1
|
Erdogan-Yildirim Z, Carlson JC, Mukhopadhyay N, Leslie EJ, Padilla C, Murray JC, Beaty TH, Weinberg SM, Marazita ML, Shaffer JR. Gene-by-environment interactions involving maternal exposures with orofacial cleft risk in Filipinos. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.12.16.24319123. [PMID: 39830233 PMCID: PMC11741442 DOI: 10.1101/2024.12.16.24319123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Maternal exposures are known to influence the risk of isolated cleft lip with or without cleft palate (CL/P) - a common and highly heritable birth defect with a multifactorial etiology. To identify new CL/P risk loci, we conducted a genome-wide gene-environment interaction (GEI) analysis of CL/P on a sample of 540 cases and 260 controls recruited from the Philippines, incorporating the interaction effects of genetic variants with maternal smoking and vitamin use. As GEI analyses are typically low in power and the results can be difficult to interpret, we used multiple testing frameworks to evaluate potential GEI effects: 1 degree-of-freedom (1df) GxE test, the 3df joint test, and the two-step EDGE approach. While we did not detect any genome-wide significant interactions, we detected 12 suggestive GEI with smoking and 25 suggestive GEI with vitamin use between all testing frameworks. Several of these loci showed biological plausibility. Notable interactions with smoking include loci near FEZF1 , TWIST2, and NET1. While FEZF1 is involved in early neuronal development, TWIST2 and NET1 regulate epithelial-mesenchymal transition which is required for proper lip and palate fusion. Interactions with vitamins encompass CECR2 - a chromatin remodeling protein required for neural tube closure-and FURIN, a critical protease during early embryogenesis that activates various growth factor and extracellular-matrix protein. The activity of both proteins is influenced by folic acid. Our findings highlight the critical role of maternal exposures in identifying genes associated with structural birth defects such as CL/P and provide new paths to explore for CL/P genetics.
Collapse
|
2
|
Xu L, Cheng X, Tang L, Min S, Wu J, Zhu H, Liao Y. Clinical and molecular cytogenetic findings of cat eye syndrome and a 2-year-old patient with congenital aural atresia and hearing loss. BMC Pediatr 2024; 24:658. [PMID: 39402511 PMCID: PMC11472575 DOI: 10.1186/s12887-024-05136-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 10/07/2024] [Indexed: 10/19/2024] Open
Abstract
BACKGROUND Cat eye syndrome (CES) is a rare congenital disease frequently caused by a partial tetrasomy of the proximal long (q) arm of chromosome 22, due to a small supernumerary marker chromosome (sSMC). CES patients show remarkable phenotypic variability. Despite the progress of molecular cytogenetic technology, the cause of phenotypic variability and the genotype-phenotype correlations remain unknown. METHODS We analyzed clinical and genetic data of a new patient with CES together with 27 previously reported ones with a confirmed genomic gain in the PubMed database between 2012 and 2023. RESULTS We reported a boy with CES carrying a 22q11.1-q11.21 duplication of 1.76 Mb tetrasomy (16888900_18644241, hg19) who presented currently rare or unreported clinical findings such as congenital aural atresia, hearing loss, PLSVC, and IVC. The results of the whole exome sequencing (WES) showed a heterozygous mutation of the GJB2 gene (NM_004004.6: exon2: c.109G > A). In addition, the results of our literature review showed that the presence of a classical sSMC was the most frequent cytogenetic abnormality in CES (82%). 63% of cases were in a homogenous state and 37% of cases were in a mosaic state. 72% of cases had a 1-2 Mb duplication. In the majority of CES patients the breakpoints in chromosome 22 are localized to a 50 kb region (18610000_18660000 bp). The CES critical region (CESCR) may be further delimited to a 0.3 Mb region (17799398_18111588 bp). Within this region CECR2, SLC25A18, ATP6V1E1, and BCL2L13 are strong candidate genes for causing the main CES phenotype. The ear anomalies are the most frequent features in CES patients (89%) and hearing loss was present in 36% of CES patients. CONCLUSIONS The phenotypic features in CES are highly variable. Our findings expand the symptom spectrum of CES and lay the foundation for better delineating the clinical phenotype, molecular cytogenetic features associated with CES and genotype-phenotype correlations. We recommend performing WES to rule out the involvement of other genetic factors in the patient's phenotype. In addition, our findings also highlight the need for genetic counseling and recurrence risk assessment.
Collapse
Affiliation(s)
- Liang Xu
- School of Life Sciences, Bengbu Medical University, 2600 Donghai Avenue, Bengbu, 233000, China
- Prenatal Diagnosis Center, Molecular Diagnosis Center, Anhui Province Key Laboratory of Clinical and Preclinical Research in Respiratory Disease, The First Affiliated Hospital of Bengbu Medical University, 287 Zhihuai Avenue, Bengbu, 233030, China
| | - Xia Cheng
- Department of Clinical Laboratory, The Second Affiliated Hospital of Bengbu Medical University, 633 Longhua Avenue, Bengbu, 233000, China
| | - Lemin Tang
- School of Life Sciences, Bengbu Medical University, 2600 Donghai Avenue, Bengbu, 233000, China
| | - Shengping Min
- Prenatal Diagnosis Center, Molecular Diagnosis Center, Anhui Province Key Laboratory of Clinical and Preclinical Research in Respiratory Disease, The First Affiliated Hospital of Bengbu Medical University, 287 Zhihuai Avenue, Bengbu, 233030, China
| | - Jiatao Wu
- Prenatal Diagnosis Center, Molecular Diagnosis Center, Anhui Province Key Laboratory of Clinical and Preclinical Research in Respiratory Disease, The First Affiliated Hospital of Bengbu Medical University, 287 Zhihuai Avenue, Bengbu, 233030, China
| | - Hongwei Zhu
- Department of Pediatrics, The First Affiliated Hospital of Bengbu Medical University, 287 Zhihuai Avenue, Bengbu, 233030, China
| | - Yaping Liao
- School of Life Sciences, Bengbu Medical University, 2600 Donghai Avenue, Bengbu, 233000, China.
- Anhui Engineering Research Center for Neural Regeneration Technology and Medical New Materials, Bengbu Medical University, 2600 Donghai Avenue, Bengbu, 233000, China.
| |
Collapse
|
3
|
Cen Y, Chen Y, Li X, Chen X, Yu B, Yan M, Yan N, Cheng H, Li S. Optical controlled and nuclear targeted CECR2 competitor to downregulate CSF-1 for metastatic breast cancer immunotherapy. Biomaterials 2024; 308:122568. [PMID: 38615488 DOI: 10.1016/j.biomaterials.2024.122568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 03/07/2024] [Accepted: 04/06/2024] [Indexed: 04/16/2024]
Abstract
The crosstalk between breast cancer cells and tumor associated macrophages (TAMs) greatly contributes to tumor progression and immunosuppression. In this work, cat eye syndrome chromosome region candidate 2 (CECR2) is identified to overexpress in breast cancer patients, which can recognize v-rel avian reticuloendotheliosis viral oncogene homolog A (RelA) and activate nuclear factor κB (NF-κB) to release colony stimulating factor-1 (CSF-1). Pharmacological inhibition of CECR2 by the bromodomain competitor (Bromosporine, Bro) can downregulate CSF-1 to inhibit M2 type TAMs. To amplify the immunotherapeutic effect, a chimeric peptide-based and optical controlled CECR2 competitor (designated as N-PB) is constructed to enhance the nuclear targeted delivery of Bro and initiate an immunogenic cell death (ICD). In vivo results indicate a favorable breast cancer targeting ability and primary tumor suppression effect of N-PB under optical irradiation. Importantly, N-PB downregulates CSF-1 by competitive inhibition of CECR2 and NF-κB(RelA) interactions, thus inhibiting immunosuppressive M2-like TAMs while improving the antitumorigenic M1-like phenotype. Ultimately, the systemic anti-tumor immunity is activated to suppress the metastatic breast cancer in an optical controlled manner. This study provides a promising therapeutic target and reliable strategy for metastatic breast cancer treatment by interrupting immunosuppressive crosstalk between tumor cells and macrophages.
Collapse
Affiliation(s)
- Yi Cen
- The Fifth Affiliated Hospital, Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, the School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, PR China
| | - Ying Chen
- The Fifth Affiliated Hospital, Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, the School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, PR China
| | - Xinxuan Li
- The Fifth Affiliated Hospital, Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, the School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, PR China
| | - Xiayun Chen
- The Fifth Affiliated Hospital, Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, the School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, PR China
| | - Baixue Yu
- The Fifth Affiliated Hospital, Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, the School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, PR China
| | - Mengyi Yan
- The Fifth Affiliated Hospital, Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, the School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, PR China
| | - Ni Yan
- Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, Guangzhou, 510515, PR China
| | - Hong Cheng
- Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, Guangzhou, 510515, PR China.
| | - Shiying Li
- The Fifth Affiliated Hospital, Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, the School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, PR China.
| |
Collapse
|
4
|
Cornman RS. A genomic hotspot of diversifying selection and structural change in the hoary bat ( Lasiurus cinereus). PeerJ 2024; 12:e17482. [PMID: 38832043 PMCID: PMC11146322 DOI: 10.7717/peerj.17482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 05/07/2024] [Indexed: 06/05/2024] Open
Abstract
Background Previous work found that numerous genes positively selected within the hoary bat (Lasiurus cinereus) lineage are physically clustered in regions of conserved synteny. Here I further validate and expand on those finding utilizing an updated L. cinereus genome assembly and additional bat species as well as other tetrapod outgroups. Methods A chromosome-level assembly was generated by chromatin-contact mapping and made available by DNAZoo (www.dnazoo.org). The genomic organization of orthologous genes was extracted from annotation data for multiple additional bat species as well as other tetrapod clades for which chromosome-level assemblies were available from the National Center for Biotechnology Information (NCBI). Tests of branch-specific positive selection were performed for L. cinereus using PAML as well as with the HyPhy package for comparison. Results Twelve genes exhibiting significant diversifying selection in the L. cinereus lineage were clustered within a 12-Mb genomic window; one of these (Trpc4) also exhibited diversifying selection in bats generally. Ten of the 12 genes are landmarks of two distinct blocks of ancient synteny that are not linked in other tetrapod clades. Bats are further distinguished by frequent structural rearrangements within these synteny blocks, which are rarely observed in other Tetrapoda. Patterns of gene order and orientation among bat taxa are incompatible with phylogeny as presently understood, implying parallel evolution or subsequent reversals. Inferences of positive selection were found to be robust to alternative phylogenetic topologies as well as a strong shift in background nucleotide composition in some taxa. Discussion This study confirms and further localizes a genomic hotspot of protein-coding divergence in the hoary bat, one that also exhibits an increased tempo of structural change in bats compared with other mammals. Most genes in the two synteny blocks have elevated expression in brain tissue in humans and model organisms, and genetic studies implicate the selected genes in cranial and neurological development, among other functions.
Collapse
Affiliation(s)
- Robert S. Cornman
- U.S. Geological Survey, Fort Collins Science Center, Fort Collins, Colorado, United States
| |
Collapse
|
5
|
Turkova T, Kokavec J, Zikmund T, Dibus N, Pimkova K, Nemec D, Holeckova M, Ruskova L, Sedlacek R, Cermak L, Stopka T. Differential requirements for Smarca5 expression during hematopoietic stem cell commitment. Commun Biol 2024; 7:244. [PMID: 38424235 PMCID: PMC10904812 DOI: 10.1038/s42003-024-05917-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 02/14/2024] [Indexed: 03/02/2024] Open
Abstract
The formation of hematopoietic cells relies on the chromatin remodeling activities of ISWI ATPase SMARCA5 (SNF2H) and its complexes. The Smarca5 null and conditional alleles have been used to study its functions in embryonic and organ development in mice. These mouse model phenotypes vary from embryonic lethality of constitutive knockout to less severe phenotypes observed in tissue-specific Smarca5 deletions, e.g., in the hematopoietic system. Here we show that, in a gene dosage-dependent manner, the hypomorphic allele of SMARCA5 (S5tg) can rescue not only the developmental arrest in hematopoiesis in the hCD2iCre model but also the lethal phenotypes associated with constitutive Smarca5 deletion or Vav1iCre-driven conditional knockout in hematopoietic progenitor cells. Interestingly, the latter model also provided evidence for the role of SMARCA5 expression level in hematopoietic stem cells, as the Vav1iCre S5tg animals accumulate stem and progenitor cells. Furthermore, their hematopoietic stem cells exhibited impaired lymphoid lineage entry and differentiation. This observation contrasts with the myeloid lineage which is developing without significant disturbances. Our findings indicate that animals with low expression of SMARCA5 exhibit normal embryonic development with altered lymphoid entry within the hematopoietic stem cell compartment.
Collapse
Grants
- 24-10435S, 24-10353S Grantová Agentura České Republiky (Grant Agency of the Czech Republic)
- NU21-08-00312, NU22-05-00374 Ministerstvo Zdravotnictví Ceské Republiky (Ministry of Health of the Czech Republic)
- LX22NPO5102, SVV 260637, UNCE/MED/016, COOPERATIO Ministerstvo Školství, Mládeže a Tělovýchovy (Ministry of Education, Youth and Sports)
- CZ.02.1.01/0.0/0.0/16_013/0001789, CZ.02.1.01/0.0/0.0/18_046/0015861 Ministerstvo Školství, Mládeže a Tělovýchovy (Ministry of Education, Youth and Sports)
Collapse
Affiliation(s)
- Tereza Turkova
- Hematology Laboratories, BIOCEV; 1st Faculty of Medicine, Charles University, Vestec, Czech Republic
| | - Juraj Kokavec
- Hematology Laboratories, BIOCEV; 1st Faculty of Medicine, Charles University, Vestec, Czech Republic
| | - Tomas Zikmund
- Hematology Laboratories, BIOCEV; 1st Faculty of Medicine, Charles University, Vestec, Czech Republic
| | - Nikol Dibus
- Laboratory of Cancer Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Kristyna Pimkova
- Hematology Laboratories, BIOCEV; 1st Faculty of Medicine, Charles University, Vestec, Czech Republic
| | - Dusan Nemec
- Hematology Laboratories, BIOCEV; 1st Faculty of Medicine, Charles University, Vestec, Czech Republic
| | - Marketa Holeckova
- Hematology Laboratories, BIOCEV; 1st Faculty of Medicine, Charles University, Vestec, Czech Republic
| | - Livia Ruskova
- Hematology Laboratories, BIOCEV; 1st Faculty of Medicine, Charles University, Vestec, Czech Republic
| | - Radislav Sedlacek
- Czech Centre for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, Vestec, Czech Republic
| | - Lukas Cermak
- Laboratory of Cancer Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic.
| | - Tomas Stopka
- Hematology Laboratories, BIOCEV; 1st Faculty of Medicine, Charles University, Vestec, Czech Republic.
| |
Collapse
|
6
|
Yuan L, Yang R, Deng H. Auricular fistula: a review of its clinical manifestations, genetics, and treatments. J Mol Med (Berl) 2023; 101:1041-1058. [PMID: 37458758 DOI: 10.1007/s00109-023-02343-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 06/21/2023] [Accepted: 06/22/2023] [Indexed: 09/07/2023]
Abstract
Auricular fistula is a common congenital auricular malformation, characterized as a small opening in the skin and a subcutaneous cyst. It can be classified in different ways according to positions of pits and directions of fistula tracts. The term preauricular fistula and variant type of preauricular fistula (postauricular fistula) are used. Auricular fistula prevalence varies in countries and populations, and its actual prevalence is presently unknown. The most accepted and widely cited theory of auricular fistula etiopathogenesis is an incorrect or incomplete fusion of six auricular hillocks that are mesenchymal proliferations. Auricular fistula can occur either sporadically or genetically. The pattern in inherited cases is thought to be incomplete autosomal dominant, with variable expressions, reduced penetrance, and inapparent gender differences. Auricular fistula has several forms and is reported as being a component of many syndromes. In the field of genetics, currently, there is no related review to comprehensively summarize the genetic basis of auricular fistula and related disorders. This article provides a comprehensive review of auricular fistula, especially congenital preauricular fistula, which accounts for the majority of auricular fistula, by summarizing the clinical manifestations, histological and embryological development, genetics, examinations, and treatments, as well as syndromes with auricular fistula.
Collapse
Affiliation(s)
- Lamei Yuan
- Health Management Center, the Third Xiangya Hospital, Central South University, Changsha, 410013, China
- Center for Experimental Medicine, the Third Xiangya Hospital, Central South University, Changsha, 410013, China
- Disease Genome Research Center, Central South University, Changsha, 410013, China
- Department of Neurology, the Third Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Ruikang Yang
- Health Management Center, the Third Xiangya Hospital, Central South University, Changsha, 410013, China
- Center for Experimental Medicine, the Third Xiangya Hospital, Central South University, Changsha, 410013, China
- Disease Genome Research Center, Central South University, Changsha, 410013, China
| | - Hao Deng
- Health Management Center, the Third Xiangya Hospital, Central South University, Changsha, 410013, China.
- Center for Experimental Medicine, the Third Xiangya Hospital, Central South University, Changsha, 410013, China.
- Disease Genome Research Center, Central South University, Changsha, 410013, China.
- Department of Neurology, the Third Xiangya Hospital, Central South University, Changsha, 410013, China.
| |
Collapse
|