1
|
Wunderlich J, Kotov V, Votborg-Novél L, Ntalla C, Geffken M, Peine S, Portugal S, Strauss J. Iron transport pathways in the human malaria parasite Plasmodium falciparum revealed by RNA-sequencing. Front Cell Infect Microbiol 2024; 14:1480076. [PMID: 39575308 PMCID: PMC11578967 DOI: 10.3389/fcimb.2024.1480076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 10/14/2024] [Indexed: 11/24/2024] Open
Abstract
Host iron deficiency is protective against severe malaria as the human malaria parasite Plasmodium falciparum depends on bioavailable iron from its host to proliferate. The essential pathways of iron acquisition, storage, export, and detoxification in the parasite differ from those in humans, as orthologs of the mammalian transferrin receptor, ferritin, or ferroportin, and a functional heme oxygenase are absent in P. falciparum. Thus, the proteins involved in these processes may be excellent targets for therapeutic development, yet remain largely unknown. Here, we show that parasites cultured in erythrocytes from an iron-deficient donor displayed significantly reduced growth rates compared to those grown in red blood cells from healthy controls. Sequencing of parasite RNA revealed diminished expression of genes involved in overall metabolism, hemoglobin digestion, and metabolite transport under low-iron versus control conditions. Supplementation with hepcidin, a specific ferroportin inhibitor, resulted in increased labile iron levels in erythrocytes, enhanced parasite replication, and transcriptional upregulation of genes responsible for merozoite motility and host cell invasion. Through endogenous GFP tagging of differentially expressed putative transporter genes followed by confocal live-cell imaging, proliferation assays with knockout and knockdown lines, and protein structure predictions, we identified six proteins that are likely required for ferrous iron transport in P. falciparum. Of these, we localized PfVIT and PfZIPCO to cytoplasmic vesicles, PfMRS3 to the mitochondrion, and the novel putative iron transporter PfE140 to the plasma membrane for the first time in P. falciparum. PfNRAMP/PfDMT1 and PfCRT were previously reported to efflux Fe2+ from the digestive vacuole. Our data support a new model for parasite iron homeostasis, in which PfE140 is involved in iron uptake across the plasma membrane, PfMRS3 ensures non-redundant Fe2+ supply to the mitochondrion as the main site of iron utilization, PfVIT transports excess iron into cytoplasmic vesicles, and PfZIPCO exports Fe2+ from these organelles in case of iron scarcity. These results provide new insights into the parasite's response to differential iron availability in its environment and into the mechanisms of iron transport in P. falciparum as promising candidate targets for future antimalarial drugs.
Collapse
Affiliation(s)
- Juliane Wunderlich
- Malaria Parasite Biology Group, Max Planck Institute for Infection Biology (MPIIB), Berlin, Germany
- Membrane Protein Structural Biology Group, Center for Structural Systems Biology (CSSB), Hamburg, Germany
| | - Vadim Kotov
- Membrane Protein Structural Biology Group, Center for Structural Systems Biology (CSSB), Hamburg, Germany
| | - Lasse Votborg-Novél
- Malaria Parasite Biology Group, Max Planck Institute for Infection Biology (MPIIB), Berlin, Germany
| | - Christina Ntalla
- Malaria Parasite Biology Group, Max Planck Institute for Infection Biology (MPIIB), Berlin, Germany
| | - Maria Geffken
- Institute of Transfusion Medicine, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Sven Peine
- Institute of Transfusion Medicine, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Silvia Portugal
- Malaria Parasite Biology Group, Max Planck Institute for Infection Biology (MPIIB), Berlin, Germany
| | - Jan Strauss
- Membrane Protein Structural Biology Group, Center for Structural Systems Biology (CSSB), Hamburg, Germany
| |
Collapse
|
2
|
Kumar J, Jyotisha, Qureshi R, Jagruthi P, Arifuddin M, Qureshi IA. Discovery of 8-hydroxy-2-quinoline carbaldehyde derivatives as inhibitors for M1 aminopeptidase of Leishmania donovani. Int J Biol Macromol 2024; 279:135105. [PMID: 39197615 DOI: 10.1016/j.ijbiomac.2024.135105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 08/08/2024] [Accepted: 08/25/2024] [Indexed: 09/01/2024]
Abstract
M1 aminopeptidase is a metallopeptidase that plays a vital role in protein catabolism and has been identified as a validated drug target in various parasites; however, our understanding of this enzyme is restricted for leishmanial parasite. The present investigation involved the purification of Leishmania donovani M1 aminopeptidase (LdM1AP) to homogeneity by affinity chromatography. Purified LdM1AP was observed to be enzymatically active and displayed maximal activity in the presence of cobalt ions, whereas secondary structure analysis confirmed the dominance of α-helices. Intrinsic fluorescence and quenching studies of LdM1AP has revealed that tryptophan residues were predominantly concealed within the hydrophobic areas. The synthesized 8-hydroxy-2-quinoline carbaldehyde derivatives were screened, wherein HQ2 and HQ12 were found as potent inhibitors for LdM1AP that compete with the substrate and exhibit pharmacokinetic properties as well as no toxicity for macrophages. Moreover, structural insights of protein and ligand complexes demonstrated that lead compounds mostly interact via hydrophobic contacts into the substrate binding pocket of LdM1AP. Furthermore, lead compounds exhibited a greater affinity for LdM1AP compared to the substrate during in vitro and in silico studies. This report establishes the possibility of quinoline derivatives to target the LdM1AP activity and provide a platform to design the specific antileishmanial drugs.
Collapse
Affiliation(s)
- Janish Kumar
- Department of Biotechnology & Bioinformatics, School of Life Sciences, University of Hyderabad, Prof. C.R. Rao Road, Hyderabad 500046, India
| | - Jyotisha
- Department of Biotechnology & Bioinformatics, School of Life Sciences, University of Hyderabad, Prof. C.R. Rao Road, Hyderabad 500046, India
| | - Rahila Qureshi
- Centre for DNA Fingerprinting and Diagnostics, Hyderabad 500039, India
| | - Peddapaka Jagruthi
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Hyderabad 500037, India
| | - Mohammed Arifuddin
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Hyderabad 500037, India
| | - Insaf Ahmed Qureshi
- Department of Biotechnology & Bioinformatics, School of Life Sciences, University of Hyderabad, Prof. C.R. Rao Road, Hyderabad 500046, India.
| |
Collapse
|
3
|
Sojka D, Šnebergerová P. Advances in protease inhibition-based chemotherapy: A decade of insights from Malaria research. ADVANCES IN PARASITOLOGY 2024; 126:205-227. [PMID: 39448191 DOI: 10.1016/bs.apar.2024.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Abstract
Over the last decade, research on the most studied parasite, Plasmodium falciparum, has disclosed significant findings in protease research. Detailed descriptions of the individual roles of protease isoenzymes from various protease classes encoded by the parasite genome have been elucidated, along with their functional and biochemical characterizations. These insights have enabled the development of innovative chemotherapy using low molecular weight inhibitors targeting specific molecular sites. Progress has been made in understanding the proteolytic cascade associated with the apical complex, particularly the roles of aspartyl proteases plasmepsins IX and X as master regulators. Additionally, advancements in direct and alternative methods of proteasome inhibition and expression regulation have been achieved. Research on digestive/food vacuole-associated proteases, with a focus on essential metalloproteases, has also seen significant developments. The rise of extensive genomic datasets and functional genomic tools for other parasitic organisms now allows these approaches to be applied to the study and treatment of other, less known parasitic diseases, aiming to uncover specific biological mechanisms and develop innovative, less toxic chemotherapies.
Collapse
Affiliation(s)
- Daniel Sojka
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Ceske Budejovice, Czech Republic.
| | - Pavla Šnebergerová
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Ceske Budejovice, Czech Republic; Faculty of Science, University of South Bohemia, Ceske Budejovice, Czech Republic
| |
Collapse
|
4
|
Giannangelo C, Challis MP, Siddiqui G, Edgar R, Malcolm TR, Webb CT, Drinkwater N, Vinh N, Macraild C, Counihan N, Duffy S, Wittlin S, Devine SM, Avery VM, De Koning-Ward T, Scammells P, McGowan S, Creek DJ. Chemoproteomics validates selective targeting of Plasmodium M1 alanyl aminopeptidase as an antimalarial strategy. eLife 2024; 13:RP92990. [PMID: 38976500 PMCID: PMC11230628 DOI: 10.7554/elife.92990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2024] Open
Abstract
New antimalarial drug candidates that act via novel mechanisms are urgently needed to combat malaria drug resistance. Here, we describe the multi-omic chemical validation of Plasmodium M1 alanyl metalloaminopeptidase as an attractive drug target using the selective inhibitor, MIPS2673. MIPS2673 demonstrated potent inhibition of recombinant Plasmodium falciparum (PfA-M1) and Plasmodium vivax (PvA-M1) M1 metalloaminopeptidases, with selectivity over other Plasmodium and human aminopeptidases, and displayed excellent in vitro antimalarial activity with no significant host cytotoxicity. Orthogonal label-free chemoproteomic methods based on thermal stability and limited proteolysis of whole parasite lysates revealed that MIPS2673 solely targets PfA-M1 in parasites, with limited proteolysis also enabling estimation of the binding site on PfA-M1 to within ~5 Å of that determined by X-ray crystallography. Finally, functional investigation by untargeted metabolomics demonstrated that MIPS2673 inhibits the key role of PfA-M1 in haemoglobin digestion. Combined, our unbiased multi-omic target deconvolution methods confirmed the on-target activity of MIPS2673, and validated selective inhibition of M1 alanyl metalloaminopeptidase as a promising antimalarial strategy.
Collapse
Affiliation(s)
- Carlo Giannangelo
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash UniversityParkvilleAustralia
| | - Matthew P Challis
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash UniversityParkvilleAustralia
| | - Ghizal Siddiqui
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash UniversityParkvilleAustralia
| | - Rebecca Edgar
- School of Medicine, Deakin UniversityGeelongAustralia
- The Institute for Mental and Physical Health and Clinical Translation, Deakin UniversityGeelongAustralia
| | - Tess R Malcolm
- Monash Biomedicine Discovery Institute and Department of Microbiology, Monash UniversityClaytonAustralia
- Centre to Impact AMR, Monash UniversityClaytonAustralia
| | - Chaille T Webb
- Monash Biomedicine Discovery Institute and Department of Microbiology, Monash UniversityClaytonAustralia
- Centre to Impact AMR, Monash UniversityClaytonAustralia
| | - Nyssa Drinkwater
- Monash Biomedicine Discovery Institute and Department of Microbiology, Monash UniversityClaytonAustralia
- Centre to Impact AMR, Monash UniversityClaytonAustralia
| | - Natalie Vinh
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash UniversityParkvilleAustralia
| | - Christopher Macraild
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash UniversityParkvilleAustralia
| | - Natalie Counihan
- School of Medicine, Deakin UniversityGeelongAustralia
- The Institute for Mental and Physical Health and Clinical Translation, Deakin UniversityGeelongAustralia
| | - Sandra Duffy
- Discovery Biology, Centre for Cellular Phenomics, Griffith UniversityNathanAustralia
| | - Sergio Wittlin
- Swiss Tropical and Public Health InstituteAllschwilSwitzerland
- University of BaselBaselSwitzerland
| | - Shane M Devine
- The Walter and Eliza Hall Institute of Medical ResearchParkvilleAustralia
- Department of Medical Biology, The University of MelbourneParkvilleAustralia
| | - Vicky M Avery
- Discovery Biology, Centre for Cellular Phenomics, Griffith UniversityNathanAustralia
- School of Environment and Science, Griffith UniversityNathanAustralia
| | - Tania De Koning-Ward
- School of Medicine, Deakin UniversityGeelongAustralia
- The Institute for Mental and Physical Health and Clinical Translation, Deakin UniversityGeelongAustralia
| | - Peter Scammells
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash UniversityParkvilleAustralia
| | - Sheena McGowan
- Monash Biomedicine Discovery Institute and Department of Microbiology, Monash UniversityClaytonAustralia
- Centre to Impact AMR, Monash UniversityClaytonAustralia
| | - Darren J Creek
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash UniversityParkvilleAustralia
| |
Collapse
|
5
|
Edgar RCS, Malcolm TR, Siddiqui G, Giannangelo C, Counihan NA, Challis M, Duffy S, Chowdhury M, Marfurt J, Dans M, Wirjanata G, Noviyanti R, Daware K, Suraweera CD, Price RN, Wittlin S, Avery VM, Drinkwater N, Charman SA, Creek DJ, de Koning-Ward TF, Scammells PJ, McGowan S. On-target, dual aminopeptidase inhibition provides cross-species antimalarial activity. mBio 2024; 15:e0096624. [PMID: 38717141 PMCID: PMC11237774 DOI: 10.1128/mbio.00966-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 04/08/2024] [Indexed: 06/13/2024] Open
Abstract
To combat the global burden of malaria, development of new drugs to replace or complement current therapies is urgently required. Here, we show that the compound MMV1557817 is a selective, nanomolar inhibitor of both Plasmodium falciparum and Plasmodium vivax aminopeptidases M1 and M17, leading to inhibition of end-stage hemoglobin digestion in asexual parasites. MMV1557817 can kill sexual-stage P. falciparum, is active against murine malaria, and does not show any shift in activity against a panel of parasites resistant to other antimalarials. MMV1557817-resistant P. falciparum exhibited a slow growth rate that was quickly outcompeted by wild-type parasites and were sensitized to the current clinical drug, artemisinin. Overall, these results confirm MMV1557817 as a lead compound for further drug development and highlights the potential of dual inhibition of M1 and M17 as an effective multi-species drug-targeting strategy.IMPORTANCEEach year, malaria infects approximately 240 million people and causes over 600,000 deaths, mostly in children under 5 years of age. For the past decade, artemisinin-based combination therapies have been recommended by the World Health Organization as the standard malaria treatment worldwide. Their widespread use has led to the development of artemisinin resistance in the form of delayed parasite clearance, alongside the rise of partner drug resistance. There is an urgent need to develop and deploy new antimalarial agents with novel targets and mechanisms of action. Here, we report a new and potent antimalarial compound, known as MMV1557817, and show that it targets multiple stages of the malaria parasite lifecycle, is active in a preliminary mouse malaria model, and has a novel mechanism of action. Excitingly, resistance to MMV15578117 appears to be self-limiting, suggesting that development of the compound may provide a new class of antimalarial.
Collapse
Affiliation(s)
- Rebecca C S Edgar
- School of Medicine, Deakin University, Geelong, Australia
- The Institute for Mental and Physical Health and Clinical Translation, Deakin University, Geelong, Australia
| | - Tess R Malcolm
- Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Australia
| | - Ghizal Siddiqui
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
| | - Carlo Giannangelo
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
| | - Natalie A Counihan
- School of Medicine, Deakin University, Geelong, Australia
- The Institute for Mental and Physical Health and Clinical Translation, Deakin University, Geelong, Australia
| | - Matthew Challis
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
| | - Sandra Duffy
- Discovery Biology, Centre for Cellular Phenomics, Griffith University, Nathan, Queensland, Australia
| | - Mrittika Chowdhury
- School of Medicine, Deakin University, Geelong, Australia
- The Institute for Mental and Physical Health and Clinical Translation, Deakin University, Geelong, Australia
| | - Jutta Marfurt
- Global Health and Tropical Medicine Division, Menzies School of Health Research, Charles Darwin University, Darwin, Northern Territory, Australia
| | - Madeline Dans
- School of Medicine, Deakin University, Geelong, Australia
- The Institute for Mental and Physical Health and Clinical Translation, Deakin University, Geelong, Australia
| | - Grennady Wirjanata
- Global Health and Tropical Medicine Division, Menzies School of Health Research, Charles Darwin University, Darwin, Northern Territory, Australia
| | | | - Kajal Daware
- Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Australia
| | - Chathura D Suraweera
- Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Australia
| | - Ric N Price
- Global Health and Tropical Medicine Division, Menzies School of Health Research, Charles Darwin University, Darwin, Northern Territory, Australia
- Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Sergio Wittlin
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| | - Vicky M Avery
- School of Environment and Science, Griffith Sciences, Griffith University, Nathan, Queensland, Australia
| | - Nyssa Drinkwater
- Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Australia
| | - Susan A Charman
- Centre for Drug Candidate Optimisation, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
| | - Darren J Creek
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
| | - Tania F de Koning-Ward
- School of Medicine, Deakin University, Geelong, Australia
- The Institute for Mental and Physical Health and Clinical Translation, Deakin University, Geelong, Australia
| | - Peter J Scammells
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
| | - Sheena McGowan
- Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Australia
| |
Collapse
|
6
|
Creek D, Giannangelo C, Challis M, Siddiqui G, Edgar R, Malcolm T, Webb C, Drinkwater N, Vinh N, MacRaild C, Counihan N, Duffy S, Wittlin S, Devine S, Avery V, de Koning-Ward T, Scammells P, McGowan S. Chemoproteomics validates selective targeting of Plasmodium M1 alanyl aminopeptidase as an antimalarial strategy. RESEARCH SQUARE 2024:rs.3.rs-3251230. [PMID: 38746424 PMCID: PMC11092810 DOI: 10.21203/rs.3.rs-3251230/v3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
New antimalarial drug candidates that act via novel mechanisms are urgently needed to combat malaria drug resistance. Here, we describe the multi-omic chemical validation of Plasmodium M1 alanyl metalloaminopeptidase as an attractive drug target using the selective inhibitor, MIPS2673. MIPS2673 demonstrated potent inhibition of recombinant Plasmodium falciparum ( Pf A-M1) and Plasmodium vivax ( Pv A-M1) M1 metalloaminopeptidases, with selectivity over other Plasmodium and human aminopeptidases, and displayed excellent in vitro antimalarial activity with no significant host cytotoxicity. Orthogonal label-free chemoproteomic methods based on thermal stability and limited proteolysis of whole parasite lysates revealed that MIPS2673 solely targets Pf A-M1 in parasites, with limited proteolysis also enabling estimation of the binding site on Pf A-M1 to within ~5 Å of that determined by X-ray crystallography. Finally, functional investigation by untargeted metabolomics demonstrated that MIPS2673 inhibits the key role of Pf A-M1 in haemoglobin digestion. Combined, our unbiased multi-omic target deconvolution methods confirmed the on-target activity of MIPS2673, and validated selective inhibition of M1 alanyl metalloaminopeptidase as a promising antimalarial strategy.
Collapse
|
7
|
Riera-Ferrer E, Mazanec H, Mladineo I, Konik P, Piazzon MC, Kuchta R, Palenzuela O, Estensoro I, Sotillo J, Sitjà-Bobadilla A. An inside out journey: biogenesis, ultrastructure and proteomic characterisation of the ectoparasitic flatworm Sparicotyle chrysophrii extracellular vesicles. Parasit Vectors 2024; 17:175. [PMID: 38570784 PMCID: PMC10993521 DOI: 10.1186/s13071-024-06257-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 03/21/2024] [Indexed: 04/05/2024] Open
Abstract
BACKGROUND Helminth extracellular vesicles (EVs) are known to have a three-way communication function among parasitic helminths, their host and the host-associated microbiota. They are considered biological containers that may carry virulence factors, being therefore appealing as therapeutic and prophylactic target candidates. This study aims to describe and characterise EVs secreted by Sparicotyle chrysophrii (Polyopisthocotyla: Microcotylidae), a blood-feeding gill parasite of gilthead seabream (Sparus aurata), causing significant economic losses in Mediterranean aquaculture. METHODS To identify proteins involved in extracellular vesicle biogenesis, genomic datasets from S. chrysophrii were mined in silico using known protein sequences from Clonorchis spp., Echinococcus spp., Fasciola spp., Fasciolopsis spp., Opisthorchis spp., Paragonimus spp. and Schistosoma spp. The location and ultrastructure of EVs were visualised by transmission electron microscopy after fixing adult S. chrysophrii specimens by high-pressure freezing and freeze substitution. EVs were isolated and purified from adult S. chrysophrii (n = 200) using a newly developed ultracentrifugation-size-exclusion chromatography protocol for Polyopisthocotyla, and EVs were characterised via nanoparticle tracking analysis and tandem mass spectrometry. RESULTS Fifty-nine proteins involved in EV biogenesis were identified in S. chrysophrii, and EVs compatible with ectosomes were observed in the syncytial layer of the haptoral region lining the clamps. The isolated and purified nanoparticles had a mean size of 251.8 nm and yielded 1.71 × 108 particles · mL-1. The protein composition analysis identified proteins related to peptide hydrolases, GTPases, EF-hand domain proteins, aerobic energy metabolism, anticoagulant/lipid-binding, haem detoxification, iron transport, EV biogenesis-related, vesicle-trafficking and other cytoskeletal-related proteins. Several identified proteins, such as leucyl and alanyl aminopeptidases, calpain, ferritin, dynein light chain, 14-3-3, heat shock protein 70, annexin, tubulin, glutathione S-transferase, superoxide dismutase, enolase and fructose-bisphosphate aldolase, have already been proposed as target candidates for therapeutic or prophylactic purposes. CONCLUSIONS We have unambiguously demonstrated for the first time to our knowledge the secretion of EVs by an ectoparasitic flatworm, inferring their biogenesis machinery at a genomic and transcriptomic level, and by identifying their location and protein composition. The identification of multiple therapeutic targets among EVs' protein repertoire provides opportunities for target-based drug discovery and vaccine development for the first time in Polyopisthocotyla (sensu Monogenea), and in a fish-ectoparasite model.
Collapse
Affiliation(s)
- Enrique Riera-Ferrer
- Fish Pathology Group, Institute of Aquaculture Torre de La Sal, Consejo Superior de Investigaciones Científicas (IATS, CSIC), Ribera de Cabanes, 12595, Castellón, Spain
| | - Hynek Mazanec
- Laboratory of Helminthology, Institute of Parasitology, Biology Centre, Czech Academy of Sciences, (BC CAS), České Budějovice, Czech Republic
| | - Ivona Mladineo
- Laboratory of Functional Helminthology, Institute of Parasitology, Biology Centre Czech Academy of Sciences (BC CAS), České Budějovice, Czech Republic
| | - Peter Konik
- Faculty of Science, University of South Bohemia, Branišovská 1160/31, 370 05, České Budějovice, Czech Republic
| | - M Carla Piazzon
- Fish Pathology Group, Institute of Aquaculture Torre de La Sal, Consejo Superior de Investigaciones Científicas (IATS, CSIC), Ribera de Cabanes, 12595, Castellón, Spain
| | - Roman Kuchta
- Laboratory of Helminthology, Institute of Parasitology, Biology Centre, Czech Academy of Sciences, (BC CAS), České Budějovice, Czech Republic
| | - Oswaldo Palenzuela
- Fish Pathology Group, Institute of Aquaculture Torre de La Sal, Consejo Superior de Investigaciones Científicas (IATS, CSIC), Ribera de Cabanes, 12595, Castellón, Spain
| | - Itziar Estensoro
- Fish Pathology Group, Institute of Aquaculture Torre de La Sal, Consejo Superior de Investigaciones Científicas (IATS, CSIC), Ribera de Cabanes, 12595, Castellón, Spain.
| | - Javier Sotillo
- Parasitology Reference and Research Laboratory, National Centre for Microbiology, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Ariadna Sitjà-Bobadilla
- Fish Pathology Group, Institute of Aquaculture Torre de La Sal, Consejo Superior de Investigaciones Científicas (IATS, CSIC), Ribera de Cabanes, 12595, Castellón, Spain
| |
Collapse
|
8
|
Zhou Z, Huayu M, Mu Y, Tang F, Ge RL. Ubenimex combined with Albendazole for the treatment of Echinococcus multilocularis-induced alveolar echinococcosis in mice. Front Vet Sci 2024; 11:1320308. [PMID: 38585297 PMCID: PMC10995866 DOI: 10.3389/fvets.2024.1320308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 03/05/2024] [Indexed: 04/09/2024] Open
Abstract
Introduction Alveolar echinococcosis (AE) is a parasitic disease caused by E. multilocularis metacestodes and it is highly prevalent in the northern hemisphere. We have previously found that vaccination with E. multilocularis-Leucine aminopeptidase (EM-LAP) could inhibit the growth and invasion of E. multilocularis in host liver, and Ubenimex, a broad-spectrum inhibitor of LAP, could also inhibit E. multilocularis invasion but had a limited effect on the growth and development of E. multilocularis. Methods In this study, the therapeutic effect of Ubenimex combined with Albendazole on AE was evaluated. Mice were intraperitoneally injected with protoscoleces and imaging examination was performed at week 8 and week 16 to detect cyst change. During this period, mice were intraperitoneally injected with Ubenimex and intragastrically administered with Albendazole suspension. At last, the therapeutic effect was evaluated by morphological and pathological examination and liver function. Results The results revealed that the combined treatment could inhibit the growth and infiltration of cysts in BALB/c mice infected with E. multilocularis protoscoleces. The weight, number, invasion and fibrosis of cysts were reduced in mice treated with Ubenimex in combination with Albendazole. The same effect was achieved by the single Ubenimex treatment because of its inhibitory effect on LAP activity, but it was less effective in inhibiting the growth of cysts. The levels of ALT, AST, TBIL, DBIL, ALP, and γ-GT were reduced after the combined treatment, indicating that treatment with both Ubenimex and Albendazole could alleviate liver damage. Discussion This study suggests that the combined treatment with Ubenimex and Albendazole could be a potential therapeutic strategy for E. multilocularis infections.
Collapse
Affiliation(s)
- Zhen Zhou
- Research Center for High Altitude Medicine of Qinghai University, Xining, Qinghai, China
- Key Laboratory of High Altitude Medicine in Qinghai Provincial, Qinghai University, Xining, Qinghai, China
| | - Meiduo Huayu
- Research Center for High Altitude Medicine of Qinghai University, Xining, Qinghai, China
- Key Laboratory of High Altitude Medicine in Qinghai Provincial, Qinghai University, Xining, Qinghai, China
| | - Yalin Mu
- Department of Medical Imaging Center, Qinghai University Affiliated Hospital, Xining, Qinghai, China
| | - Feng Tang
- Research Center for High Altitude Medicine of Qinghai University, Xining, Qinghai, China
- Key Laboratory of High Altitude Medicine in Qinghai Provincial, Qinghai University, Xining, Qinghai, China
| | - Ri-Li Ge
- Research Center for High Altitude Medicine of Qinghai University, Xining, Qinghai, China
- Key Laboratory of High Altitude Medicine in Qinghai Provincial, Qinghai University, Xining, Qinghai, China
| |
Collapse
|
9
|
Mansouri M, Daware K, Webb CT, McGowan S. Understanding the structure and function of Plasmodium aminopeptidases to facilitate drug discovery. Curr Opin Struct Biol 2023; 82:102693. [PMID: 37657352 DOI: 10.1016/j.sbi.2023.102693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 08/01/2023] [Accepted: 08/03/2023] [Indexed: 09/03/2023]
Abstract
Malaria continues to be the most widespread parasitic disease affecting humans globally. As parasites develop drug resistance at an alarming pace, it has become crucial to identify novel drug targets. Over the last decade, the metalloaminopeptidases have gained importance as potential targets for new antimalarials. These enzymes are responsible for removing the N-terminal amino acids from proteins and peptides, and their restricted specificities suggest that many perform unique and essential roles within the malaria parasite. This mini-review focuses on the recent progress in structure and functional data relating to the Plasmodium metalloaminopeptidases that have been validated or shown promise as new antimalarial drug targets.
Collapse
Affiliation(s)
- Mahta Mansouri
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, 3052, Australia; Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria, 3800, Australia. https://twitter.com/Mahta__Mansouri
| | - Kajal Daware
- Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria, 3800, Australia; Centre to Impact AMR, Monash University, Clayton, 3800, Victoria Australia
| | - Chaille T Webb
- Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria, 3800, Australia; Centre to Impact AMR, Monash University, Clayton, 3800, Victoria Australia
| | - Sheena McGowan
- Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria, 3800, Australia; Centre to Impact AMR, Monash University, Clayton, 3800, Victoria Australia.
| |
Collapse
|
10
|
Altharawi A. Targeting Toxoplasma gondii ME49 TgAPN2: A Bioinformatics Approach for Antiparasitic Drug Discovery. Molecules 2023; 28:molecules28073186. [PMID: 37049948 PMCID: PMC10096047 DOI: 10.3390/molecules28073186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 03/29/2023] [Accepted: 03/29/2023] [Indexed: 04/07/2023] Open
Abstract
As fewer therapeutic options are available for treating toxoplasmosis, newer antiparasitic drugs that can block TgAPN2 M1 aminopeptidase are of significant value. Herein, we employed several computer-aided drug-design approaches with the objective of identifying drug molecules from the Asinex library with stable conformation and binding energy scores. By a structure-based virtual screening process, three molecules—LAS_52160953, LAS_51177972, and LAS_52506311—were identified as promising candidates, with binding affinity scores of −8.6 kcal/mol, −8.5 kcal/mol, and −8.3 kcal/mol, respectively. The compounds produced balanced interacting networks of hydrophilic and hydrophobic interactions, vital for holding the compounds at the docked cavity and stable binding conformation. The docked compound complexes with TgAPN2 were further subjected to molecular dynamic simulations that revealed mean RMSD for the LAS_52160953 complex of 1.45 Å), LAS_51177972 complex 1.02 Å, and LAS_52506311 complex 1.087 Å. Another round of binding free energy validation by MM-GBSA/MM-PBSA was done to confirm docking and simulation findings. The analysis predicted average MM-GBSA value of <−36 kcal/mol and <−35 kcal/mol by MM-PBSA. The compounds were further classified as appropriate candidates to be used as drug-like molecules and showed favorable pharmacokinetics. The shortlisted compounds showed promising biological potency against the TgAPN2 enzyme and may be used in experimental validation. They may also serve as parent structures to design novel derivatives with enhanced biological potency.
Collapse
Affiliation(s)
- Ali Altharawi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| |
Collapse
|
11
|
Aguado ME, Izquierdo M, González-Matos M, Varela AC, Méndez Y, Del Rivero MA, Rivera DG, González-Bacerio J. Parasite Metalo-aminopeptidases as Targets in Human Infectious Diseases. Curr Drug Targets 2023; 24:416-461. [PMID: 36825701 DOI: 10.2174/1389450124666230224140724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 12/25/2022] [Accepted: 01/02/2023] [Indexed: 02/25/2023]
Abstract
BACKGROUND Parasitic human infectious diseases are a worldwide health problem due to the increased resistance to conventional drugs. For this reason, the identification of novel molecular targets and the discovery of new chemotherapeutic agents are urgently required. Metalo- aminopeptidases are promising targets in parasitic infections. They participate in crucial processes for parasite growth and pathogenesis. OBJECTIVE In this review, we describe the structural, functional and kinetic properties, and inhibitors, of several parasite metalo-aminopeptidases, for their use as targets in parasitic diseases. CONCLUSION Plasmodium falciparum M1 and M17 aminopeptidases are essential enzymes for parasite development, and M18 aminopeptidase could be involved in hemoglobin digestion and erythrocyte invasion and egression. Trypanosoma cruzi, T. brucei and Leishmania major acidic M17 aminopeptidases can play a nutritional role. T. brucei basic M17 aminopeptidase down-regulation delays the cytokinesis. The inhibition of Leishmania basic M17 aminopeptidase could affect parasite viability. L. donovani methionyl aminopeptidase inhibition prevents apoptosis but not the parasite death. Decrease in Acanthamoeba castellanii M17 aminopeptidase activity produces cell wall structural modifications and encystation inhibition. Inhibition of Babesia bovis growth is probably related to the inhibition of the parasite M17 aminopeptidase, probably involved in host hemoglobin degradation. Schistosoma mansoni M17 aminopeptidases inhibition may affect parasite development, since they could participate in hemoglobin degradation, surface membrane remodeling and eggs hatching. Toxoplasma gondii M17 aminopeptidase inhibition could attenuate parasite virulence, since it is apparently involved in the hydrolysis of cathepsin Cs- or proteasome-produced dipeptides and/or cell attachment/invasion processes. These data are relevant to validate these enzymes as targets.
Collapse
Affiliation(s)
- Mirtha E Aguado
- Center for Protein Studies, Faculty of Biology, University of Havana, Calle 25 #455 Entre I y J, 10400, Vedado, La Habana, Cuba
| | - Maikel Izquierdo
- Center for Protein Studies, Faculty of Biology, University of Havana, Calle 25 #455 Entre I y J, 10400, Vedado, La Habana, Cuba
| | - Maikel González-Matos
- Center for Protein Studies, Faculty of Biology, University of Havana, Calle 25 #455 Entre I y J, 10400, Vedado, La Habana, Cuba
| | - Ana C Varela
- Center for Protein Studies, Faculty of Biology, University of Havana, Calle 25 #455 Entre I y J, 10400, Vedado, La Habana, Cuba
| | - Yanira Méndez
- Center for Natural Products Research, Faculty of Chemistry, University of Havana, Zapata y G, 10400, La Habana, Cuba
| | - Maday A Del Rivero
- Center for Protein Studies, Faculty of Biology, University of Havana, Calle 25 #455 Entre I y J, 10400, Vedado, La Habana, Cuba
| | - Daniel G Rivera
- Center for Natural Products Research, Faculty of Chemistry, University of Havana, Zapata y G, 10400, La Habana, Cuba
| | - Jorge González-Bacerio
- Center for Protein Studies, Faculty of Biology, University of Havana, Calle 25 #455 Entre I y J, 10400, Vedado, La Habana, Cuba
- Department of Biochemistry, Faculty of Biology, University of Havana, calle 25 #455 entre I y J, 10400, Vedado, La Habana, Cuba
| |
Collapse
|
12
|
Edgar RCS, Siddiqui G, Hjerrild K, Malcolm TR, Vinh NB, Webb CT, Holmes C, MacRaild CA, Chernih HC, Suen WW, Counihan NA, Creek DJ, Scammells PJ, McGowan S, de Koning-Ward TF. Genetic and chemical validation of Plasmodium falciparum aminopeptidase PfA-M17 as a drug target in the hemoglobin digestion pathway. eLife 2022; 11:e80813. [PMID: 36097817 PMCID: PMC9470162 DOI: 10.7554/elife.80813] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 08/02/2022] [Indexed: 11/18/2022] Open
Abstract
Plasmodium falciparum, the causative agent of malaria, remains a global health threat as parasites continue to develop resistance to antimalarial drugs used throughout the world. Accordingly, drugs with novel modes of action are desperately required to combat malaria. P. falciparum parasites infect human red blood cells where they digest the host's main protein constituent, hemoglobin. Leucine aminopeptidase PfA-M17 is one of several aminopeptidases that have been implicated in the last step of this digestive pathway. Here, we use both reverse genetics and a compound specifically designed to inhibit the activity of PfA-M17 to show that PfA-M17 is essential for P. falciparum survival as it provides parasites with free amino acids for growth, many of which are highly likely to originate from hemoglobin. We further show that loss of PfA-M17 results in parasites exhibiting multiple digestive vacuoles at the trophozoite stage. In contrast to other hemoglobin-degrading proteases that have overlapping redundant functions, we validate PfA-M17 as a potential novel drug target.
Collapse
Affiliation(s)
- Rebecca CS Edgar
- School of Medicine, Deakin UniversityGeelongAustralia
- The Institute for Mental and Physical Health and Clinical Translation, Deakin UniversityGeelongAustralia
| | - Ghizal Siddiqui
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash UniversityParkvilleAustralia
| | | | - Tess R Malcolm
- Biomedicine Discovery Institute and Department of Microbiology, Monash UniversityClaytonAustralia
- Centre to Impact AMR, Monash UniversityMelbourneAustralia
| | - Natalie B Vinh
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash UniversityParkvilleAustralia
| | - Chaille T Webb
- Biomedicine Discovery Institute and Department of Microbiology, Monash UniversityClaytonAustralia
- Centre to Impact AMR, Monash UniversityMelbourneAustralia
| | - Clare Holmes
- CSIRO Australian Centre for Disease PreparednessGeelongAustralia
| | - Christopher A MacRaild
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash UniversityParkvilleAustralia
| | - Hope C Chernih
- School of Medicine, Deakin UniversityGeelongAustralia
- The Institute for Mental and Physical Health and Clinical Translation, Deakin UniversityGeelongAustralia
| | - Willy W Suen
- CSIRO Australian Centre for Disease PreparednessGeelongAustralia
| | - Natalie A Counihan
- School of Medicine, Deakin UniversityGeelongAustralia
- The Institute for Mental and Physical Health and Clinical Translation, Deakin UniversityGeelongAustralia
| | - Darren J Creek
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash UniversityParkvilleAustralia
| | - Peter J Scammells
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash UniversityParkvilleAustralia
| | - Sheena McGowan
- Biomedicine Discovery Institute and Department of Microbiology, Monash UniversityClaytonAustralia
- Centre to Impact AMR, Monash UniversityMelbourneAustralia
| | - Tania F de Koning-Ward
- School of Medicine, Deakin UniversityGeelongAustralia
- The Institute for Mental and Physical Health and Clinical Translation, Deakin UniversityGeelongAustralia
| |
Collapse
|
13
|
Sanchez CP, Manson EDT, Moliner Cubel S, Mandel L, Weidt SK, Barrett MP, Lanzer M. The Knock-Down of the Chloroquine Resistance Transporter PfCRT Is Linked to Oligopeptide Handling in Plasmodium falciparum. Microbiol Spectr 2022; 10:e0110122. [PMID: 35867395 PMCID: PMC9431119 DOI: 10.1128/spectrum.01101-22] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 06/27/2022] [Indexed: 11/20/2022] Open
Abstract
The chloroquine resistance transporter, PfCRT, is an essential factor during intraerythrocytic development of the human malaria parasite Plasmodium falciparum. PfCRT resides at the digestive vacuole of the parasite, where hemoglobin taken up by the parasite from its host cell is degraded. PfCRT can acquire several mutations that render PfCRT a drug transporting system expelling compounds targeting hemoglobin degradation from the digestive vacuole. The non-drug related function of PfCRT is less clear, although a recent study has suggested a role in oligopeptide transport based on studies conducted in a heterologous expression system. The uncertainty about the natural function of PfCRT is partly due to a lack of a null mutant and a dearth of functional assays in the parasite. Here, we report on the generation of a conditional PfCRT knock-down mutant in P. falciparum. The mutant accumulated oligopeptides 2 to at least 8 residues in length under knock-down conditions, as shown by comparative global metabolomics. The accumulated oligopeptides were structurally diverse, had an isoelectric point between 4.0 and 5.4 and were electrically neutral or carried a single charge at the digestive vacuolar pH of 5.2. Fluorescently labeled dipeptides and live cell imaging identified the digestive vacuole as the compartment where oligopeptides accumulated. Our findings suggest a function of PfCRT in oligopeptide transport across the digestive vacuolar membrane in P. falciparum and associated with it a role in nutrient acquisition and the maintenance of the colloid osmotic balance. IMPORTANCE The chloroquine resistance transporter, PfCRT, is important for the survival of the human malaria parasite Plasmodium falciparum. It increases the tolerance to many antimalarial drugs, and it is essential for the development of the parasite within red blood cells. While we understand the role of PfCRT in drug resistance in ever increasing detail, the non-drug resistance functions are still debated. Identifying the natural substrate of PfCRT has been hampered by a paucity of functional assays to test putative substrates in the parasite system and the absence of a parasite mutant deficient for the PfCRT encoding gene. By generating a conditional PfCRT knock-down mutant, together with comparative metabolomics and uptake studies using fluorescently labeled oligopeptides, we could show that PfCRT is an oligopeptide transporter. The oligopeptides were structurally diverse and were electrically neutral or carried a single charge. Our data support a function of PfCRT in oligopeptide transport.
Collapse
Affiliation(s)
- Cecilia P. Sanchez
- Center of Infectious Diseases, Parasitology, Universitätsklinikum Heidelberg, Heidelberg, Germany
| | | | - Sonia Moliner Cubel
- Center of Infectious Diseases, Parasitology, Universitätsklinikum Heidelberg, Heidelberg, Germany
| | | | - Stefan K. Weidt
- Glasgow Polyomics, University of Glasgow, Wolfson Wohl Cancer Research Centre, Glasgow, United Kingdom
| | - Michael P. Barrett
- Glasgow Polyomics, University of Glasgow, Wolfson Wohl Cancer Research Centre, Glasgow, United Kingdom
- The Wellcome Centre for Integrative Parasitology, Institute for Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Michael Lanzer
- Center of Infectious Diseases, Parasitology, Universitätsklinikum Heidelberg, Heidelberg, Germany
| |
Collapse
|
14
|
Edgar RCS, Counihan NA, McGowan S, de Koning-Ward TF. Methods Used to Investigate the Plasmodium falciparum Digestive Vacuole. Front Cell Infect Microbiol 2022; 11:829823. [PMID: 35096663 PMCID: PMC8794586 DOI: 10.3389/fcimb.2021.829823] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 12/22/2021] [Indexed: 11/13/2022] Open
Abstract
Plasmodium falciparum malaria remains a global health problem as parasites continue to develop resistance to all antimalarials in use. Infection causes clinical symptoms during the intra-erythrocytic stage of the lifecycle where the parasite infects and replicates within red blood cells (RBC). During this stage, P. falciparum digests the main constituent of the RBC, hemoglobin, in a specialized acidic compartment termed the digestive vacuole (DV), a process essential for survival. Many therapeutics in use target one or multiple aspects of the DV, with chloroquine and its derivatives, as well as artemisinin, having mechanisms of action within this organelle. In order to better understand how current therapeutics and those under development target DV processes, techniques used to investigate the DV are paramount. This review outlines the involvement of the DV in therapeutics currently in use and focuses on the range of techniques that are currently utilized to study this organelle including microscopy, biochemical analysis, genetic approaches and metabolomic studies. Importantly, continued development and application of these techniques will aid in our understanding of the DV and in the development of new therapeutics or therapeutic partners for the future.
Collapse
Affiliation(s)
- Rebecca C. S. Edgar
- School of Medicine, Deakin University, Geelong, VIC, Australia
- The Institute for Mental and Physical Health and Clinical Translation, Deakin University, Geelong, VIC, Australia
| | - Natalie A. Counihan
- School of Medicine, Deakin University, Geelong, VIC, Australia
- The Institute for Mental and Physical Health and Clinical Translation, Deakin University, Geelong, VIC, Australia
| | - Sheena McGowan
- Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, VIC, Australia
- Centre to Impact AMR, Monash University, Monash University, Clayton, VIC, Australia
| | - Tania F. de Koning-Ward
- School of Medicine, Deakin University, Geelong, VIC, Australia
- The Institute for Mental and Physical Health and Clinical Translation, Deakin University, Geelong, VIC, Australia
| |
Collapse
|
15
|
Hoff CC, Azevedo MF, Thurler AB, Maluf SEC, Melo PMS, del Rivero MA, González-Bacerio J, Carmona AK, Budu A, Gazarini ML. Overexpression of Plasmodium falciparum M1 Aminopeptidase Promotes an Increase in Intracellular Proteolysis and Modifies the Asexual Erythrocytic Cycle Development. Pathogens 2021; 10:pathogens10111452. [PMID: 34832608 PMCID: PMC8618464 DOI: 10.3390/pathogens10111452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 11/05/2021] [Accepted: 11/06/2021] [Indexed: 11/16/2022] Open
Abstract
Plasmodium falciparum, the most virulent of the human malaria parasite, is responsible for high mortality rates worldwide. We studied the M1 alanyl-aminopeptidase of this protozoan (PfA-M1), which is involved in the final stages of hemoglobin cleavage, an essential process for parasite survival. Aiming to help in the rational development of drugs against this target, we developed a new strain of P. falciparum overexpressing PfA-M1 without the signal peptide (overPfA-M1). The overPfA-M1 parasites showed a 2.5-fold increase in proteolytic activity toward the fluorogenic substrate alanyl-7-amido-4-methylcoumarin, in relation to the wild-type group. Inhibition studies showed that overPfA-M1 presented a lower sensitivity against the metalloaminopeptidase inhibitor bestatin and to other recombinant PfA-M1 inhibitors, in comparison with the wild-type strain, indicating that PfA-M1 is a target for the in vitro antimalarial activity of these compounds. Moreover, overPfA-M1 parasites present a decreased in vitro growth, showing a reduced number of merozoites per schizont, and also a decrease in the iRBC area occupied by the parasite in trophozoite and schizont forms when compared to the controls. Interestingly, the transgenic parasite displays an increase in the aminopeptidase activity toward Met-, Ala-, Leu- and Arg-7-amido-4-methylcoumarin. We also investigated the potential role of calmodulin and cysteine proteases in PfA-M1 activity. Taken together, our data show that the overexpression of PfA-M1 in the parasite cytosol can be a suitable tool for the screening of antimalarials in specific high-throughput assays and may be used for the identification of intracellular molecular partners that modulate their activity in P. falciparum.
Collapse
Affiliation(s)
- Carolina C. Hoff
- Department of Biosciences, Federal University of São Paulo, Santos 11015-020, Brazil; (C.C.H.); (M.F.A.)
| | - Mauro F. Azevedo
- Department of Biosciences, Federal University of São Paulo, Santos 11015-020, Brazil; (C.C.H.); (M.F.A.)
| | - Adriana B. Thurler
- Department of Biophysics, Federal University of São Paulo, São Paulo 04039-032, Brazil; (A.B.T.); (S.E.C.M.); (P.M.S.M.); (A.K.C.)
| | - Sarah El Chamy Maluf
- Department of Biophysics, Federal University of São Paulo, São Paulo 04039-032, Brazil; (A.B.T.); (S.E.C.M.); (P.M.S.M.); (A.K.C.)
| | - Pollyana M. S. Melo
- Department of Biophysics, Federal University of São Paulo, São Paulo 04039-032, Brazil; (A.B.T.); (S.E.C.M.); (P.M.S.M.); (A.K.C.)
| | - Maday Alonso del Rivero
- Center for Protein Studies, Faculty of Biology, University of Havana, Vedado, La Habana 10400, Cuba; (M.A.d.R.); (J.G.-B.)
| | - Jorge González-Bacerio
- Center for Protein Studies, Faculty of Biology, University of Havana, Vedado, La Habana 10400, Cuba; (M.A.d.R.); (J.G.-B.)
| | - Adriana K. Carmona
- Department of Biophysics, Federal University of São Paulo, São Paulo 04039-032, Brazil; (A.B.T.); (S.E.C.M.); (P.M.S.M.); (A.K.C.)
| | - Alexandre Budu
- Department of Biophysics, Federal University of São Paulo, São Paulo 04039-032, Brazil; (A.B.T.); (S.E.C.M.); (P.M.S.M.); (A.K.C.)
- Correspondence: (A.B.); (M.L.G.)
| | - Marcos L. Gazarini
- Department of Biosciences, Federal University of São Paulo, Santos 11015-020, Brazil; (C.C.H.); (M.F.A.)
- Correspondence: (A.B.); (M.L.G.)
| |
Collapse
|
16
|
KBE009: A Bestatin-Like Inhibitor of the Trypanosoma cruzi Acidic M17 Aminopeptidase with In Vitro Anti-Trypanosomal Activity. Life (Basel) 2021; 11:life11101037. [PMID: 34685408 PMCID: PMC8540442 DOI: 10.3390/life11101037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 09/21/2021] [Accepted: 09/28/2021] [Indexed: 11/17/2022] Open
Abstract
Chagas disease, caused by the kinetoplastid parasite Trypanosoma cruzi, is a human tropical illness mainly present in Latin America. The therapies available against this disease are far from ideal. Proteases from pathogenic protozoan have been considered as good drug target candidates. T. cruzi acidic M17 leucyl-aminopeptidase (TcLAP) mediates the major parasite’s leucyl-aminopeptidase activity and is expressed in all parasite stages. Here, we report the inhibition of TcLAP (IC50 = 66.0 ± 13.5 µM) by the bestatin-like peptidomimetic KBE009. This molecule also inhibited the proliferation of T. cruzi epimastigotes in vitro (EC50 = 28.1 ± 1.9 µM) and showed selectivity for the parasite over human dermal fibroblasts (selectivity index: 4.9). Further insight into the specific effect of KBE009 on T. cruzi was provided by docking simulation using the crystal structure of TcLAP and a modeled human orthologous, hLAP3. The TcLAP-KBE009 complex is more stable than its hLAP3 counterpart. KBE009 adopted a better geometrical shape to fit into the active site of TcLAP than that of hLAP3. The drug-likeness and lead-likeness in silico parameters of KBE009 are satisfactory. Altogether, our results provide an initial insight into KBE009 as a promising starting point compound for the rational design of drugs through further optimization.
Collapse
|