously considering the requirements of physical and biological sciences that have a tangible impact on the performance of biohybrids. We first discuss the figures of merit and caveats for the evaluation of catalytic performance. Then, we reflect on the interactions and potential synergies at the materials-biology interface, as well as the challenges and opportunities for a deepened fundamental understanding of abiotic-biotic catalysis.
Collapse
Affiliation(s)
- Xun Guan
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, CA, USA
- These authors contributed equally: Xun Guan, Yongchao Xie
| | - Yongchao Xie
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, CA, USA
- These authors contributed equally: Xun Guan, Yongchao Xie
| | - Chong Liu
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, CA, USA
- California NanoSystems Institute, University of California Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
6
|
She Z, Wang J, Pan X, Ma D, Gao Y, Wang S, Chuai X, Mu Y, Yue Z. Multi-omics insights into biogeochemical responses to organic matter addition in an acidic pit lake: Implications for bioremediation. WATER RESEARCH 2024; 254:121404. [PMID: 38442608 DOI: 10.1016/j.watres.2024.121404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 01/30/2024] [Accepted: 02/29/2024] [Indexed: 03/07/2024]
Abstract
Acidic pit lakes (APLs) emerge as reservoirs of acid mine drainage in flooded open-pit mines, representing extreme ecosystems and environmental challenges worldwide. The bioremediation of these oligotrophic waters necessitates the addition of organic matter, but the biogeochemical response of APLs to exogenous organic matter remains inadequately comprehended. This study delves into the biogeochemical impacts and remediation effects of digestate-derived organic matter within an APL, employing a multi-omics approach encompassing geochemical analyses, amplicon and metagenome sequencing, and ultra-high resolution mass spectrometry. The results indicated that digestate addition first stimulated fungal proliferation, particularly Ascomycetes and Basidiomycetes, which generated organic acids through lignocellulosic hydrolysis and fermentation. These simple compounds further supported heterotrophic growth, including Acidiphilium, Acidithrix, and Clostridium, thereby facilitating nitrate, iron, and sulfate reduction linked with acidity consumption. Nutrients derived from digestate also promoted the macroscopic development of acidophilic algae. Notably, the increased sulfate reduction-related genes primarily originated from assimilatory metabolism, thus connecting sulfate decrease to organosulfur increase. Assimilatory and dissimilatory sulfate reduction collectively contributed to sulfate removal and metal fixation. These findings yield multi-omics insights into APL biogeochemical responses to organic matter addition, enhancing the understanding of carbon-centered biogeochemical cycling in extreme ecosystems and guiding organic amendment-based bioremediation in oligotrophic polluted environments.
Collapse
Affiliation(s)
- Zhixiang She
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, Anhui 230009, China; Anhui Engineering Research Center of Industrial Wastewater Treatment and Resource Recovery, Hefei University of Technology, Hefei, Anhui 230009, China; Key Laboratory of Nanominerals and Pollution Control of Anhui Higher Education Institutes, Hefei University of Technology, Hefei, Anhui 230009, China
| | - Jin Wang
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, Anhui 230009, China; Anhui Engineering Research Center of Industrial Wastewater Treatment and Resource Recovery, Hefei University of Technology, Hefei, Anhui 230009, China; Key Laboratory of Nanominerals and Pollution Control of Anhui Higher Education Institutes, Hefei University of Technology, Hefei, Anhui 230009, China.
| | - Xin Pan
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, Anhui 230009, China; Anhui Engineering Research Center of Industrial Wastewater Treatment and Resource Recovery, Hefei University of Technology, Hefei, Anhui 230009, China; Key Laboratory of Nanominerals and Pollution Control of Anhui Higher Education Institutes, Hefei University of Technology, Hefei, Anhui 230009, China
| | - Ding Ma
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, Anhui 230009, China; Anhui Engineering Research Center of Industrial Wastewater Treatment and Resource Recovery, Hefei University of Technology, Hefei, Anhui 230009, China; Key Laboratory of Nanominerals and Pollution Control of Anhui Higher Education Institutes, Hefei University of Technology, Hefei, Anhui 230009, China
| | - Yijun Gao
- Luohe Mining Company Ltd, Anhui Maanshan Iron and Steel Mining Resources Group, Hefei, Anhui 230009, China
| | - Shaoping Wang
- Nanshan Mining Company Ltd, Anhui Maanshan Iron and Steel Mining Resources Group, Ma'anshan, Anhui 243000, China
| | - Xin Chuai
- Nanshan Mining Company Ltd, Anhui Maanshan Iron and Steel Mining Resources Group, Ma'anshan, Anhui 243000, China
| | - Yang Mu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Zhengbo Yue
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, Anhui 230009, China; Anhui Engineering Research Center of Industrial Wastewater Treatment and Resource Recovery, Hefei University of Technology, Hefei, Anhui 230009, China; Key Laboratory of Nanominerals and Pollution Control of Anhui Higher Education Institutes, Hefei University of Technology, Hefei, Anhui 230009, China.
| |
Collapse
|
7
|
Benisch R, Andreas MP, Giessen TW. A widespread bacterial protein compartment sequesters and stores elemental sulfur. SCIENCE ADVANCES 2024; 10:eadk9345. [PMID: 38306423 PMCID: PMC10836720 DOI: 10.1126/sciadv.adk9345] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 01/03/2024] [Indexed: 02/04/2024]
Abstract
Subcellular compartments often serve to store nutrients or sequester labile or toxic compounds. As bacteria mostly do not possess membrane-bound organelles, they often have to rely on protein-based compartments. Encapsulins are one of the most prevalent protein-based compartmentalization strategies found in prokaryotes. Here, we show that desulfurase encapsulins can sequester and store large amounts of crystalline elemental sulfur. We determine the 1.78-angstrom cryo-EM structure of a 24-nanometer desulfurase-loaded encapsulin. Elemental sulfur crystals can be formed inside the encapsulin shell in a desulfurase-dependent manner with l-cysteine as the sulfur donor. Sulfur accumulation can be influenced by the concentration and type of sulfur source in growth medium. The selectively permeable protein shell allows the storage of redox-labile elemental sulfur by excluding cellular reducing agents, while encapsulation substantially improves desulfurase activity and stability. These findings represent an example of a protein compartment able to accumulate and store elemental sulfur.
Collapse
Affiliation(s)
- Robert Benisch
- Program in Chemical Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Michael P. Andreas
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Tobias W. Giessen
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| |
Collapse
|
8
|
Boto ST, Bardl B, Harnisch F, Rosenbaum MA. Microbial electrosynthesis with Clostridium ljungdahlii benefits from hydrogen electron mediation and permits a greater variety of products. GREEN CHEMISTRY : AN INTERNATIONAL JOURNAL AND GREEN CHEMISTRY RESOURCE : GC 2023; 25:4375-4386. [PMID: 37288452 PMCID: PMC10243432 DOI: 10.1039/d3gc00471f] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 04/21/2023] [Indexed: 06/09/2023]
Abstract
Microbial electrosynthesis (MES) is a very promising technology addressing the challenge of carbon dioxide recycling into organic compounds, which might serve as building blocks for the (bio)chemical industry. However, poor process control and understanding of fundamental aspects such as the microbial extracellular electron transfer (EET) currently limit further developments. In the model acetogen Clostridium ljungdahlii, both direct and indirect electron consumption via hydrogen have been proposed. However, without clarification neither targeted development of the microbial catalyst nor process engineering of MES are possible. In this study, cathodic hydrogen is demonstrated to be the dominating electron source for C. ljungdahlii at electroautotrophic MES allowing for superior growth and biosynthesis, compared to previously reported MES using pure cultures. Hydrogen availability distinctly controlled an either planktonic- or biofilm-dominated lifestyle of C. ljungdahlii. The most robust operation yielded higher planktonic cell densities in a hydrogen mediated process, which demonstrated the uncoupling of growth and biofilm formation. This coincided with an increase of metabolic activity, acetate titers, and production rates (up to 6.06 g L-1 at 0.11 g L-1 d-1). For the first time, MES using C. ljungdahlii was also revealed to deliver other products than acetate in significant amounts: here up to 0.39 g L-1 glycine or 0.14 g L-1 ethanolamine. Hence, a deeper comprehension of the electrophysiology of C. ljungdahlii was shown to be key for designing and improving bioprocess strategies in MES research.
Collapse
Affiliation(s)
- Santiago T Boto
- Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute (Leibniz-HKI) Jena Germany
- Faculty of Biological Sciences, Friedrich Schiller University Jena Germany
| | - Bettina Bardl
- Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute (Leibniz-HKI) Jena Germany
| | - Falk Harnisch
- UFZ - Helmholtz-Centre for Environmental Research GmbH, Department of Environmental Microbiology Permoserstraße 15 04318 Leipzig Germany
| | - Miriam A Rosenbaum
- Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute (Leibniz-HKI) Jena Germany
- Faculty of Biological Sciences, Friedrich Schiller University Jena Germany
| |
Collapse
|
9
|
Tiefenthaler L, Scheier P, Erdmann E, Aguirre NF, Díaz-Tendero S, Luxford TFM, Kočišek J. Non-ergodic fragmentation upon collision-induced activation of cysteine-water cluster cations. Phys Chem Chem Phys 2023; 25:5361-5371. [PMID: 36647750 PMCID: PMC9930733 DOI: 10.1039/d2cp04172c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 10/20/2022] [Indexed: 01/18/2023]
Abstract
Cysteine-water cluster cations Cys(H2O)3,6+ and Cys(H2O)3,6H+ are assembled in He droplets and probed by tandem mass spectrometry with collision-induced activation. Benchmark experimental data for this biologically important system are complemented with theory to elucidate the details of the collision-induced activation process. Experimental energy thresholds for successive release of water are compared to water dissociation energies from DFT calculations showing that clusters do not only fragment exclusively by sequential emission of single water molecules but also by the release of small water clusters. Release of clustered water is observed also in the ADMP (atom centered density matrix propagation) molecular dynamics model of small Cys(H2O)3+ and Cys(H2O)3H+ clusters. For large clusters Cys(H2O)6+ and Cys(H2O)6H+ the less computationally demanding statistical Microcanonical Metropolis Monte-Carlo method (M3C) is used to model the experimental fragmentation patterns. We are able to detail the energy redistribution in clusters upon collision activation. In the present case, about two thirds of the collision energy redistribute via an ergodic process, while the remaining one third is transferred into a non-ergodic channel leading to ejection of a single water molecule from the cluster. In contrast to molecular fragmentation, which can be well described by statistical models, modelling of collision-induced activation of weakly bound clusters requires inclusion of non-ergodic processes.
Collapse
Affiliation(s)
- Lukas Tiefenthaler
- Institute for Ion Physics and Applied Physics, University of Innsbruck, Austria.
| | - Paul Scheier
- Institute for Ion Physics and Applied Physics, University of Innsbruck, Austria.
| | - Ewa Erdmann
- Faculty of Applied Physics and Mathematics, Gdansk University of Technology, Narutowicza 11/12, 80-233 Gdansk, Poland
- Departamento de Química, Universidad Autónoma de Madrid, 28049, Madrid, Spain.
| | - Néstor F Aguirre
- Software for Chemistry and Materials (SCM), Amsterdam, The Netherlands
| | - Sergio Díaz-Tendero
- Departamento de Química, Universidad Autónoma de Madrid, 28049, Madrid, Spain.
- Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, 28049 Madrid, Spain
- Institute for Advanced Research in ChemicalSciences (IAdChem), Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Thomas F M Luxford
- J. Heyrovský Institute of Physical Chemistry v.v.i., The Czech Academy of Sciences, Dolejškova 3, 18223 Prague, Czechia.
| | - Jaroslav Kočišek
- J. Heyrovský Institute of Physical Chemistry v.v.i., The Czech Academy of Sciences, Dolejškova 3, 18223 Prague, Czechia.
| |
Collapse
|
10
|
Shen J, Liu Y, Qiao L. Photodriven Chemical Synthesis by Whole-Cell-Based Biohybrid Systems: From System Construction to Mechanism Study. ACS APPLIED MATERIALS & INTERFACES 2023; 15:6235-6259. [PMID: 36702806 DOI: 10.1021/acsami.2c19528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
By simulating natural photosynthesis, the desirable high-value chemical products and clean fuels can be sustainably generated with solar energy. Whole-cell-based photosensitized biohybrid system, which innovatively couples the excellent light-harvesting capacity of semiconductor materials with the efficient catalytic ability of intracellular biocatalysts, is an appealing interdisciplinary creature to realize photodriven chemical synthesis. In this review, we summarize the constructed whole-cell-based biohybrid systems in different application fields, including carbon dioxide fixation, nitrogen fixation, hydrogen production, and other chemical synthesis. Moreover, we elaborate the charge transfer mechanism studies of representative biohybrids, which can help to deepen the current understanding of the synergistic process between photosensitizers and microorganisms, and provide schemes for building novel biohybrids with less electron transfer resistance, advanced productive efficiency, and functional diversity. Further exploration in this field has the prospect of making a breakthrough on the biotic-abiotic interface that will provide opportunities for multidisciplinary research.
Collapse
Affiliation(s)
- Jiayuan Shen
- Department of Chemistry, and Shanghai Stomatological Hospital, Fudan University, Shanghai 200000, China
| | - Yun Liu
- Department of Chemistry, and Shanghai Stomatological Hospital, Fudan University, Shanghai 200000, China
| | - Liang Qiao
- Department of Chemistry, and Shanghai Stomatological Hospital, Fudan University, Shanghai 200000, China
| |
Collapse
|
11
|
Ye J, Wang C, Gao C, Fu T, Yang C, Ren G, Lü J, Zhou S, Xiong Y. Solar-driven methanogenesis with ultrahigh selectivity by turning down H 2 production at biotic-abiotic interface. Nat Commun 2022; 13:6612. [PMID: 36329056 PMCID: PMC9633801 DOI: 10.1038/s41467-022-34423-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 10/25/2022] [Indexed: 11/06/2022] Open
Abstract
Integration of methanogens with semiconductors is an effective approach to sustainable solar-driven methanogenesis. However, the H2 production rate by semiconductors largely exceeds that of methanogen metabolism, resulting in abundant H2 as side product. Here, we report that binary metallic active sites (namely, NiCu alloys) are incorporated into the interface between CdS semiconductors and Methanosarcina barkeri. The self-assembled Methanosarcina barkeri-NiCu@CdS exhibits nearly 100% CH4 selectivity with a quantum yield of 12.41 ± 0.16% under light illumination, which not only exceeds the reported biotic-abiotic hybrid systems but also is superior to most photocatalytic systems. Further investigation reveal that the Ni-Cu-Cu hollow sites in NiCu alloys can directly supply hydrogen atoms and electrons through photocatalysis to the Methanosarcina barkeri for methanogenesis via both extracellular and intracellular hydrogen cycles, effectively turning down the H2 production. This work provides important insights into the biotic-abiotic hybrid interface, and offers an avenue for engineering the methanogenesis process.
Collapse
Affiliation(s)
- Jie Ye
- grid.256111.00000 0004 1760 2876Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Chao Wang
- grid.256111.00000 0004 1760 2876Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Chao Gao
- grid.59053.3a0000000121679639School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, 230026 China
| | - Tao Fu
- grid.256111.00000 0004 1760 2876Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Chaohui Yang
- grid.256111.00000 0004 1760 2876Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Guoping Ren
- grid.256111.00000 0004 1760 2876Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Jian Lü
- grid.256111.00000 0004 1760 2876Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Shungui Zhou
- grid.256111.00000 0004 1760 2876Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Yujie Xiong
- grid.59053.3a0000000121679639School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, 230026 China
| |
Collapse
|
12
|
Guan X, Erşan S, Hu X, Atallah TL, Xie Y, Lu S, Cao B, Sun J, Wu K, Huang Y, Duan X, Caram JR, Yu Y, Park JO, Liu C. Maximizing light-driven CO 2 and N 2 fixation efficiency in quantum dot-bacteria hybrids. Nat Catal 2022; 5:1019-1029. [PMID: 36844635 PMCID: PMC9956923 DOI: 10.1038/s41929-022-00867-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 09/30/2022] [Indexed: 11/11/2022]
Abstract
Integrating light-harvesting materials with microbial biochemistry is a viable approach to produce chemicals with high efficiency from the air, water, and sunlight. Yet it remains unclear whether all absorbed photons in the materials can be transferred through the material-biology interface for solar-to-chemical production and whether the presence of materials beneficially affect the microbial metabolism. Here we report a microbe-semiconductor hybrid by interfacing CO2/N2-fixing bacterium Xanthobacter autotrophicus with CdTe quantum dots for light-driven CO2 and N2 fixation with internal quantum efficiencies of 47.2 ± 7.3% and 7.1 ± 1.1%, respectively, reaching the biochemical limits of 46.1% and 6.9% imposed by the stoichiometry in biochemical pathways. Photophysical studies suggest fast charge-transfer kinetics at the microbe-semiconductor interfaces, while proteomics and metabolomics indicate a material-induced regulation of microbial metabolism favoring higher quantum efficiencies compared to the biological counterparts alone.
Collapse
Affiliation(s)
- Xun Guan
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, California 90095, United States
| | - Sevcan Erşan
- Department of Chemical and Biomolecular Engineering, University of California Los Angeles, Los Angeles, California 90095, United States
| | - Xiangchen Hu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Timothy L. Atallah
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, California 90095, United States
- Department of Chemistry and Biochemistry, Denison University, Granville, Ohio 43023, United States
| | - Yongchao Xie
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, California 90095, United States
| | - Shengtao Lu
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, California 90095, United States
| | - Bocheng Cao
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, California 90095, United States
- Department of Materials Science and Engineering, University of California Los Angeles, Los Angeles, California 90095, United States
| | - Jingwen Sun
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, California 90095, United States
| | - Ke Wu
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, California 90095, United States
| | - Yu Huang
- Department of Materials Science and Engineering, University of California Los Angeles, Los Angeles, California 90095, United States
- California NanoSystems Institute, University of California Los Angeles, Los Angeles, California 90095, United States
| | - Xiangfeng Duan
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, California 90095, United States
- California NanoSystems Institute, University of California Los Angeles, Los Angeles, California 90095, United States
| | - Justin R. Caram
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, California 90095, United States
| | - Yi Yu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Junyoung O. Park
- Department of Chemical and Biomolecular Engineering, University of California Los Angeles, Los Angeles, California 90095, United States
| | - Chong Liu
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, California 90095, United States
- California NanoSystems Institute, University of California Los Angeles, Los Angeles, California 90095, United States
| |
Collapse
|
13
|
Meng X, Liu L, Chen X. Bacterial photosynthesis: state-of-the-art in light-driven carbon fixation in engineered bacteria. Curr Opin Microbiol 2022; 69:102174. [DOI: 10.1016/j.mib.2022.102174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 05/24/2022] [Accepted: 05/30/2022] [Indexed: 11/03/2022]
|
14
|
Wang Q, Kalathil S, Pornrungroj C, Sahm CD, Reisner E. Bacteria–photocatalyst sheet for sustainable carbon dioxide utilization. Nat Catal 2022. [DOI: 10.1038/s41929-022-00817-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
15
|
Yau MCM, Hayes M, Kalathil S. Biocatalytic conversion of sunlight and carbon dioxide to solar fuels and chemicals. RSC Adv 2022; 12:16396-16411. [PMID: 35754911 PMCID: PMC9169074 DOI: 10.1039/d2ra00673a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 05/25/2022] [Indexed: 11/21/2022] Open
Abstract
This review discusses the progress in the assembly of photosynthetic biohybrid systems using enzymes and microbes as the biocatalysts which are capable of utilising light to reduce carbon dioxide to solar fuels. We begin by outlining natural photosynthesis, an inspired biomachinery to develop artificial photosystems, and the rationale and motivation to advance and introduce biological substrates to create more novel, and efficient, photosystems. The case studies of various approaches to the development of CO2-reducing microbial semi-artificial photosystems are also summarised, showcasing a variety of methods for hybrid microbial photosystems and their potential. Finally, approaches to investigate the relatively ambiguous electron transfer mechanisms in such photosystems are discussed through the presentation of spectroscopic techniques, eventually leading to what this will mean for the future of microbial hybrid photosystems.
Collapse
Affiliation(s)
- Mandy Ching Man Yau
- Hub for Biotechnology in the Built Environment, Department of Applied Sciences, Faculty of Health and Life Sciences, Northumbria University Newcastle NE1 8ST UK
| | - Martin Hayes
- Johnson Matthey Technology Centre Cambridge Science Park, Milton Road Cambridge CB4 0FP UK
| | - Shafeer Kalathil
- Hub for Biotechnology in the Built Environment, Department of Applied Sciences, Faculty of Health and Life Sciences, Northumbria University Newcastle NE1 8ST UK
| |
Collapse
|
16
|
Lee H, Bae J, Jin S, Kang S, Cho BK. Engineering Acetogenic Bacteria for Efficient One-Carbon Utilization. Front Microbiol 2022; 13:865168. [PMID: 35615514 PMCID: PMC9124964 DOI: 10.3389/fmicb.2022.865168] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 04/19/2022] [Indexed: 12/03/2022] Open
Abstract
C1 gases, including carbon dioxide (CO2) and carbon monoxide (CO), are major contributors to climate crisis. Numerous studies have been conducted to fix and recycle C1 gases in order to solve this problem. Among them, the use of microorganisms as biocatalysts to convert C1 gases to value-added chemicals is a promising solution. Acetogenic bacteria (acetogens) have received attention as high-potential biocatalysts owing to their conserved Wood–Ljungdahl (WL) pathway, which fixes not only CO2 but also CO. Although some metabolites have been produced via C1 gas fermentation on an industrial scale, the conversion of C1 gases to produce various biochemicals by engineering acetogens has been limited. The energy limitation of acetogens is one of the challenges to overcome, as their metabolism operates at a thermodynamic limit, and the low solubility of gaseous substrates results in a limited supply of cellular energy. This review provides strategies for developing efficient platform strains for C1 gas conversion, focusing on engineering the WL pathway. Supplying liquid C1 substrates, which can be obtained from CO2, or electricity is introduced as a strategy to overcome the energy limitation. Future prospective approaches on engineering acetogens based on systems and synthetic biology approaches are also discussed.
Collapse
Affiliation(s)
- Hyeonsik Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Jiyun Bae
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Sangrak Jin
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Seulgi Kang
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Byung-Kwan Cho
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
- KI for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
- *Correspondence: Byung-Kwan Cho,
| |
Collapse
|
17
|
Rosenbaum FP, Poehlein A, Daniel R, Müller V. Energy‐conserving dimethyl sulfoxide reduction in the acetogenic bacterium
Moorella thermoacetica. Environ Microbiol 2022; 24:2000-2012. [DOI: 10.1111/1462-2920.15971] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/02/2022] [Accepted: 03/07/2022] [Indexed: 11/29/2022]
Affiliation(s)
- Florian P. Rosenbaum
- Department of Molecular Microbiology & Bioenergetics, Institute of Molecular Biosciences Johann Wolfgang Goethe University Frankfurt Germany
| | - Anja Poehlein
- Genomic and Applied Microbiology & Göttingen Genomics Laboratory, Institute of Microbiology and Genetics Georg‐August University Göttingen Göttingen 37077 Germany
| | - Rolf Daniel
- Genomic and Applied Microbiology & Göttingen Genomics Laboratory, Institute of Microbiology and Genetics Georg‐August University Göttingen Göttingen 37077 Germany
| | - Volker Müller
- Department of Molecular Microbiology & Bioenergetics, Institute of Molecular Biosciences Johann Wolfgang Goethe University Frankfurt Germany
| |
Collapse
|
18
|
Nocera DG. Proton-Coupled Electron Transfer: The Engine of Energy Conversion and Storage. J Am Chem Soc 2022; 144:1069-1081. [PMID: 35023740 DOI: 10.1021/jacs.1c10444] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Proton-coupled electron transfer (PCET) underpins energy conversion in chemistry and biology. Four energy systems are described whose discoveries are based on PCET: the water splitting chemistry of the Artificial Leaf, the carbon fixation chemistry of the Bionic Leaf-C, the nitrogen fixation chemistry of the Bionic Leaf-N and the Coordination Chemistry Flow Battery (CCFB). Whereas the Artificial Leaf, Bionic Leaf-C, and Bionic Leaf-N require strong coupling between electron and proton to reduce energetic barriers to enable high energy efficiencies, the CCFB requires complete decoupling of the electron and proton so as to avoid parasitic energy-wasting reactions. The proper design of PCET in these systems facilitates their implementation in the areas of (i) centralized large scale grid storage of electricity and (ii) decentralized energy storage/conversion using only sunlight, air and any water source to produce fuel and food within a sustainable cycle for the biogenic elements of C, N and P.
Collapse
Affiliation(s)
- Daniel G Nocera
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| |
Collapse
|
19
|
Pavan M, Reinmets K, Garg S, Mueller AP, Marcellin E, Köpke M, Valgepea K. Advances in systems metabolic engineering of autotrophic carbon oxide-fixing biocatalysts towards a circular economy. Metab Eng 2022; 71:117-141. [DOI: 10.1016/j.ymben.2022.01.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 01/24/2022] [Accepted: 01/25/2022] [Indexed: 12/16/2022]
|
20
|
Cestellos-Blanco S, Kim JM, Watanabe NG, Chan RR, Yang P. Molecular insights and future frontiers in cell photosensitization for solar-driven CO 2 conversion. iScience 2021; 24:102952. [PMID: 34458701 PMCID: PMC8379512 DOI: 10.1016/j.isci.2021.102952] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The conversion of CO2 to value-added products powered with solar energy is an ideal solution to establishing a closed carbon cycle. Combining microorganisms with light-harvesting nanomaterials into photosynthetic biohybrid systems (PBSs) presents an approach to reaching this solution. Metabolic pathways precisely evolved for CO2 fixation selectively and reliably generate products. Nanomaterials harvest solar light and biocompatibly associate with microorganisms owing to similar lengths scales. Although this is a nascent field, a variety of approaches have been implemented encompassing different microorganisms and nanomaterials. To advance the field in an impactful manner, it is paramount to understand the molecular underpinnings of PBSs. In this perspective, we highlight studies inspecting charge uptake pathways and singularities in photosensitized cells. We discuss further analyses to more completely elucidate these constructs, and we focus on criteria to be met for designing photosensitizing nanomaterials. As a result, we advocate for the pairing of microorganisms with naturally occurring and highly biocompatible mineral-based semiconductor nanomaterials.
Collapse
Affiliation(s)
| | - Ji Min Kim
- Department of Materials Science and Engineering, University of California, Berkeley, CA, USA
| | | | | | - Peidong Yang
- Department of Materials Science and Engineering, University of California, Berkeley, CA, USA
- Department of Chemistry, University of California, Berkeley, CA, USA
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Kavli Energy NanoScience Institute at the University of California, Berkeley, CA, USA
| |
Collapse
|
21
|
Rosenbaum FP, Poehlein A, Egelkamp R, Daniel R, Harder S, Schlüter H, Schoelmerich MC. Lactate metabolism in strictly anaerobic microorganisms with a soluble NAD + -dependent l-lactate dehydrogenase. Environ Microbiol 2021; 23:4661-4672. [PMID: 34190373 DOI: 10.1111/1462-2920.15657] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 06/28/2021] [Indexed: 11/30/2022]
Abstract
Lactate is a universal metabolite and energy source, yet the mode of lactate metabolism in many strictly anaerobic microorganisms is still enigmatic. This sparked us to investigate the biochemistry and bioenergetics of lactate metabolism in the model acetogenic bacterium Moorella thermoacetica. Growth and metabolism were dependent on CO2 and the chemiosmotic gradient. We discovered a l-lactate:NAD+ oxidoreductase (LDH) in cell-free extracts, exhibiting an average specific activity of 362.8 ± 22.9 mU mg-1 . The enzyme was reversible, most active at 65°C and pH 9, with Km values of 23.1 ± 3.7 mM for l-lactate and 273.3 ± 39.1 μM for NAD+ . In-gel activity assays and mass spectrometric proteomics revealed that the ldh gene encoded the characterized LDH. Transcriptomic and genomic analyses showed that ldh expression was induced by lactate and there was a single nucleotide polymorphism near the predicted NAD+ binding site. Genes encoding central redox and energy metabolism complexes, such as, the energetic coupling site Ech2, menaquinone, and the electron bifurcating EtfABCX and MTHFR were also upregulated in cells grown on lactate. These findings ultimately lead to a redox-balanced metabolic model that shows how growth on lactate can proceed in a microorganism that only has a conventional NAD+ -reducing LDH.
Collapse
Affiliation(s)
- Florian P Rosenbaum
- Microbiology & Biotechnology, Institute of Plant Sciences and Microbiology, University of Hamburg, Hamburg, 22609, Germany
| | - Anja Poehlein
- Genomic and Applied Microbiology & Göttingen Genomics Laboratory, Georg-August University Göttingen, Göttingen, 37077, Germany
| | - Richard Egelkamp
- Genomic and Applied Microbiology & Göttingen Genomics Laboratory, Georg-August University Göttingen, Göttingen, 37077, Germany
| | - Rolf Daniel
- Genomic and Applied Microbiology & Göttingen Genomics Laboratory, Georg-August University Göttingen, Göttingen, 37077, Germany
| | - Sönke Harder
- Mass Spectrometric Proteomics Group, Department of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, 20246, Germany
| | - Hartmut Schlüter
- Mass Spectrometric Proteomics Group, Department of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, 20246, Germany
| | - Marie Charlotte Schoelmerich
- Microbiology & Biotechnology, Institute of Plant Sciences and Microbiology, University of Hamburg, Hamburg, 22609, Germany
| |
Collapse
|