1
|
Huang G, Wang X, Li T, Xu Y, Sheng Y, Wang H, Bian L, Zheng K, Xu X, Zhang G, Su B, Ren C. Differential Effects of Continuous Theta Burst Stimulation over the Bilateral and Unilateral Cerebellum on Working Memory. CEREBELLUM (LONDON, ENGLAND) 2024:10.1007/s12311-024-01738-2. [PMID: 39215909 DOI: 10.1007/s12311-024-01738-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/23/2024] [Indexed: 09/04/2024]
Abstract
Recent functional MRI studies have implicated the cerebellum in working memory (WM) alongside the prefrontal cortex. Some findings indicate that the right cerebellum is activated during verbal tasks, while the left is engaged during visuospatial tasks, suggesting cerebellar lateralization in WM function. The cerebellum could be a potential target for non-invasive brain stimulation (NIBS) to enhance WM function in cognitive disorders. However, the comprehensive influence of cerebellar lateralization on different types of WM and the effect of stimulation over the unilateral or bilateral cerebellum remain uncertain. This study was to investigate the cerebellum's functional lateralization and its specific impact on various aspects of WM in a causal manner using unilateral or bilateral cerebellar continuous theta burst stimulation (cTBS), a form of inhibitroy NIBS. Twenty-four healthy participants underwent four sessions of cTBS targeting the left, right, or bilateral Crus I of the cerebellum, or a sham condition, in a controlled cross-over design. WM performance was assessed pre- and post-stimulation using neuropsychological tests, including the 3-back task, spatial WM task, and digit span task. Results indicated that cTBS over the bilateral and right cerebellum both led to a greater improvement in 3-back task performance compared to sham stimulation. Additionally, active cTBS over the bilateral cerebellum yielded better performance in the spatial WM task than sham stimulation. However, no significant differences were observed between stimulation conditions for the auditory digit span task. This study may provide novel causal evidence highlighting the specific involvement of the right and bilateral cerebellum in various types of WM. Specifically, the right cerebellum appears crucial for updating and tracking 3-back WM content, while spatial WM processes require the coordinated engagement of both cerebellar hemispheres.
Collapse
Affiliation(s)
- Guilan Huang
- Department of Rehabilitation Medicine, The Affiliated Mental Health Center of Jiangnan University, Wuxi Central Rehabilitation Hospital, Wuxi, Jiangsu, 214151, China
| | - Xin Wang
- Department of Rehabilitation Medicine, The Affiliated Mental Health Center of Jiangnan University, Wuxi Central Rehabilitation Hospital, Wuxi, Jiangsu, 214151, China
| | - Tingni Li
- Centre for Eye and Vision Research (CEVR), 17W Hong Kong Science Park, Hong Kong SAR, 999077, China
| | - Yi Xu
- Wuxi MaxRex Robotic Exoskeleton Limited, Wuxi, Jiangsu, 214151, China
| | - Yiyang Sheng
- Department of Radiology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Hewei Wang
- Department of Rehabilitation, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Li Bian
- Department of Rehabilitation Medicine, The Affiliated Mental Health Center of Jiangnan University, Wuxi Central Rehabilitation Hospital, Wuxi, Jiangsu, 214151, China
| | - Kai Zheng
- Department of Rehabilitation Medicine, The Affiliated Mental Health Center of Jiangnan University, Wuxi Central Rehabilitation Hospital, Wuxi, Jiangsu, 214151, China
| | - Xinlei Xu
- Department of Rehabilitation Medicine, The Affiliated Mental Health Center of Jiangnan University, Wuxi Central Rehabilitation Hospital, Wuxi, Jiangsu, 214151, China
| | - Guofu Zhang
- Department of Geriatric Psychiatry, The Affiliated Mental Health Center of Jiangnan University, Wuxi Central Rehabilitation Hospital, Wuxi, Jiangsu, 214515, China.
| | - Bin Su
- Department of Rehabilitation Medicine, The Affiliated Mental Health Center of Jiangnan University, Wuxi Central Rehabilitation Hospital, Wuxi, Jiangsu, 214151, China.
| | - Caili Ren
- Department of Rehabilitation Medicine, The Affiliated Mental Health Center of Jiangnan University, Wuxi Central Rehabilitation Hospital, Wuxi, Jiangsu, 214151, China.
| |
Collapse
|
2
|
Wessel MJ, Draaisma LR, Durand-Ruel M, Maceira-Elvira P, Moyne M, Turlan JL, Mühl A, Chauvigné L, Koch PJ, Morishita T, Guggisberg AG, Hummel FC. Multi-focal Stimulation of the Cortico-cerebellar Loop During the Acquisition of a Novel Hand Motor Skill in Chronic Stroke Survivors. CEREBELLUM (LONDON, ENGLAND) 2024; 23:341-354. [PMID: 36802021 PMCID: PMC10951005 DOI: 10.1007/s12311-023-01526-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/31/2023] [Indexed: 02/21/2023]
Abstract
Impairment of hand motor function is a frequent consequence after a stroke and strongly determines the ability to regain a self-determined life. An influential research strategy for improving motor deficits is the combined application of behavioral training and non-invasive brain stimulation of the motor cortex (M1). However, a convincing clinical translation of the present stimulation strategies has not been achieved yet. One alternative and innovative approach is to target the functionally relevant brain network-based architecture, e.g., the dynamic interactions within the cortico-cerebellar system during learning. Here, we tested a sequential multifocal stimulation strategy targeting the cortico-cerebellar loop. Anodal transcranial direct current stimulation (tDCS) was applied simultaneously to a hand-based motor training in N = 11 chronic stroke survivors during four training sessions on two consecutive days. The tested conditions were: sequential multifocal (M1-cerebellum (CB)-M1-CB) vs. monofocal control stimulation (M1-sham-M1-sham). Additionally, skill retention was assessed 1 and 10 days after the training phase. Paired-pulse transcranial magnetic stimulation data were recorded to characterize stimulation response determining features. The application of CB-tDCS boosted motor behavior in the early training phase in comparison to the control condition. No faciliatory effects on the late training phase or skill retention were detected. Stimulation response variability was related to the magnitude of baseline motor ability and short intracortical inhibition (SICI). The present findings suggest a learning phase-specific role of the cerebellar cortex during the acquisition of a motor skill in stroke and that personalized stimulation strategies encompassing several nodes of the underlying brain network should be considered.
Collapse
Affiliation(s)
- M J Wessel
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute (INX) and Brain Mind Institute (BMI), École Polytechnique Fédérale de Lausanne (EPFL), 9 Chemin des Mines, 1202, Geneva, Switzerland
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute (INX) and Brain Mind Institute (BMI), Clinique Romande de Réadaptation, École Polytechnique Fédérale de Lausanne (EPFL Valais), Av. Grand-Champsec 90, 1951, Sion, Switzerland
- University Hospital Würzburg (UKW), Department of Neurology, Josef-Schneider-Str. 11, 97080, Würzburg, Germany
| | - L R Draaisma
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute (INX) and Brain Mind Institute (BMI), École Polytechnique Fédérale de Lausanne (EPFL), 9 Chemin des Mines, 1202, Geneva, Switzerland
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute (INX) and Brain Mind Institute (BMI), Clinique Romande de Réadaptation, École Polytechnique Fédérale de Lausanne (EPFL Valais), Av. Grand-Champsec 90, 1951, Sion, Switzerland
| | - M Durand-Ruel
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute (INX) and Brain Mind Institute (BMI), École Polytechnique Fédérale de Lausanne (EPFL), 9 Chemin des Mines, 1202, Geneva, Switzerland
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute (INX) and Brain Mind Institute (BMI), Clinique Romande de Réadaptation, École Polytechnique Fédérale de Lausanne (EPFL Valais), Av. Grand-Champsec 90, 1951, Sion, Switzerland
| | - P Maceira-Elvira
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute (INX) and Brain Mind Institute (BMI), École Polytechnique Fédérale de Lausanne (EPFL), 9 Chemin des Mines, 1202, Geneva, Switzerland
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute (INX) and Brain Mind Institute (BMI), Clinique Romande de Réadaptation, École Polytechnique Fédérale de Lausanne (EPFL Valais), Av. Grand-Champsec 90, 1951, Sion, Switzerland
| | - M Moyne
- Department of Clinical Neurosciences, Geneva University Hospital (HUG), Geneva, Switzerland
| | - J-L Turlan
- Clinique Romande de Réadaptation (CRR Suva), Sion, Switzerland
| | - A Mühl
- Clinique Romande de Réadaptation (CRR Suva), Sion, Switzerland
| | - L Chauvigné
- Department of Clinical Neurosciences, Geneva University Hospital (HUG), Geneva, Switzerland
| | - P J Koch
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute (INX) and Brain Mind Institute (BMI), École Polytechnique Fédérale de Lausanne (EPFL), 9 Chemin des Mines, 1202, Geneva, Switzerland
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute (INX) and Brain Mind Institute (BMI), Clinique Romande de Réadaptation, École Polytechnique Fédérale de Lausanne (EPFL Valais), Av. Grand-Champsec 90, 1951, Sion, Switzerland
| | - T Morishita
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute (INX) and Brain Mind Institute (BMI), École Polytechnique Fédérale de Lausanne (EPFL), 9 Chemin des Mines, 1202, Geneva, Switzerland
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute (INX) and Brain Mind Institute (BMI), Clinique Romande de Réadaptation, École Polytechnique Fédérale de Lausanne (EPFL Valais), Av. Grand-Champsec 90, 1951, Sion, Switzerland
| | - A G Guggisberg
- Department of Clinical Neurosciences, Geneva University Hospital (HUG), Geneva, Switzerland
- Universitäre Neurorehabilitation, Universitätsklinik für Neurologie, Inselspital, University Hospital of Berne, Berne, Switzerland
| | - F C Hummel
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute (INX) and Brain Mind Institute (BMI), École Polytechnique Fédérale de Lausanne (EPFL), 9 Chemin des Mines, 1202, Geneva, Switzerland.
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute (INX) and Brain Mind Institute (BMI), Clinique Romande de Réadaptation, École Polytechnique Fédérale de Lausanne (EPFL Valais), Av. Grand-Champsec 90, 1951, Sion, Switzerland.
- Department of Clinical Neurosciences, Geneva University Hospital (HUG), Geneva, Switzerland.
| |
Collapse
|
3
|
Eysel UT, Jancke D. Induction of excitatory brain state governs plastic functional changes in visual cortical topology. Brain Struct Funct 2024; 229:531-547. [PMID: 38041743 PMCID: PMC10978694 DOI: 10.1007/s00429-023-02730-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 11/03/2023] [Indexed: 12/03/2023]
Abstract
Adult visual plasticity underlying local remodeling of the cortical circuitry in vivo appears to be associated with a spatiotemporal pattern of strongly increased spontaneous and evoked activity of populations of cells. Here we review and discuss pioneering work by us and others about principles of plasticity in the adult visual cortex, starting with our study which showed that a confined lesion in the cat retina causes increased excitability in the affected region in the primary visual cortex accompanied by fine-tuned restructuring of neuronal function. The underlying remodeling processes was further visualized with voltage-sensitive dye (VSD) imaging that allowed a direct tracking of retinal lesion-induced reorganization across horizontal cortical circuitries. Nowadays, application of noninvasive stimulation methods pursues the idea further of increased cortical excitability along with decreased inhibition as key factors for the induction of adult cortical plasticity. We used high-frequency transcranial magnetic stimulation (TMS), for the first time in combination with VSD optical imaging, and provided evidence that TMS-amplified excitability across large pools of neurons forms the basis for noninvasively targeting reorganization of orientation maps in the visual cortex. Our review has been compiled on the basis of these four own studies, which we discuss in the context of historical developments in the field of visual cortical plasticity and the current state of the literature. Overall, we suggest markers of LTP-like cortical changes at mesoscopic population level as a main driving force for the induction of visual plasticity in the adult. Elevations in excitability that predispose towards cortical plasticity are most likely a common property of all cortical modalities. Thus, interventions that increase cortical excitability are a promising starting point to drive perceptual and potentially motor learning in therapeutic applications.
Collapse
Affiliation(s)
- Ulf T Eysel
- Department of Neurophysiology, Ruhr University Bochum, 44780, Bochum, Germany.
| | - Dirk Jancke
- Optical Imaging Group, Institut für Neuroinformatik, Ruhr University Bochum, 44780, Bochum, Germany.
| |
Collapse
|
4
|
Pezzetta R, Gambarota F, Tarantino V, Devita M, Cattaneo Z, Arcara G, Mapelli D, Masina F. A meta-analysis of non-invasive brain stimulation (NIBS) effects on cerebellar-associated cognitive processes. Neurosci Biobehav Rev 2024; 157:105509. [PMID: 38101590 DOI: 10.1016/j.neubiorev.2023.105509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/28/2023] [Accepted: 12/10/2023] [Indexed: 12/17/2023]
Abstract
Non-invasive brain stimulation (NIBS) techniques, including transcranial magnetic stimulation (TMS) and transcranial electrical stimulation (tES), have provided valuable insights into the role of the cerebellum in cognitive processes. However, replicating findings from studies involving cerebellar stimulation poses challenges. This meta-analysis investigates the impact of NIBS on cognitive processes associated with the cerebellum. We conducted a systematic search and analyzed 66 studies and 91 experiments involving healthy adults who underwent either TMS or transcranial direct current stimulation (tDCS) targeting the cerebellum. The results indicate that anodal tDCS applied to the medial cerebellum enhances cognitive performance. In contrast, high-frequency TMS disrupts cognitive performance when targeting the lateral cerebellar hemispheres or when employed in online protocols. Similarly, low-frequency TMS and continuous theta burst stimulation (cTBS) diminish performance in offline protocols. Moreover, high-frequency TMS impairs accuracy. By identifying consistent effects and moderators of modulation, this meta-analysis contributes to improving the replicability of studies using NIBS on the cerebellum and provides guidance for future research aimed at developing effective NIBS interventions targeting the cerebellum.
Collapse
Affiliation(s)
| | - Filippo Gambarota
- Department of Developmental and Social Psychology, University of Padova, Padova, Italy
| | - Vincenza Tarantino
- Department of Psychology, Educational Science and Human Movement, University of Palermo, Italy
| | - Maria Devita
- Department of General Psychology, University of Padova, Padova, Italy; Geriatrics Unit, Department of Medicine, University of Padova, Padova, Italy.
| | - Zaira Cattaneo
- Department of Human and Social Sciences, University of Bergamo, Bergamo, Italy
| | | | - Daniela Mapelli
- Department of General Psychology, University of Padova, Padova, Italy
| | | |
Collapse
|
5
|
Wessel MJ, Beanato E, Popa T, Windel F, Vassiliadis P, Menoud P, Beliaeva V, Violante IR, Abderrahmane H, Dzialecka P, Park CH, Maceira-Elvira P, Morishita T, Cassara AM, Steiner M, Grossman N, Neufeld E, Hummel FC. Noninvasive theta-burst stimulation of the human striatum enhances striatal activity and motor skill learning. Nat Neurosci 2023; 26:2005-2016. [PMID: 37857774 PMCID: PMC10620076 DOI: 10.1038/s41593-023-01457-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 09/07/2023] [Indexed: 10/21/2023]
Abstract
The stimulation of deep brain structures has thus far only been possible with invasive methods. Transcranial electrical temporal interference stimulation (tTIS) is a novel, noninvasive technology that might overcome this limitation. The initial proof-of-concept was obtained through modeling, physics experiments and rodent models. Here we show successful noninvasive neuromodulation of the striatum via tTIS in humans using computational modeling, functional magnetic resonance imaging studies and behavioral evaluations. Theta-burst patterned striatal tTIS increased activity in the striatum and associated motor network. Furthermore, striatal tTIS enhanced motor performance, especially in healthy older participants as they have lower natural learning skills than younger subjects. These findings place tTIS as an exciting new method to target deep brain structures in humans noninvasively, thus enhancing our understanding of their functional role. Moreover, our results lay the groundwork for innovative, noninvasive treatment strategies for brain disorders in which deep striatal structures play key pathophysiological roles.
Collapse
Affiliation(s)
- Maximilian J Wessel
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute and Brain Mind Institute, École Polytechnique Fédérale de Lausanne, Geneva, Switzerland
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute and Brain Mind Institute, Clinique Romande de Réadaptation, École Polytechnique Fédérale de Lausanne, Sion, Switzerland
- Department of Neurology, University Hospital Würzburg, Würzburg, Germany
| | - Elena Beanato
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute and Brain Mind Institute, École Polytechnique Fédérale de Lausanne, Geneva, Switzerland
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute and Brain Mind Institute, Clinique Romande de Réadaptation, École Polytechnique Fédérale de Lausanne, Sion, Switzerland
| | - Traian Popa
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute and Brain Mind Institute, Clinique Romande de Réadaptation, École Polytechnique Fédérale de Lausanne, Sion, Switzerland
| | - Fabienne Windel
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute and Brain Mind Institute, École Polytechnique Fédérale de Lausanne, Geneva, Switzerland
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute and Brain Mind Institute, Clinique Romande de Réadaptation, École Polytechnique Fédérale de Lausanne, Sion, Switzerland
| | - Pierre Vassiliadis
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute and Brain Mind Institute, École Polytechnique Fédérale de Lausanne, Geneva, Switzerland
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute and Brain Mind Institute, Clinique Romande de Réadaptation, École Polytechnique Fédérale de Lausanne, Sion, Switzerland
- Institute of Neuroscience, Université Catholique de Louvain, Brussels, Belgium
| | - Pauline Menoud
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute and Brain Mind Institute, Clinique Romande de Réadaptation, École Polytechnique Fédérale de Lausanne, Sion, Switzerland
| | - Valeriia Beliaeva
- Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, Zurich, Switzerland
| | - Ines R Violante
- School of Psychology, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
| | | | - Patrycja Dzialecka
- Department of Brain Sciences, Imperial College London, London, UK
- United Kingdom Dementia Research Institute, Imperial College London, London, UK
| | - Chang-Hyun Park
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute and Brain Mind Institute, École Polytechnique Fédérale de Lausanne, Geneva, Switzerland
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute and Brain Mind Institute, Clinique Romande de Réadaptation, École Polytechnique Fédérale de Lausanne, Sion, Switzerland
| | - Pablo Maceira-Elvira
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute and Brain Mind Institute, École Polytechnique Fédérale de Lausanne, Geneva, Switzerland
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute and Brain Mind Institute, Clinique Romande de Réadaptation, École Polytechnique Fédérale de Lausanne, Sion, Switzerland
| | - Takuya Morishita
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute and Brain Mind Institute, École Polytechnique Fédérale de Lausanne, Geneva, Switzerland
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute and Brain Mind Institute, Clinique Romande de Réadaptation, École Polytechnique Fédérale de Lausanne, Sion, Switzerland
| | - Antonino M Cassara
- Foundation for Research on Information Technologies in Society, Zurich, Switzerland
| | - Melanie Steiner
- Foundation for Research on Information Technologies in Society, Zurich, Switzerland
| | - Nir Grossman
- Department of Brain Sciences, Imperial College London, London, UK
- United Kingdom Dementia Research Institute, Imperial College London, London, UK
| | - Esra Neufeld
- Foundation for Research on Information Technologies in Society, Zurich, Switzerland
| | - Friedhelm C Hummel
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute and Brain Mind Institute, École Polytechnique Fédérale de Lausanne, Geneva, Switzerland.
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute and Brain Mind Institute, Clinique Romande de Réadaptation, École Polytechnique Fédérale de Lausanne, Sion, Switzerland.
- Clinical Neuroscience, University of Geneva Medical School, Geneva, Switzerland.
| |
Collapse
|
6
|
Guimarães AN, Porto AB, Marcori AJ, Lage GM, Altimari LR, Alves Okazaki VH. Motor learning and tDCS: A systematic review on the dependency of the stimulation effect on motor task characteristics or tDCS assembly specifications. Neuropsychologia 2023; 179:108463. [PMID: 36567006 DOI: 10.1016/j.neuropsychologia.2022.108463] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 11/21/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022]
Abstract
TDCS is one of the most commonly used methods among studies with transcranial electrical stimulation and motor skills learning. Differences between study results suggest that the effect of tDCS on motor learning is dependent on the motor task performed or on the tDCS assembly specification used in the learning process. This systematic review aimed to analyze the tDCS effect on motor learning and verify whether this effect is dependent on the task or tDCS assembly specifications. Searches were performed in PubMed, SciELO, LILACS, Web of Science, CINAHL, Scopus, SPORTDiscus, Cochrane Central Register of Controlled Trials (CENTRAL), Embase, and PsycINFO. Articles were included that analyzed the effect of tDCS on motor learning through pre-practice, post-practice, retention, and/or transfer tests (period ≥24 h). The tDCS was most frequently applied to the primary motor cortex (M1) or the cerebellar cortex (CC) and the majority of studies found significant stimulation effects. Studies that analyzed identical or similar motor tasks show divergent results for the tDCS effect, even when the assembly specifications are the same. The tDCS effect is not dependent on motor task characteristics or tDCS assembly specifications alone but is dependent on the interaction between these factors. This interaction occurs between uni and bimanual tasks with anodal uni and bihemispheric (bilateral) stimulations at M1 or with anodal unihemispheric stimulations (unilateral and centrally) at CC, and between tasks of greater or lesser difficulty with single or multiple tDCS sessions. Movement time seems to be more sensitive than errors to indicate the effects of tDCS on motor learning, and a sufficient amount of motor practice to reach the "learning plateau" also seems to determine the effect of tDCS on motor learning.
Collapse
Affiliation(s)
- Anderson Nascimento Guimarães
- State University of Londrina, Londrina. Rodovia Celso Garcia Cid - Pr 445, Km 380, Cx. Postal 10.011, CEP 86057-970, Campus Universitário, Londrina, PR, Brazil.
| | - Alessandra Beggiato Porto
- State University of Londrina, Londrina. Rodovia Celso Garcia Cid - Pr 445, Km 380, Cx. Postal 10.011, CEP 86057-970, Campus Universitário, Londrina, PR, Brazil.
| | - Alexandre Jehan Marcori
- University of São Paulo, Av. Professor Mello Moraes 65, CEP 05508-030, Vila Universitaria, São Paulo, SP, Brazil.
| | - Guilherme Menezes Lage
- Universidade Federal de Minas Gerais, Av. Presidente Antônio Carlos, 6627, CEP 31270-901, Belo Horizonte, MG, Brazil.
| | - Leandro Ricardo Altimari
- State University of Londrina, Londrina. Rodovia Celso Garcia Cid - Pr 445, Km 380, Cx. Postal 10.011, CEP 86057-970, Campus Universitário, Londrina, PR, Brazil.
| | - Victor Hugo Alves Okazaki
- State University of Londrina, Londrina. Rodovia Celso Garcia Cid - Pr 445, Km 380, Cx. Postal 10.011, CEP 86057-970, Campus Universitário, Londrina, PR, Brazil.
| |
Collapse
|
7
|
Corominas-Teruel X, Mozo RMSS, Simó MF, Colomina Fosch MT, Valero-Cabré A. Transcranial direct current stimulation for gait recovery following stroke: A systematic review of current literature and beyond. Front Neurol 2022; 13:953939. [PMID: 36158971 PMCID: PMC9490093 DOI: 10.3389/fneur.2022.953939] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 08/02/2022] [Indexed: 11/21/2022] Open
Abstract
Background Over the last decade, transcranial direct current stimulation (tDCS) has set promise contributing to post-stroke gait rehabilitation. Even so, results are still inconsistent due to low sample size, heterogeneity of samples, and tDCS design differences preventing comparability. Nonetheless, updated knowledge in post-stroke neurophysiology and stimulation technologies opens up opportunities to massively improve treatments. Objective The current systematic review aims to summarize the current state-of-the-art on the effects of tDCS applied to stroke subjects for gait rehabilitation, discuss tDCS strategies factoring individual subject profiles, and highlight new promising strategies. Methods MEDLINE, SCOPUS, CENTRAL, and CINAHL were searched for stroke randomized clinical trials using tDCS for the recovery of gait before 7 February 2022. In order to provide statistical support to the current review, we analyzed the achieved effect sizes and performed statistical comparisons. Results A total of 24 records were finally included in our review, totaling n = 651 subjects. Detailed analyses revealed n = 4 (17%) studies with large effect sizes (≥0.8), n = 6 (25%) studies with medium ones (≥0.5), and n = 6 (25%) studies yielding low effects sizes (≤ 0.2). Statistically significant negative correlations (rho = −0.65, p = 0.04) and differences (p = 0.03) argued in favor of tDCS interventions in the sub-acute phase. Finally, significant differences (p = 0.03) were argued in favor of a bifocal stimulation montage (anodal M1 ipsilesional and cathodal M1 contralesional) with respect to anodal ipsilesional M1. Conclusion Our systematic review highlights the potential of tDCS to contribute to gait recovery following stroke, although also the urgent need to improve current stimulation strategies and subject-customized interventions considering stroke severity, type or time-course, and the use of network-based multifocal stimulation approaches guided by computational biophysical modeling. Systematic review registration PROSPERO: CRD42021256347.
Collapse
Affiliation(s)
- Xavier Corominas-Teruel
- Department of Psychology, Neurobehavior and Health Research Group (NEUROLAB), Universitat Rovira i Virgili, Tarragona, Spain
- Cerebral Dynamics, Plasticity and Rehabilitation Group, Institut du Cerveau et de la Moelle Epinière, CNRS UMR 7225, Paris, France
| | | | - Montserrat Fibla Simó
- Rehabilitation and Physical Medicine Department, Hospital Universitari Joan XXIII, Tarragona, Spain
| | - Maria Teresa Colomina Fosch
- Department of Psychology, Neurobehavior and Health Research Group (NEUROLAB), Universitat Rovira i Virgili, Tarragona, Spain
- *Correspondence: Antoni Valero-Cabré
| | - Antoni Valero-Cabré
- Cerebral Dynamics, Plasticity and Rehabilitation Group, Institut du Cerveau et de la Moelle Epinière, CNRS UMR 7225, Paris, France
- Cognitive Neuroscience and Information Tech. Research Program, Open University of Catalonia (UOC), Barcelona, Spain
- Department of Anatomy and Neurobiology, Laboratory of Cerebral Dynamics, Boston University School of Medicine, Boston, MA, United States
- Maria Teresa Colomina Fosch
| |
Collapse
|
8
|
Draaisma L, Wessel M, Moyne M, Morishita T, Hummel F. Targeting the frontoparietal network using bifocal transcranial alternating current stimulation during a motor sequence learning task in healthy older adults. Brain Stimul 2022; 15:968-979. [DOI: 10.1016/j.brs.2022.06.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 06/13/2022] [Accepted: 06/29/2022] [Indexed: 11/17/2022] Open
|
9
|
Fleury L, Panico F, Foncelle A, Revol P, Delporte L, Jacquin-Courtois S, Collet C, Rossetti Y. Does anodal cerebellar tDCS boost transfer of after-effects from throwing to pointing during prism adaptation? Front Psychol 2022; 13:909565. [PMID: 36237677 PMCID: PMC9552335 DOI: 10.3389/fpsyg.2022.909565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 09/05/2022] [Indexed: 11/13/2022] Open
Abstract
Prism Adaptation (PA) is a useful method to study the mechanisms of sensorimotor adaptation. After-effects following adaptation to the prismatic deviation constitute the probe that adaptive mechanisms occurred, and current evidence suggests an involvement of the cerebellum at this level. Whether after-effects are transferable to another task is of great interest both for understanding the nature of sensorimotor transformations and for clinical purposes. However, the processes of transfer and their underlying neural substrates remain poorly understood. Transfer from throwing to pointing is known to occur only in individuals who had previously reached a good level of expertise in throwing (e.g., dart players), not in novices. The aim of this study was to ascertain whether anodal stimulation of the cerebellum could boost after-effects transfer from throwing to pointing in novice participants. Healthy participants received anodal or sham transcranial direction current stimulation (tDCS) of the right cerebellum during a PA procedure involving a throwing task and were tested for transfer on a pointing task. Terminal errors and kinematic parameters were in the dependent variables for statistical analyses. Results showed that active stimulation had no significant beneficial effects on error reduction or throwing after-effects. Moreover, the overall magnitude of transfer to pointing did not change. Interestingly, we found a significant effect of the stimulation on the longitudinal evolution of pointing errors and on pointing kinematic parameters during transfer assessment. These results provide new insights on the implication of the cerebellum in transfer and on the possibility to use anodal tDCS to enhance cerebellar contribution during PA in further investigations. From a network approach, we suggest that cerebellum is part of a more complex circuitry responsible for the development of transfer which is likely embracing the primary motor cortex due to its role in motor memories consolidation. This paves the way for further work entailing multiple-sites stimulation to explore the role of M1-cerebellum dynamic interplay in transfer.
Collapse
Affiliation(s)
- Lisa Fleury
- INSERM UMR-S, CNRS UMS, Trajectoires Lyon Neuroscience Research Center (CRNL), Bron, France
- Defitech Chair for Clinical Neuroengineering, Center for Neuroprosthetics (CNP) and Brain Mind Institute (BMI), École polytechnique fédérale de Lausanne (EPFL) Valais, Sion, Switzerland
- *Correspondence: Lisa Fleury,
| | - Francesco Panico
- Department of Psychology, University of Campania “Luigi Vanvitelli”, Caserta, Italy
| | - Alexandre Foncelle
- INSERM UMR-S, CNRS UMS, Trajectoires Lyon Neuroscience Research Center (CRNL), Bron, France
- “Mouvement et Handicap” Platform, Neurological Hospital, Hospices Civils de Lyon, Bron, France
| | - Patrice Revol
- INSERM UMR-S, CNRS UMS, Trajectoires Lyon Neuroscience Research Center (CRNL), Bron, France
- “Mouvement et Handicap” Platform, Neurological Hospital, Hospices Civils de Lyon, Bron, France
| | - Ludovic Delporte
- INSERM UMR-S, CNRS UMS, Trajectoires Lyon Neuroscience Research Center (CRNL), Bron, France
- “Mouvement et Handicap” Platform, Neurological Hospital, Hospices Civils de Lyon, Bron, France
| | - Sophie Jacquin-Courtois
- INSERM UMR-S, CNRS UMS, Trajectoires Lyon Neuroscience Research Center (CRNL), Bron, France
- “Mouvement et Handicap” Platform, Neurological Hospital, Hospices Civils de Lyon, Bron, France
| | - Christian Collet
- Inter-University Laboratory of Human Movement Biology, Villeurbanne, France
| | - Yves Rossetti
- INSERM UMR-S, CNRS UMS, Trajectoires Lyon Neuroscience Research Center (CRNL), Bron, France
- “Mouvement et Handicap” Platform, Neurological Hospital, Hospices Civils de Lyon, Bron, France
| |
Collapse
|