1
|
Gu D, Cao T, Yi S, Li X, Liu Y. Transcription suppression of GABARAP mediated by lncRNA XIST-EZH2 interaction triggers caspase-11-dependent inflammatory injury in ulcerative colitis. Immunobiology 2024; 229:152796. [PMID: 38484431 DOI: 10.1016/j.imbio.2024.152796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 03/01/2024] [Accepted: 03/05/2024] [Indexed: 06/05/2024]
Abstract
BACKGROUND We have previously found that enhancer of zeste homolog 2 (EZH2) is correlated with inflammatory infiltration and mucosal cell injury in ulcerative colitis (UC). This study aims to analyze the role of X-inactive specific transcript (XIST), a possible interactive long non-coding RNA of EZH2, in UC and to explore the mechanisms. METHODS C57BL/6N mice were treated with dextran sulfate sodium (DSS), and mouse colonic mucosal epithelial cells were treated with DSS and lipopolysaccharide (LPS) for UC modeling. The UC-related symptoms in mice, and the viability and apoptosis of mucosal epithelial cells were determined. Inflammatory injury in animal and cellular models were assessed through the levels of ACS, occludin, IL-1β, IL-18, TNF-α, caspase-1, and caspase-11. Molecular interactions between XIST, EZH2, and GABA type A receptor-associated protein (GABARAP) were verified by immunoprecipitation assays, and their functions in inflammatory injury were determined by gain- or loss-of-function assays. RESULTS XIST was highly expressed in DSS-treated mice and in DSS + LPS-treated mucosal epithelial cells. It recruited EZH2, which mediated gene silencing of GABARAP through H3K27me3 modification. Silencing of XIST alleviated body weight loss, colon shortening, and disease active index of mice and reduced inflammatory injuries in their colon tissues. Meanwhile, it reduced apoptosis and inflammation in mucosal epithelial cells. However, these alleviating effects were blocked by either EZH2 overexpression or GABARAP knockdown. Rescue experiments identified caspase-11 as a key effector mediating the inflammatory injury following GABARAP loss. CONCLUSION This study suggests that the XIST-EZH2 interaction-mediated GABARAP inhibition activates caspase-11-dependent inflammatory injury in UC.
Collapse
Affiliation(s)
- Dan Gu
- Department of Gastroenterology, The Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang 421001, Hunan, PR China
| | - Ting Cao
- Department of Gastroenterology, The Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang 421001, Hunan, PR China
| | - Shijie Yi
- Department of Gastrointestinal Surgery, The Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang 421001, Hunan, PR China
| | - Xiaoqian Li
- Department of Gastroenterology, The Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang 421001, Hunan, PR China
| | - Ya Liu
- Department of Anorectal Surgery, The Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang 421001, Hunan, PR China.
| |
Collapse
|
2
|
Xu H, Wu C, Wang D, Wang H. Alleviating effect of Nexrutine on mucosal inflammation in mice with ulcerative colitis: Involvement of the RELA suppression. Immun Inflamm Dis 2024; 12:e1147. [PMID: 38270298 PMCID: PMC10797652 DOI: 10.1002/iid3.1147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 12/27/2023] [Accepted: 12/28/2023] [Indexed: 01/26/2024] Open
Abstract
BACKGROUND Nexrutine is an herbal extract derived from Phellodendron amurense, known for its anti-inflammatory, antidiarrheal, and hemostatic properties. However, its effect on ulcerative colitis (UC) remains unclear. METHODS A mouse model of UC was induced by 3% dextran sulfate sodium, while human colonic epithelial cells NCM-460 were exposed to lipopolysaccharide. Both models were treated with Nexrutine at 300 or 600 mg/kg, with Mesalazine applied as a positive control regimen. The disease activity index (DAI) of mice was calculated, and the pathological injury scores were assessed through hematoxylin and eosin staining. The viability of NCM-460 cells was determined using the CCK-8 method. Inflammatory cytokines were detected using ELISA kits. Expression of mucin 3 (MUC3), Claudin-1, and tight junction protein (ZO-1) was detected to analyze mucosal barrier integrity. Target genes of Nexrutine were predicted using bioinformatics tools. Expression of RELA proto-oncogene (RELA) was analyzed using qPCR and western blot assays. RESULTS The Nexrutine treatments significantly alleviated DAI of mice, mitigated pathological changes in their colon tissues, decreased the production of pro-inflammatory cytokines, enhanced the barrier integrity-related proteins, and increased NCM-460 cell viability in vitro. RELA, identified as a target gene of Nexrutine, showed elevated levels in UC models but was substantially suppressed by Nexrutine treatment. Adenovirus-mediated RELA upregulation in mice or the overexpression plasmid of RELA in cells counteracted the effects of Nexrutine treatments, exacerbating UC-related symptoms. CONCLUSION This study demonstrates that Nexrutine alleviates inflammatory mucosal barrier damage in UC by suppressing RELA transcription.
Collapse
Affiliation(s)
- Hongyun Xu
- Graduate SchoolHeilongjiang University of Chinese MedicineHarbinHeilongjiangChina
| | - Chunyu Wu
- Department of Continuing EducationFirst Affiliated Hospital of Heilongjiang University of Chinese MedicineHarbinHeilongjiangChina
| | - Danning Wang
- Graduate SchoolHeilongjiang University of Chinese MedicineHarbinHeilongjiangChina
| | - Haiqiang Wang
- Department of Liver, Spleen and StomachFirst Affiliated Hospital of Heilongjiang University of Chinese MedicineHarbinHeilongjiangChina
| |
Collapse
|
3
|
Journée SH, Mathis VP, Fillinger C, Veinante P, Yalcin I. Janus effect of the anterior cingulate cortex: Pain and emotion. Neurosci Biobehav Rev 2023; 153:105362. [PMID: 37595650 DOI: 10.1016/j.neubiorev.2023.105362] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 06/20/2023] [Accepted: 08/14/2023] [Indexed: 08/20/2023]
Abstract
Over the past 20 years, clinical and preclinical studies point to the anterior cingulate cortex (ACC) as a site of interest for several neurological and psychiatric conditions. The ACC plays a critical role in emotion, autonomic regulation, pain processing, attention, memory and decision making. An increasing number of studies have demonstrated the involvement of the ACC in the emotional component of pain and its comorbidity with emotional disorders such as anxiety and depression. Thanks to the development of animal models combined with state-of-the-art technologies, we now have a better mechanistic understanding of the functions of the ACC. Hence, the primary aim of this review is to compile the most recent preclinical studies on the role of ACC in the emotional component and consequences of chronic pain. Herein, we thus thoroughly describe the pain-induced electrophysiological, molecular and anatomical alterations in the ACC and in its related circuits. Finally, we discuss the next steps that are needed to strengthen our understanding of the involvement of the ACC in emotional and pain processing.
Collapse
Affiliation(s)
- Sarah H Journée
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, Strasbourg, France
| | - Victor P Mathis
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, Strasbourg, France
| | - Clémentine Fillinger
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, Strasbourg, France
| | - Pierre Veinante
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, Strasbourg, France
| | - Ipek Yalcin
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, Strasbourg, France; Department of Psychiatry and Neuroscience, Université Laval, Québec, QC G1V 0A6, Canada.
| |
Collapse
|
4
|
Danielli E, Simard N, DeMatteo CA, Kumbhare D, Ulmer S, Noseworthy MD. A review of brain regions and associated post-concussion symptoms. Front Neurol 2023; 14:1136367. [PMID: 37602240 PMCID: PMC10435092 DOI: 10.3389/fneur.2023.1136367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 07/12/2023] [Indexed: 08/22/2023] Open
Abstract
The human brain is an exceptionally complex organ that is comprised of billions of neurons. Therefore, when a traumatic event such as a concussion occurs, somatic, cognitive, behavioral, and sleep impairments are the common outcome. Each concussion is unique in the sense that the magnitude of biomechanical forces and the direction, rotation, and source of those forces are different for each concussive event. This helps to explain the unpredictable nature of post-concussion symptoms that can arise and resolve. The purpose of this narrative review is to connect the anatomical location, healthy function, and associated post-concussion symptoms of some major cerebral gray and white matter brain regions and the cerebellum. As a non-exhaustive description of post-concussion symptoms nor comprehensive inclusion of all brain regions, we have aimed to amalgamate the research performed for specific brain regions into a single article to clarify and enhance clinical and research concussion assessment. The current status of concussion diagnosis is highly subjective and primarily based on self-report of symptoms, so this review may be able to provide a connection between brain anatomy and the clinical presentation of concussions to enhance medical imaging assessments. By explaining anatomical relevance in terms of clinical concussion symptom presentation, an increased understanding of concussions may also be achieved to improve concussion recognition and diagnosis.
Collapse
Affiliation(s)
- Ethan Danielli
- School of Biomedical Engineering, McMaster University, Hamilton, ON, Canada
- Imaging Research Centre, St. Joseph's Healthcare Hamilton, Hamilton, ON, Canada
- KITE Research Institute, Toronto Rehabilitation Institute, University Health Network, Toronto, ON, Canada
| | - Nicholas Simard
- Imaging Research Centre, St. Joseph's Healthcare Hamilton, Hamilton, ON, Canada
- Department of Electrical and Computer Engineering, McMaster University, Hamilton, ON, Canada
| | - Carol A. DeMatteo
- ARiEAL Research Centre, McMaster University, Hamilton, ON, Canada
- Department of Rehabilitation Sciences, McMaster University, Hamilton, ON, Canada
| | - Dinesh Kumbhare
- School of Biomedical Engineering, McMaster University, Hamilton, ON, Canada
- Imaging Research Centre, St. Joseph's Healthcare Hamilton, Hamilton, ON, Canada
- KITE Research Institute, Toronto Rehabilitation Institute, University Health Network, Toronto, ON, Canada
- Division of Physical Medicine and Rehabilitation, Department of Medicine, University of Toronto, Toronto, ON, Canada
| | - Stephan Ulmer
- Neurorad.ch, Zurich, Switzerland
- Department of Radiology and Neuroradiology, University Hospital of Schleswig-Holstein, Kiel, Germany
| | - Michael D. Noseworthy
- School of Biomedical Engineering, McMaster University, Hamilton, ON, Canada
- Imaging Research Centre, St. Joseph's Healthcare Hamilton, Hamilton, ON, Canada
- Department of Electrical and Computer Engineering, McMaster University, Hamilton, ON, Canada
- ARiEAL Research Centre, McMaster University, Hamilton, ON, Canada
- Department of Radiology, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
5
|
Yi S, Wang Z, Yang W, Huang C, Liu P, Chen Y, Zhang H, Zhao G, Li W, Fang J, Liu J. Neural activity changes in first-episode, drug-naïve patients with major depressive disorder after transcutaneous auricular vagus nerve stimulation treatment: A resting-state fMRI study. Front Neurosci 2022; 16:1018387. [PMID: 36312012 PMCID: PMC9597483 DOI: 10.3389/fnins.2022.1018387] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 09/26/2022] [Indexed: 11/14/2022] Open
Abstract
Introduction Major depressive disorder (MDD) is a disease with prominent individual, medical, and economic impacts. Drug therapy and other treatment methods (such as Electroconvulsive therapy) may induce treatment-resistance and have associated side effects including loss of memory, decrease of reaction time, and residual symptoms. Transcutaneous auricular vagus nerve stimulation (taVNS) is a novel and non-invasive treatment approach which stimulates brain structures with no side-effects. However, it remains little understood whether and how the neural activation is modulated by taVNS in MDD patients. Herein, we used the regional homogeneity (ReHo) to investigate the brain activity in first-episode, drug-naïve MDD patients after taVNS treatment. Materials and methods Twenty-two first-episode, drug-naïve MDD patients were enrolled in the study. These patients received the first taVNS treatment at the baseline time, and underwent resting-state MRI scanning twice, before and after taVNS. All the patients then received taVNS treatments for 4 weeks. The severity of depression was assessed by the 17-item Hamilton Depression Rating Scale (HAMD) at the baseline time and after 4-week’s treatment. Pearson analysis was used to assess the correlation between alterations of ReHo and changes of the HAMD scores. Two patients were excluded due to excessive head movement, two patients lack clinical data in the fourth week, thus, imaging analysis was performed in 20 patients, while correlation analysis between clinical and imaging data was performed in only 18 patients. Results There were significant differences in the ReHo values in first-episode, drug-naïve MDD patients between pre- or post- taVNS. The primary finding is that the patients exhibited a significantly lower ReHo in the left/right median cingulate cortex, the left precentral gyrus, the left postcentral gyrus, the right calcarine cortex, the left supplementary motor area, the left paracentral lobule, and the right lingual gyrus. Pearson analysis revealed a positive correlation between changes of ReHo in the right median cingulate cortex/the left supplementary motor area and changes of HAMD scores after taVNS. Conclusion The decreased ReHo were found after taVNS. The sensorimotor, limbic and visual-related brain regions may play an important role in understanding the underlying neural mechanisms and be the target brain regions in the further therapy.
Collapse
Affiliation(s)
- Sijie Yi
- Department of Radiology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Zhi Wang
- Department of Radiology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Wenhan Yang
- Department of Radiology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Chuxin Huang
- Department of Radiology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Ping Liu
- Department of Radiology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Yanjing Chen
- Department of Radiology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Huiting Zhang
- MR Scientific Marketing, Siemens Healthineers Ltd., Wuhan, China
| | - Guangju Zhao
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Weihui Li
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
- *Correspondence: Jun Liu,
| | - Jiliang Fang
- Department of Radiology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Jiliang Fang,
| | - Jun Liu
- Department of Radiology, The Second Xiangya Hospital of Central South University, Changsha, China
- Clinical Research Center for Medical Imaging in Hunan Province, Changsha, China
- Department of Radiology Quality Control Center, Changsha, China
- Weihui Li,
| |
Collapse
|
6
|
Wang T, Li J, Jia Y, Zhao J, He M, Bai G. Tandem Mass Tag Analysis of the Effect of the Anterior Cingulate Cortex in Nonerosive Reflux Disease Rats with Shugan Jiangni Hewei Granules Treatment. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:8104337. [PMID: 35941898 PMCID: PMC9356813 DOI: 10.1155/2022/8104337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/07/2022] [Accepted: 07/11/2022] [Indexed: 11/17/2022]
Abstract
Objective The current study aims to analyze the improvement mechanism of visceral hypersensitivity (VH) and targets of Shugan Jiangni Hewei granules (SJHG) for nonerosive reflux disease (NERD) treatment as well as to offer an experimental foundation for its clinical use. Methods Healthy male Sprague-Dawley rats (n = 36) were acquired in the current study that was further split into three groups: blank, model, and drug (SJHG). Subsequently, differentially expressed proteins and bioinformatics analysis were performed on the collected tissue samples acquired from the anterior cingulate cortex of the model and SJHG rat groups using a tandem mass tag- (TMT-) based proteomics. Eventually, the obtained data from the bioinformatic analysis was further verified through western blotting. Results From the bioinformatics analysis, only 64 proteins were differentially expressed between the NC and SJHG groups. These molecules were found to be highly expressed in immunological response and neural signal transmission. Finally, we confirmed three therapeutic targets of SJHG, namely, kininogen 1 (Kng1), junctional adhesion molecule A (JAM-A), and the PI3K/Akt signaling pathway. Conclusions SJHG is effective in treating VH, Kng1 and JAM-A may be therapeutic targets of SJHG, and the therapeutic mechanism of SJHG may be realized by influencing immune response or transmission of neural signals.
Collapse
Affiliation(s)
- Tianzuo Wang
- Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning 110847, China
| | - Jing Li
- Department of Gastroenterology, Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning 110033, China
| | - Yuebo Jia
- Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning 110847, China
| | - Jiaqi Zhao
- Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning 110847, China
| | - Meijun He
- Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning 110847, China
| | - Guang Bai
- Department of Gastroenterology, Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning 110033, China
| |
Collapse
|
7
|
Chemogenetics as a neuromodulatory approach to treating neuropsychiatric diseases and disorders. Mol Ther 2022; 30:990-1005. [PMID: 34861415 PMCID: PMC8899595 DOI: 10.1016/j.ymthe.2021.11.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 11/12/2021] [Accepted: 11/29/2021] [Indexed: 01/01/2023] Open
Abstract
Chemogenetics enables precise, non-invasive, and reversible modulation of neural activity via the activation of engineered receptors that are pharmacologically selective to endogenous or exogenous ligands. With recent advances in therapeutic gene delivery, chemogenetics is poised to support novel interventions against neuropsychiatric diseases and disorders. To evaluate its translational potential, we performed a scoping review of applications of chemogenetics that led to the reversal of molecular and behavioral deficits in studies relevant to neuropsychiatric diseases and disorders. In this review, we present these findings and discuss the potential and challenges for using chemogenetics as a precision medicine-based neuromodulation strategy.
Collapse
|
8
|
Matisz C, Gruber A. Neuroinflammatory remodeling of the anterior cingulate cortex as a key driver of mood disorders in gastrointestinal disease and disorders. Neurosci Biobehav Rev 2022; 133:104497. [DOI: 10.1016/j.neubiorev.2021.12.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 11/10/2021] [Accepted: 12/09/2021] [Indexed: 02/08/2023]
|
9
|
Better living through understanding the insula: Why subregions can make all the difference. Neuropharmacology 2021; 198:108765. [PMID: 34461066 DOI: 10.1016/j.neuropharm.2021.108765] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 07/19/2021] [Accepted: 08/23/2021] [Indexed: 02/07/2023]
Abstract
Insula function is considered critical for many motivated behaviors, with proposed functions ranging from attention, behavioral control, emotional regulation, goal-directed and aversion-resistant responding. Further, the insula is implicated in many neuropsychiatric conditions including substance abuse. More recently, multiple insula subregions have been distinguished based on anatomy, connectivity, and functional contributions. Generally, posterior insula is thought to encode more somatosensory inputs, which integrate with limbic/emotional information in middle insula, that in turn integrate with cognitive processes in anterior insula. Together, these regions provide rapid interoceptive information about the current or predicted situation, facilitating autonomic recruitment and quick, flexible action. Here, we seek to create a robust foundation from which to understand potential subregion differences, and provide direction for future studies. We address subregion differences across humans and rodents, so that the latter's mechanistic interventions can best mesh with clinical relevance of human conditions. We first consider the insula's suggested roles in humans, then compare subregional studies, and finally describe rodent work. One primary goal is to encourage precision in describing insula subregions, since imprecision (e.g. including both posterior and anterior studies when describing insula work) does a disservice to a larger understanding of insula contributions. Additionally, we note that specific task details can greatly impact recruitment of various subregions, requiring care and nuance in design and interpretation of studies. Nonetheless, the central ethological importance of the insula makes continued research to uncover mechanistic, mood, and behavioral contributions of paramount importance and interest. This article is part of the special Issue on 'Neurocircuitry Modulating Drug and Alcohol Abuse'.
Collapse
|
10
|
DeLong M, Gil-Silva M, Hong VM, Babyok O, Kolber BJ. Visceral pressure stimulator for exploring hollow organ pain: a pilot study. Biomed Eng Online 2021; 20:30. [PMID: 33766034 PMCID: PMC7993476 DOI: 10.1186/s12938-021-00870-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 03/16/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The regulation and control of pressure stimuli is useful for many studies of pain and nociception especially those in the visceral pain field. In many in vivo experiments, distinct air and liquid stimuli at varying pressures are delivered to hollow organs such as the bladder, vagina, and colon. These stimuli are coupled with behavioral, molecular, or physiological read-outs of the response to the stimulus. Care must be taken to deliver precise timed stimuli during experimentation. For example, stimuli signals can be used online to precisely time-lock the stimulus with a physiological output. Such precision requires the development of specialized hardware to control the stimulus (e.g., air) while providing a precise read-out of pressure and stimulus signal markers. METHODS In this study, we designed a timed pressure regulator [termed visceral pressure stimulator (VPS)] to control air flow, measure pressure (in mmHg), and send stimuli markers to online software. The device was built using a simple circuit and primarily off-the-shelf parts. A separate custom inline analog-to-digital pressure converter was used to validate the real pressure output of the VPS. RESULTS Using commercial physiological software (Spike2, CED), we were able to measure mouse bladder pressure continuously during delivery of unique air stimulus trials in a mouse while simultaneously recording an electromyogram (EMG) of the overlying abdominal muscles. CONCLUSIONS This device will be useful for those who need to (1) deliver distinct pressure stimuli while (2) measuring the pressure in real-time and (3) monitoring stimulus on-off using physiological software.
Collapse
Affiliation(s)
- Michael DeLong
- Center for Advanced Pain Studies, Department of Neuroscience, University of Texas at Dallas, 800 W. Campbell Rd., Richardson, TX, 75080, USA
| | - Mauricio Gil-Silva
- Center for Advanced Pain Studies, Department of Neuroscience, University of Texas at Dallas, 800 W. Campbell Rd., Richardson, TX, 75080, USA.,Department of Biological Sciences, Duquesne University, 600 Forbes Avenue, Pittsburgh, PA, 15217, USA
| | - Veronica Minsu Hong
- Center for Advanced Pain Studies, Department of Neuroscience, University of Texas at Dallas, 800 W. Campbell Rd., Richardson, TX, 75080, USA
| | - Olivia Babyok
- Department of Biological Sciences, Duquesne University, 600 Forbes Avenue, Pittsburgh, PA, 15217, USA
| | - Benedict J Kolber
- Center for Advanced Pain Studies, Department of Neuroscience, University of Texas at Dallas, 800 W. Campbell Rd., Richardson, TX, 75080, USA.
| |
Collapse
|