1
|
Shen Y, Sun Z, Zhao S, Chen F, Shi P, Zhao N, Sun K, Ye C, Lin C, Fu L. Screen-Printed Electrodes as Low-Cost Sensors for Breast Cancer Biomarker Detection. SENSORS (BASEL, SWITZERLAND) 2024; 24:5679. [PMID: 39275589 PMCID: PMC11398123 DOI: 10.3390/s24175679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 08/29/2024] [Accepted: 08/30/2024] [Indexed: 09/16/2024]
Abstract
This review explores the emerging role of screen-printed electrodes (SPEs) in the detection of breast cancer biomarkers. We discuss the fundamental principles and fabrication techniques of SPEs, highlighting their adaptability and cost-effectiveness. The review examines various modification strategies, including nanomaterial incorporation, polymer coatings, and biomolecule immobilization, which enhance sensor performance. We analyze the application of SPEs in detecting protein, genetic, and metabolite biomarkers associated with breast cancer, presenting recent advancements and innovative approaches. The integration of SPEs with microfluidic systems and their potential in wearable devices for continuous monitoring are explored. While emphasizing the promising aspects of SPE-based biosensors, we also address current challenges in sensitivity, specificity, and real-world applicability. The review concludes by discussing future perspectives, including the potential for early screening and therapy monitoring, and the steps required for clinical implementation. This comprehensive overview aims to stimulate further research and development in SPE-based biosensors for improved breast cancer management.
Collapse
Grants
- 52272053, 52075527, 52102055 National Natural Science Foundation of China
- 2022YFA1203100, 2022YFB3706602, 2021YFB3701801 National Key R&D Program of China
- 2021Z120, 2021Z115, 2022Z084, 2022Z191 Ningbo Key Scientific and Technological Project
- 2021A-037-C, 2021A-108-G the Yongjiang Talent Introduction Programme of Ningbo
- JCPYJ-22030 the Youth Fund of Chinese Academy of Sciences
- 2020M681965, 2022M713243 China Postdoctoral Science Foundation
- 2020301 CAS Youth Innovation Promotion Association
- 2021ZDYF020196, 2021ZDYF020198 Science and Technology Major Project of Ningbo
- XDA22020602, ZDKYYQ2020001 the Project of Chinese Academy of Science
- 2019A-18-C Ningbo 3315 Innovation Team
Collapse
Affiliation(s)
- Yin Shen
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Zhuang Sun
- Qianwan Institute, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, China
| | - Shichao Zhao
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Fei Chen
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Peizheng Shi
- Qianwan Institute, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, China
| | - Ningbin Zhao
- Qianwan Institute, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, China
| | - Kaiqiang Sun
- Qianwan Institute, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, China
| | - Chen Ye
- Qianwan Institute, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, China
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, China
- University of Chinese Academy of Sciences, 19 A Yuquan Rd., Shijingshan District, Beijing 100049, China
| | - Chengte Lin
- Qianwan Institute, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, China
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, China
- University of Chinese Academy of Sciences, 19 A Yuquan Rd., Shijingshan District, Beijing 100049, China
| | - Li Fu
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China
| |
Collapse
|
2
|
Zheng R, Wu A, Li J, Tang Z, Zhang J, Zhang M, Wei Z. Progress and Outlook on Electrochemical Sensing of Lung Cancer Biomarkers. Molecules 2024; 29:3156. [PMID: 38999110 PMCID: PMC11243195 DOI: 10.3390/molecules29133156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/08/2024] [Accepted: 06/26/2024] [Indexed: 07/14/2024] Open
Abstract
Electrochemical biosensors have emerged as powerful tools for the ultrasensitive detection of lung cancer biomarkers like carcinoembryonic antigen (CEA), neuron-specific enolase (NSE), and alpha fetoprotein (AFP). This review comprehensively discusses the progress and potential of nanocomposite-based electrochemical biosensors for early lung cancer diagnosis and prognosis. By integrating nanomaterials like graphene, metal nanoparticles, and conducting polymers, these sensors have achieved clinically relevant detection limits in the fg/mL to pg/mL range. We highlight the key role of nanomaterial functionalization in enhancing sensitivity, specificity, and antifouling properties. This review also examines challenges related to reproducibility and clinical translation, emphasizing the need for standardization of fabrication protocols and robust validation studies. With the rapid growth in understanding lung cancer biomarkers and innovations in sensor design, nanocomposite electrochemical biosensors hold immense potential for point-of-care lung cancer screening and personalized therapy guidance. Realizing this goal will require strategic collaboration among material scientists, engineers, and clinicians to address technical and practical hurdles. Overall, this work provides valuable insight for developing next-generation smart diagnostic devices to combat the high mortality of lung cancer.
Collapse
Affiliation(s)
- Rui Zheng
- The Second School of Clinical Medicine, Henan University of Chinese Medicine, Zhengzhou 450053, China; (R.Z.); (A.W.)
- Cancer Research Institute, Henan Integrative Medicine Hospital, Zhengzhou 450003, China; (M.Z.); (Z.W.)
| | - Aochun Wu
- The Second School of Clinical Medicine, Henan University of Chinese Medicine, Zhengzhou 450053, China; (R.Z.); (A.W.)
- Cancer Research Institute, Henan Integrative Medicine Hospital, Zhengzhou 450003, China; (M.Z.); (Z.W.)
| | - Jiyue Li
- The First School of Clinical Medicine, Henan University of Chinese Medicine, Zhengzhou 450099, China; (J.L.); (Z.T.)
| | - Zhengfang Tang
- The First School of Clinical Medicine, Henan University of Chinese Medicine, Zhengzhou 450099, China; (J.L.); (Z.T.)
| | - Junping Zhang
- Cancer Research Institute, Henan Integrative Medicine Hospital, Zhengzhou 450003, China; (M.Z.); (Z.W.)
| | - Mingli Zhang
- Cancer Research Institute, Henan Integrative Medicine Hospital, Zhengzhou 450003, China; (M.Z.); (Z.W.)
| | - Zheng Wei
- Cancer Research Institute, Henan Integrative Medicine Hospital, Zhengzhou 450003, China; (M.Z.); (Z.W.)
| |
Collapse
|
3
|
Smokovski I, Steinle N, Behnke A, Bhaskar SMM, Grech G, Richter K, Niklewski G, Birkenbihl C, Parini P, Andrews RJ, Bauchner H, Golubnitschaja O. Digital biomarkers: 3PM approach revolutionizing chronic disease management - EPMA 2024 position. EPMA J 2024; 15:149-162. [PMID: 38841615 PMCID: PMC11147994 DOI: 10.1007/s13167-024-00364-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 04/23/2024] [Indexed: 06/07/2024]
Abstract
Non-communicable chronic diseases (NCDs) have become a major global health concern. They constitute the leading cause of disabilities, increased morbidity, mortality, and socio-economic disasters worldwide. Medical condition-specific digital biomarker (DB) panels have emerged as valuable tools to manage NCDs. DBs refer to the measurable and quantifiable physiological, behavioral, and environmental parameters collected for an individual through innovative digital health technologies, including wearables, smart devices, and medical sensors. By leveraging digital technologies, healthcare providers can gather real-time data and insights, enabling them to deliver more proactive and tailored interventions to individuals at risk and patients diagnosed with NCDs. Continuous monitoring of relevant health parameters through wearable devices or smartphone applications allows patients and clinicians to track the progression of NCDs in real time. With the introduction of digital biomarker monitoring (DBM), a new quality of primary and secondary healthcare is being offered with promising opportunities for health risk assessment and protection against health-to-disease transitions in vulnerable sub-populations. DBM enables healthcare providers to take the most cost-effective targeted preventive measures, to detect disease developments early, and to introduce personalized interventions. Consequently, they benefit the quality of life (QoL) of affected individuals, healthcare economy, and society at large. DBM is instrumental for the paradigm shift from reactive medical services to 3PM approach promoted by the European Association for Predictive, Preventive, and Personalized Medicine (EPMA) involving 3PM experts from 55 countries worldwide. This position manuscript consolidates multi-professional expertise in the area, demonstrating clinically relevant examples and providing the roadmap for implementing 3PM concepts facilitated through DBs.
Collapse
Affiliation(s)
- Ivica Smokovski
- University Clinic of Endocrinology, Diabetes and Metabolic Disorders, Skopje, North Macedonia
- Faculty of Medical Sciences, University Goce Delcev, Stip, North Macedonia
| | - Nanette Steinle
- Veteran Affairs Capitol Health Care Network, Linthicum, MD USA
- University of Maryland School of Medicine, Baltimore, MD USA
| | - Andrew Behnke
- Endocrinology Section, Carilion Clinic, Roanoke, VA USA
- Virginia Tech Carilion School of Medicine, Roanoke, VA USA
| | - Sonu M. M. Bhaskar
- Department of Neurology, Division of Cerebrovascular Medicine and Neurology, National Cerebral and Cardiovascular Centre (NCVC), Suita, Osaka Japan
- Department of Neurology & Neurophysiology, Liverpool Hospital, Ingham Institute for Applied Medical Research and South Western Sydney Local Health District, Sydney, NSW Australia
- NSW Brain Clot Bank, Global Health Neurology Lab & NSW Health Pathology, Sydney, NSW Australia
| | - Godfrey Grech
- Department of Pathology, Faculty of Medicine & Surgery, University of Malta, Msida, Malta
| | - Kneginja Richter
- Faculty of Medical Sciences, University Goce Delcev, Stip, North Macedonia
- CuraMed Tagesklinik Nürnberg GmbH, Nuremberg, Germany
- Technische Hochschule Nürnberg GSO, Nuremberg, Germany
- University Clinic for Psychiatry and Psychotherapy, Paracelsus Medical University, Nuremberg, Germany
| | - Günter Niklewski
- University Clinic for Psychiatry and Psychotherapy, Paracelsus Medical University, Nuremberg, Germany
| | - Colin Birkenbihl
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA USA
| | - Paolo Parini
- Cardio Metabolic Unit, Department of Medicine Huddinge, and Department of Laboratory Medicine, Karolinska Institute, and Medicine Unit of Endocrinology, Theme Inflammation and Ageing, Karolinska University Hospital, Stockholm, Sweden
| | - Russell J. Andrews
- Nanotechnology & Smart Systems Groups, NASA Ames Research Center, Aerospace Medical Association, Silicon Valley, CA USA
| | - Howard Bauchner
- Boston University Chobanian & Avedisian School of Medicine, Boston, MA USA
| | - Olga Golubnitschaja
- Predictive, Preventive and Personalized (3P) Medicine, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| |
Collapse
|
4
|
Bounoua N, Cetinkaya A, Piskin E, Kaya SI, Ozkan SA. The sensor applications for prostate and lung cancer biomarkers in terms of electrochemical analysis. Anal Bioanal Chem 2024; 416:2277-2300. [PMID: 38279011 DOI: 10.1007/s00216-024-05134-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 12/24/2023] [Accepted: 01/09/2024] [Indexed: 01/28/2024]
Abstract
Prostate and lung cancers are the most common types of cancer and affect a large part of the population around the world, causing deaths. Therefore, the rapid identification of cancer can profoundly impact reducing cancer-related death rates and protecting human lives. Significant resources have been dedicated to investigating new methods for early disease detection. Cancer biomarkers encompass various biochemical entities, including nucleic acids, proteins, sugars, small metabolites, cytogenetic and cytokinetic parameters, and whole tumor cells in bodily fluids. These tools can be utilized for various purposes, such as risk assessment, diagnosis, prognosis, treatment efficacy, toxicity evaluation, and predicting a return. Due to these versatile and critical purposes, there are widespread studies on the development of new, sensitive, and selective approaches for the determination of cancer biomarkers. This review illustrates the significant lung and prostate cancer biomarkers and their determination utilizing electrochemical sensors, which have the advantage of improved sensitivity, low cost, and simple analysis. Additionally, approaches such as improving sensitivity with nanomaterials and ensuring selectivity with MIPs are used to increase the performance of the sensor. This review aims to overview the most recent electrochemical biosensor applications for determining vital biomarkers of prostate and lung cancers in terms of nanobiosensors and molecularly imprinted polymer (MIP)-based biosensors.
Collapse
Affiliation(s)
- Nadia Bounoua
- Department of Exact Sciences, Laboratory of the Innovation Sponsorship and the Emerging Institution for Graduates of Higher Education of Sustainable Development and Dealing with Emerging Conditions, Normal Higher School of Bechar, Bechar, Algeria
- Laboratory of Chemical and Environmental Science (LCSE), 8000, Bechar, Algeria
| | - Ahmet Cetinkaya
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, Ankara, Turkey
- Graduate School of Health Sciences, Ankara University, Ankara, Turkey
| | - Ensar Piskin
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, Ankara, Turkey
- Graduate School of Health Sciences, Ankara University, Ankara, Turkey
| | - S Irem Kaya
- Department of Analytical Chemistry, Gulhane Faculty of Pharmacy, University of Health Sciences, Ankara, Turkey.
| | - Sibel A Ozkan
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, Ankara, Turkey.
| |
Collapse
|
5
|
Liu CW, Tsutsui H. Sample-to-answer sensing technologies for nucleic acid preparation and detection in the field. SLAS Technol 2023; 28:302-323. [PMID: 37302751 DOI: 10.1016/j.slast.2023.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/16/2023] [Accepted: 06/06/2023] [Indexed: 06/13/2023]
Abstract
Efficient sample preparation and accurate disease diagnosis under field conditions are of great importance for the early intervention of diseases in humans, animals, and plants. However, in-field preparation of high-quality nucleic acids from various specimens for downstream analyses, such as amplification and sequencing, is challenging. Thus, developing and adapting sample lysis and nucleic acid extraction protocols suitable for portable formats have drawn significant attention. Similarly, various nucleic acid amplification techniques and detection methods have also been explored. Combining these functions in an integrated platform has resulted in emergent sample-to-answer sensing systems that allow effective disease detection and analyses outside a laboratory. Such devices have a vast potential to improve healthcare in resource-limited settings, low-cost and distributed surveillance of diseases in food and agriculture industries, environmental monitoring, and defense against biological warfare and terrorism. This paper reviews recent advances in portable sample preparation technologies and facile detection methods that have been / or could be adopted into novel sample-to-answer devices. In addition, recent developments and challenges of commercial kits and devices targeting on-site diagnosis of various plant diseases are discussed.
Collapse
Affiliation(s)
- Chia-Wei Liu
- Department of Mechanical Engineering, University of California, Riverside, CA 92521, USA
| | - Hideaki Tsutsui
- Department of Mechanical Engineering, University of California, Riverside, CA 92521, USA; Department of Bioengineering, University of California, Riverside, CA 92521, USA.
| |
Collapse
|
6
|
Lin LP, Tan MTT. Biosensors for the detection of lung cancer biomarkers: A review on biomarkers, transducing techniques and recent graphene-based implementations. Biosens Bioelectron 2023; 237:115492. [PMID: 37421797 DOI: 10.1016/j.bios.2023.115492] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 06/07/2023] [Accepted: 06/19/2023] [Indexed: 07/10/2023]
Abstract
Lung cancer remains the leading cause of cancer-related death. In addition to chest X-rays and computerised tomography, the detection of cancer biomarkers serves as an emerging diagnostic tool for lung cancer. This review explores biomarkers including the rat sarcoma gene, the tumour protein 53 gene, the epidermal growth factor receptor, the neuron-specific enolase, the cytokeratin-19 fragment 21-1 and carcinoembryonic antigen as potential indicators of lung cancer. Biosensors, which utilise various transduction techniques, present a promising solution for the detection of lung cancer biomarkers. Therefore, this review also explores the working principles and recent implementations of transducers in the detection of lung cancer biomarkers. The transducing techniques explored include optical techniques, electrochemical techniques and mass-based techniques for detecting biomarkers and cancer-related volatile organic compounds. Graphene has outstanding properties in terms of charge transfer, surface area, thermal conductivity and optical characteristics, on top of allowing easy incorporation of other nanomaterials. Exploiting the collective merits of both graphene and biosensor is an emerging trend, as evidenced by the growing number of studies on graphene-based biosensors for the detection of lung cancer biomarkers. This work provides a comprehensive review of these studies, including information on modification schemes, nanomaterials, amplification strategies, real sample applications, and sensor performance. The paper concludes with a discussion of the challenges and future outlook of lung cancer biosensors, including scalable graphene synthesis, multi-biomarker detection, portability, miniaturisation, financial support, and commercialisation.
Collapse
Affiliation(s)
- Lih Poh Lin
- Faculty of Engineering and Technology, Tunku Abdul Rahman University of Management and Technology, 53300, Kuala Lumpur, Malaysia; Centre for Multimodal Signal Processing, Tunku Abdul Rahman University of Management and Technology, 53300, Kuala Lumpur, Malaysia
| | - Michelle Tien Tien Tan
- Faculty of Science and Engineering, University of Nottingham Malaysia, 43500, Semenyih, Malaysia.
| |
Collapse
|
7
|
Ouyang R, Zhang W, Liu J, Li Y, Zhang J, Jiang L, Zhao Y, Wang H, Dai C, Tamayo AIB, Liu B, Miao Y. Pt Nanodot Inlaid Mesoporous NaBiOF Nanoblackberry for Remarkable Signal Amplification Toward Biomarker Detection. Mikrochim Acta 2023; 190:214. [PMID: 37171612 DOI: 10.1007/s00604-023-05789-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 04/09/2023] [Indexed: 05/13/2023]
Abstract
A new ultrasensitive sandwich-type electrochemical immunosensor has been successfully constructed to quantitatively detect carcinoembryonic antigen (CEA) using blackberry-like mesoporous bismuth-based nanospheres NaBiOF (NBOF NSs) inlaid with Pt nanodots (NDs) (BiPt NSs) as the antibody capture and signal-amplifying probe. The growth of Pt NDs inside the holes of NBOF NSs formed the nanozyme inlay outside NBOF NSs, greatly increasing the specific surface area and exposure of the catalytic active sites by minimizing the particle size of the Pt to nanodot scale. Such a blackberry-shaped heterojunction structure of BiPt NSs was well-suited to antibody capture and improved the catalytic performance of BiPt NSs in reducing H2O2, amplifying the signal, and yielding highly sensitive detection of CEA. The use of Au nanoparticle-modified multi-walled carbon nanotubes (Au@MWCNTs) as the electrode substrates significantly enhanced the electron transfer behavior over the electrode surface, further increasing the conductivity and sensitivity of the immunosensor. Remarkably, good compatibility with human body fluid was achieved using the newly developed BiPt-based immunosensor resulting from the favorable biocompatibility and stability of both BiPt NSs and Au@MWCNTs. Benefiting from the double signal amplification strategy and the high biocompatibility, the immunosensor responded linearly to CEA in a wide range from 50 fg/mL to 100 ng/ml with an extremely low detection limit of 3.52 fg/mL (S/N = 3). The excellent detection properties of this new immunosensor were evidenced by the satisfactory selectivity, reproducibility, and stability obtained, as well as the reliable and precise determination of CEA in actual human blood samples. This work provides a new strategy for the early clinical diagnosis of cancer. Novel blackberry-like mesoporous NaBiOF nanospheres with Pt nanodot inlay were successfully usedto construct a sandwich-type electrochemical immunosensor for the ultra-sensitive detection ofcarcinoembryonic antigen in human blood plasma based on a remarkable signal amplification strategy.
Collapse
Affiliation(s)
- Ruizhuo Ouyang
- Institute of Bismuth and Rhenium Science, University of Shanghai for Science and Technology, Shanghai, 200093, China.
- USST-UH International Joint Laboatory for Tumor Diagnosis and Energy Treatment, University of Shanghai for Science and Technology, Shanghai, 200093, China.
| | - Weilun Zhang
- Institute of Bismuth and Rhenium Science, University of Shanghai for Science and Technology, Shanghai, 200093, China
- USST-UH International Joint Laboatory for Tumor Diagnosis and Energy Treatment, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Jinyao Liu
- Institute of Bismuth and Rhenium Science, University of Shanghai for Science and Technology, Shanghai, 200093, China
- USST-UH International Joint Laboatory for Tumor Diagnosis and Energy Treatment, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Yuhao Li
- Institute of Bismuth and Rhenium Science, University of Shanghai for Science and Technology, Shanghai, 200093, China
- USST-UH International Joint Laboatory for Tumor Diagnosis and Energy Treatment, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Jing Zhang
- Institute of Bismuth and Rhenium Science, University of Shanghai for Science and Technology, Shanghai, 200093, China
- USST-UH International Joint Laboatory for Tumor Diagnosis and Energy Treatment, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Lan Jiang
- Institute of Bismuth and Rhenium Science, University of Shanghai for Science and Technology, Shanghai, 200093, China
- USST-UH International Joint Laboatory for Tumor Diagnosis and Energy Treatment, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Yuefeng Zhao
- Institute of Bismuth and Rhenium Science, University of Shanghai for Science and Technology, Shanghai, 200093, China
- USST-UH International Joint Laboatory for Tumor Diagnosis and Energy Treatment, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Hui Wang
- Institute of Bismuth and Rhenium Science, University of Shanghai for Science and Technology, Shanghai, 200093, China
- USST-UH International Joint Laboatory for Tumor Diagnosis and Energy Treatment, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Chenyu Dai
- Institute of Bismuth and Rhenium Science, University of Shanghai for Science and Technology, Shanghai, 200093, China
- USST-UH International Joint Laboatory for Tumor Diagnosis and Energy Treatment, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Abel Ibrahim Balbín Tamayo
- USST-UH International Joint Laboatory for Tumor Diagnosis and Energy Treatment, University of Shanghai for Science and Technology, Shanghai, 200093, China
- Faculty of Chemistry, University of Havana, 10400, Havana, Cuba
| | - Baolin Liu
- USST-UH International Joint Laboatory for Tumor Diagnosis and Energy Treatment, University of Shanghai for Science and Technology, Shanghai, 200093, China.
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China.
| | - Yuqing Miao
- Institute of Bismuth and Rhenium Science, University of Shanghai for Science and Technology, Shanghai, 200093, China.
- USST-UH International Joint Laboatory for Tumor Diagnosis and Energy Treatment, University of Shanghai for Science and Technology, Shanghai, 200093, China.
| |
Collapse
|
8
|
Sanko V, Kuralay F. Label-Free Electrochemical Biosensor Platforms for Cancer Diagnosis: Recent Achievements and Challenges. BIOSENSORS 2023; 13:bios13030333. [PMID: 36979545 PMCID: PMC10046346 DOI: 10.3390/bios13030333] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 02/17/2023] [Accepted: 02/23/2023] [Indexed: 05/31/2023]
Abstract
With its fatal effects, cancer is still one of the most important diseases of today's world. The underlying fact behind this scenario is most probably due to its late diagnosis. That is why the necessity for the detection of different cancer types is obvious. Cancer studies including cancer diagnosis and therapy have been one of the most laborious tasks. Since its early detection significantly affects the following therapy steps, cancer diagnosis is very important. Despite researchers' best efforts, the accurate and rapid diagnosis of cancer is still challenging and difficult to investigate. It is known that electrochemical techniques have been successfully adapted into the cancer diagnosis field. Electrochemical sensor platforms that are brought together with the excellent selectivity of biosensing elements, such as nucleic acids, aptamers or antibodies, have put forth very successful outputs. One of the remarkable achievements of these biomolecule-attached sensors is their lack of need for additional labeling steps, which bring extra burdens such as interference effects or demanding modification protocols. In this review, we aim to outline label-free cancer diagnosis platforms that use electrochemical methods to acquire signals. The classification of the sensing platforms is generally presented according to their recognition element, and the most recent achievements by using these attractive sensing substrates are described in detail. In addition, the current challenges are discussed.
Collapse
Affiliation(s)
- Vildan Sanko
- Department of Chemistry, Gebze Technical University, 41400 Kocaeli, Turkey
| | - Filiz Kuralay
- Department of Chemistry, Faculty of Science, Hacettepe University, 06800 Ankara, Turkey
| |
Collapse
|
9
|
Futane A, Narayanamurthy V, Jadhav P, Srinivasan A. Aptamer-based rapid diagnosis for point-of-care application. MICROFLUIDICS AND NANOFLUIDICS 2023; 27:15. [PMID: 36688097 PMCID: PMC9847464 DOI: 10.1007/s10404-022-02622-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 12/31/2022] [Indexed: 05/31/2023]
Abstract
Aptasensors have attracted considerable interest and widespread application in point-of-care testing worldwide. One of the biggest challenges of a point-of-care (POC) is the reduction of treatment time compared to central facilities that diagnose and monitor the applications. Over the past decades, biosensors have been introduced that offer more reliable, cost-effective, and accurate detection methods. Aptamer-based biosensors have unprecedented advantages over biosensors that use natural receptors such as antibodies and enzymes. In the current epidemic, point-of-care testing (POCT) is advantageous because it is easy to use, more accessible, faster to detect, and has high accuracy and sensitivity, reducing the burden of testing on healthcare systems. POCT is beneficial for daily epidemic control as well as early detection and treatment. This review provides detailed information on the various design strategies and virus detection methods using aptamer-based sensors. In addition, we discussed the importance of different aptamers and their detection principles. Aptasensors with higher sensitivity, specificity, and flexibility are critically discussed to establish simple, cost-effective, and rapid detection methods. POC-based aptasensors' diagnostic applications are classified and summarised based on infectious and infectious diseases. Finally, the design factors to be considered are outlined to meet the future of rapid POC-based sensors.
Collapse
Affiliation(s)
- Abhishek Futane
- Fakulti Kejuruteraan Elektronik Dan Kejuruteraan Komputer, Universiti Teknikal Malaysia Melaka, Hang Tuah Jaya, Durian Tunggal, 76100 Melaka, Malaysia
| | - Vigneswaran Narayanamurthy
- Advance Sensors and Embedded Systems (ASECs), Centre for Telecommunication Research and Innovation, Fakulti Teknologi Kejuruteraan Elektrik Dan Elektronik, Universiti Teknikal Malaysia Melaka, Hang Tuah Jaya, Durian Tunggal, 76100 Melaka, Malaysia
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, India
| | - Pramod Jadhav
- Faculty of Civil Engineering Technology, Universiti Malaysia Pahang (UMP) Lebuhraya Tun Razak, Gambang, 26300 Kuantan, Pahang Malaysia
- InnoFuTech, No 42/12, 7Th Street, Vallalar Nagar, Chennai, Tamil Nadu 600072 India
| | - Arthi Srinivasan
- Faculty of Chemical and Process Engineering Technology, University Malaysia Pahang (UMP), Lebuhraya Tun Razak, Gambang, 26300 Kunatan, Pahang Malaysia
| |
Collapse
|
10
|
Chan SY, Lee D, Meivita MP, Li L, Tan YS, Bajalovic N, Loke DK. Ultrasensitive Detection of MCF-7 Cells with a Carbon Nanotube-Based Optoelectronic-Pulse Sensor Framework. ACS OMEGA 2022; 7:18459-18470. [PMID: 35694527 PMCID: PMC9178712 DOI: 10.1021/acsomega.2c00842] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 04/07/2022] [Indexed: 06/15/2023]
Abstract
Biosensors are of vital significance for healthcare by supporting the management of infectious diseases for preventing pandemics and the diagnosis of life-threatening conditions such as cancer. However, the advancement of the field can be limited by low sensing accuracy. Here, we altered the bioelectrical signatures of the cells using carbon nanotubes (CNTs) via structural loosening effects. Using an alternating current (AC) pulse under light irradiation, we developed a photo-assisted AC pulse sensor based on CNTs to differentiate between healthy breast epithelial cells (MCF-10A) and luminal breast cancer cells (MCF-7) within a heterogeneous cell population. We observed a previously undemonstrated increase in current contrast for MCF-7 cells with CNTs compared to MCF-10A cells with CNTs under light exposure. Moreover, we obtained a detection limit of ∼1.5 × 103 cells below a baseline of ∼1 × 104 cells for existing electrical-based sensors for an adherent, heterogeneous cell population. All-atom molecular dynamics (MD) simulations reveal that interactions between the embedded CNT and cancer cell membranes result in a less rigid lipid bilayer structure, which can facilitate CNT translocation for enhancing current. This as-yet unconsidered cancer cell-specific method based on the unique optoelectrical properties of CNTs represents a strategy for unlocking the detection of a small population of cancer cells and provides a promising route for the early diagnosis, monitoring, and staging of cancer.
Collapse
Affiliation(s)
- Sophia
S. Y. Chan
- Department
of Science, Mathematics and Technology, Singapore University of Technology and Design, Singapore487372, Singapore
| | - Denise Lee
- Department
of Science, Mathematics and Technology, Singapore University of Technology and Design, Singapore487372, Singapore
| | - Maria Prisca Meivita
- Department
of Science, Mathematics and Technology, Singapore University of Technology and Design, Singapore487372, Singapore
| | - Lunna Li
- Department
of Science, Mathematics and Technology, Singapore University of Technology and Design, Singapore487372, Singapore
- Thomas
Young Centre and Department of Chemical Engineering, University College London, LondonWC1E 6BT, U.K.
| | - Yaw Sing Tan
- Bioinformatics
Institute, Agency for Science, Technology
and Research (A*STAR), Singapore138671, Singapore
| | - Natasa Bajalovic
- Department
of Science, Mathematics and Technology, Singapore University of Technology and Design, Singapore487372, Singapore
| | - Desmond K. Loke
- Department
of Science, Mathematics and Technology, Singapore University of Technology and Design, Singapore487372, Singapore
- Office
of Innovation, Changi General Hospital, Singapore529889, Singapore
| |
Collapse
|
11
|
Walters F, Burwell G, Mitchell JJ, Ali MM, Daghigh Ahmadi E, Mostert AB, Jenkins CA, Rozhko S, Kazakova O, Guy OJ. A Rapid Graphene Sensor Platform for the Detection of Viral Proteins in Low Volume Samples. ADVANCED NANOBIOMED RESEARCH 2022. [DOI: 10.1002/anbr.202100140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Affiliation(s)
- Ffion Walters
- Centre for NanoHealth, School of Engineering and Applied Sciences Swansea University Swansea SA2 8PP UK
| | - Gregory Burwell
- Department of Physics, School of Biosciences, Geography and Physics Swansea University Swansea SA2 8PP UK
| | - Jacob John Mitchell
- Centre for NanoHealth, School of Engineering and Applied Sciences Swansea University Swansea SA2 8PP UK
- SPTS Technologies Ltd, R&D and Product department Ringland Way Newport NP18 2TA UK
| | - Muhammad Munem Ali
- Centre for NanoHealth, School of Engineering and Applied Sciences Swansea University Swansea SA2 8PP UK
| | - Ehsaneh Daghigh Ahmadi
- Centre for NanoHealth, School of Engineering and Applied Sciences Swansea University Swansea SA2 8PP UK
| | - A. Bernardus Mostert
- Department of Chemistry, School of Engineering and Applied Sciences Swansea University Swansea SA2 8PP UK
| | | | - Sergiy Rozhko
- National Physical Laboratory Quantum Metrology Institute Teddington Middlesex TW11 0LW UK
| | - Olga Kazakova
- National Physical Laboratory Quantum Metrology Institute Teddington Middlesex TW11 0LW UK
| | - Owen J. Guy
- Centre for NanoHealth, School of Engineering and Applied Sciences Swansea University Swansea SA2 8PP UK
- Department of Chemistry, School of Engineering and Applied Sciences Swansea University Swansea SA2 8PP UK
| |
Collapse
|
12
|
TBISTAT: An open-source, wireless portable, electrochemical impedance spectroscopy capable potentiostat for the point-of-care detection of S100B in plasma samples. PLoS One 2022; 17:e0263738. [PMID: 35130295 PMCID: PMC8820642 DOI: 10.1371/journal.pone.0263738] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 01/25/2022] [Indexed: 12/25/2022] Open
Abstract
Point-of-Care (POC) testing for biomarker detection demands techniques that are easy to use, readily available, low-cost, and with rapid response times. This paper describes the development of a fully open-source, modular, wireless, battery-powered, smartphone-controlled, low-cost potentiostat capable of conducting electrochemical impedance spectroscopy for the electrochemical detection of the S100B protein captured in an ANTI-S100B functionalized thin-film gold interdigitated electrode platform to support traumatic brain injury diagnosis and treatment. EIS results from the developed potentiostat were validated with a commercial benchtop potentiostat by comparing impedance magnitude and phase values along the EIS frequency range. In addition, an experimental design was performed for detecting S100B in spiked human plasma samples with S100B concentrations of clinical utility, and a calibration curve was found for quantifying S100B detection. No statistically significant differences were found between EIS results from the developed potentiostat and the commercial potentiostat. Statistically significant differences in the changes in charge transfer resistance signal between each tested S100B concentration (p < 0.05) were found, with a limit of detection of 35.73 pg/mL. The modularity of the proposed potentiostat allows easier component changes according to the application demands in power, frequency excitation ranges, wireless communication protocol, signal amplification and transduction, precision, and sampling frequency of ADC, among others, when compared to state-of-the-art open-source EIS potentiostats. In addition, the use of minimal, easy acquirable open-source hardware and software, high-level filtering, accurate ADC, Fast Fourier Transform with low spectral leakage, wireless communication, and the simple user interface provides a framework for facilitating EIS analysis and developing new affordable instrumentation for POC biosensors integrated systems.
Collapse
|
13
|
Sen RK, Prabhakar P, Bisht N, Patel M, Mishra S, Yadav AK, Venu DV, Gupta GK, Solanki PR, Ramakrishnan S, Mondal D, Srivastava AK, Dwivedi N, Dhand C. 2D Materials-Based Aptamer Biosensors: Present Status and Way Forward. Curr Med Chem 2021; 29:5815-5849. [PMID: 34961455 DOI: 10.2174/0929867328666211213115723] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 10/13/2021] [Accepted: 10/26/2021] [Indexed: 11/22/2022]
Abstract
Current advances in constructing functional nanomaterials and elegantly designed nanostructures have opened up new possibilities for the fabrication of viable field biosensors. Two-dimensional materials (2DMs) have fascinated much attention due to their chemical, optical, physicochemical, and electronic properties. They are ultrathin nanomaterials with unique properties such as high surface-to-volume ratio, surface charge, shape, high anisotropy, and adjustable chemical functionality. 2DMs such as graphene-based 2D materials, Silicate clays, layered double hydroxides (LDHs), MXenes, transition metal dichalcogenides (TMDs), and transition metal oxides (TMOs) offer intensified physicochemical and biological functionality and have proven to be very promising candidates for biological applications and technologies. 2DMs have a multivalent structure that can easily bind to single-stranded DNA/RNA (aptamers) through covalent, non-covalent, hydrogen bond, and π-stacking interactions, whereas aptamers have a small size, excellent chemical stability, and low immunogenicity with high affinity and specificity. This review discussed the potential of various 2D material-based aptasensor for diagnostic applications, e.g., protein detection, environmental monitoring, pathogens detection, etc.
Collapse
Affiliation(s)
- Raj Kumar Sen
- CSIR-Advanced Materials and Processes Research Institute, Hoshangabad Road, Bhopal. India
| | - Priyanka Prabhakar
- CSIR-Advanced Materials and Processes Research Institute, Hoshangabad Road, Bhopal. India
| | - Neha Bisht
- CSIR-Advanced Materials and Processes Research Institute, Hoshangabad Road, Bhopal. India
| | - Monika Patel
- CSIR-Advanced Materials and Processes Research Institute, Hoshangabad Road, Bhopal. India
| | - Shruti Mishra
- CSIR-Advanced Materials and Processes Research Institute, Hoshangabad Road, Bhopal. India
| | - Amit Kumar Yadav
- Special Centre for Nanoscience, Jawaharlal Nehru University, New Delhi 110067. India
| | - Divya Vadakkumana Venu
- CSIR-Advanced Materials and Processes Research Institute, Hoshangabad Road, Bhopal. India
| | - Gaurav Kumar Gupta
- CSIR-Advanced Materials and Processes Research Institute, Hoshangabad Road, Bhopal. India
| | - Pratima R Solanki
- Special Centre for Nanoscience, Jawaharlal Nehru University, New Delhi 110067. India
| | - Seeram Ramakrishnan
- Center for Nanofibers and Nanotechnology, Department of Mechanical Engineering, Faculty of Engineering, 2 Engineering Drive 3, National University of Singapore, Singapore, 117576. Singapore
| | - Dehipada Mondal
- CSIR-Advanced Materials and Processes Research Institute, Hoshangabad Road, Bhopal. India
| | | | - Neeraj Dwivedi
- CSIR-Advanced Materials and Processes Research Institute, Hoshangabad Road, Bhopal. India
| | - Chetna Dhand
- CSIR-Advanced Materials and Processes Research Institute, Hoshangabad Road, Bhopal. India
| |
Collapse
|
14
|
Jiang J, Xia J, Zang Y, Diao G. Electrochemistry/Photoelectrochemistry-Based Immunosensing and Aptasensing of Carcinoembryonic Antigen. SENSORS (BASEL, SWITZERLAND) 2021; 21:7742. [PMID: 34833818 PMCID: PMC8624776 DOI: 10.3390/s21227742] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/14/2021] [Accepted: 11/17/2021] [Indexed: 11/19/2022]
Abstract
Recently, electrochemistry- and photoelectrochemistry-based biosensors have been regarded as powerful tools for trace monitoring of carcinoembryonic antigen (CEA) due to the fact of their intrinsic advantages (e.g., high sensitivity, excellent selectivity, small background, and low cost), which play an important role in early cancer screening and diagnosis and benefit people's increasing demands for medical and health services. Thus, this mini-review will introduce the current trends in electrochemical and photoelectrochemical biosensors for CEA assay and classify them into two main categories according to the interactions between target and biorecognition elements: immunosensors and aptasensors. Some recent illustrative examples are summarized for interested readers, accompanied by simple descriptions of the related signaling strategies, advanced materials, and detection modes. Finally, the development prospects and challenges of future electrochemical and photoelectrochemical biosensors are considered.
Collapse
Affiliation(s)
| | | | - Yang Zang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China; (J.J.); (J.X.); (G.D.)
| | | |
Collapse
|
15
|
Cao L, Tan Y, Deng W, Xie Q. MWCNTs-CoP hybrids for dual-signal electrochemical immunosensing of carcinoembryonic antigen based on overall water splitting. Talanta 2021; 233:122521. [PMID: 34215136 DOI: 10.1016/j.talanta.2021.122521] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 05/09/2021] [Accepted: 05/11/2021] [Indexed: 11/16/2022]
Abstract
Great efforts have been made to search for highly active catalysts toward electrochemical water splitting, but double-signal immunosensors have not been reported based on bifunctional water splitting electrocatalysts. We report here a dual-signal electrochemical immunosensor for detecting carcinoembryonic antigen (CEA) using multi-wall carbon nanotubes (MWCNTs)-cobalt phosphide (CoP) as an electrocatalytic label. The preparation of MWCNTs-CoP involves the growth of Co3O4 nanoparticles on MWCNTs and low-temperature phosphatization of Co3O4 nanoparticles. The MWCNTs-CoP catalyst shows excellent electrocatalytic activities in a neutral medium toward both hydrogen evolution reaction (HER) and oxygen evolution reaction (OER), enabling MWCNTs-CoP as the electrocatalytic label for sensitive immunosensing. The linear range of the sandwich-type immunosensor for detecting CEA based on the HER signal is from 10-4-100 ng mL-1, whereas a linear range for detecting CEA based on the OER signal is achieved from 10-4 to 10 ng mL-1. The detection limits for detecting CEA using HER and OER signals are 10 and 12 fg mL-1, respectively. This work can provide a new double-signal immunosensing platform based on a bifunctional water splitting electrocatalyst.
Collapse
Affiliation(s)
- Lin Cao
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, China
| | - Yueming Tan
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, China.
| | - Wenfang Deng
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, China
| | - Qingji Xie
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, China
| |
Collapse
|