1
|
Jo HE, Khom S, Lee S, Cho SH, Park SY, You GR, Kim H, Kim NI, Jeong JH, Yoon JH, Yun M. Stage dependent microbial dynamics in hepatocellular carcinoma and adjacent normal liver tissues. Sci Rep 2024; 14:26092. [PMID: 39478014 PMCID: PMC11525880 DOI: 10.1038/s41598-024-77260-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 10/21/2024] [Indexed: 11/02/2024] Open
Abstract
The interactive pathway of the gut-liver axis underscores the significance of microbiome modulation in the pathogenesis and progression of various liver diseases, including hepatocellular carcinoma (HCC). This study aims to investigate the disparities in the composition and functionality of the hepatic microbiota between tumor tissues and adjacent normal liver tissues, and their implications in the etiology of HCC. We conducted a comparative analysis of the hepatic microbiome between adjacent normal liver tissues and tumor tissues from HCC patients. Samples were categorized according to the modified Union for International Cancer Control (mUICC) staging system into Non-tumor, mUICC stage I, mUICC stage II, and mUICC stage III groups. Microbial richness and community composition were analyzed, and phylogenetic profiles were examined to identify significantly altered microbial taxa among the groups. Predicted metabolic pathways were analyzed using PICRUSt2. Our analysis did not reveal significant differences in microbial richness and community composition with the development of HCC. However, phylogenetic profiling identified significantly altered microbial taxa among the groups. Sphingobium, known for degrading polychlorinated biphenyls (PCBs), exhibited a significantly negative correlation with clinical indices in HCC patients. Conversely, Sphingomonas, a gut bacterium associated with various liver diseases, showed a positive correlation. Predicted metabolic pathways suggested a correlation between atrazine degradation and valine, leucine, and isoleucine biosynthesis with mUICC stage and tumor size. Our results underscore the critical link between hepatic microbial composition and function and the HCC tumor stage, suggesting a potentially pivotal role in the development of HCC. These findings highlight the importance of targeting the hepatic microbiome for therapeutic strategies in HCC.
Collapse
Affiliation(s)
- Hee Eun Jo
- Technology Innovation Research Division, World Institute of Kimchi, Gwangju, 61755, Republic of Korea
- Department of Biomedical Sciences and Department of Microbiology, Chonnam National University Medical School, Gwangju, 61469, Republic of Korea
| | - Sophallika Khom
- Department of Gastroenterology and Hepatology, Chonnam National University Hospital and Medical School, Gwangju, 61469, Republic of Korea
| | - Sumi Lee
- Department of Gastroenterology and Hepatology, Chonnam National University Hospital and Medical School, Gwangju, 61469, Republic of Korea
| | - Su Hyeon Cho
- Department of Gastroenterology and Hepatology, Chonnam National University Hospital and Medical School, Gwangju, 61469, Republic of Korea
| | - Shin Young Park
- Department of Gastroenterology and Hepatology, Chonnam National University Hospital and Medical School, Gwangju, 61469, Republic of Korea
| | - Ga Ram You
- Department of Gastroenterology and Hepatology, Hwasun Chonnam National University Hospital and Medical School, Jeonnam, 58128, Republic of Korea
| | - Hyosin Kim
- Department of Surgery, Chonnam National University Hospital and Medical School, Gwangju, 61469, Republic of Korea
| | - Nah Ihm Kim
- Deparment of Pathology, Chonnam National University Hospital and Medical School, Gwangju, 61469, Republic of Korea
| | - Jae-Ho Jeong
- Department of Biomedical Sciences and Department of Microbiology, Chonnam National University Medical School, Gwangju, 61469, Republic of Korea.
| | - Jae Hyun Yoon
- Department of Gastroenterology and Hepatology, Chonnam National University Hospital and Medical School, Gwangju, 61469, Republic of Korea.
| | - Misun Yun
- Technology Innovation Research Division, World Institute of Kimchi, Gwangju, 61755, Republic of Korea.
| |
Collapse
|
2
|
Li P, Wang Y, Liu Q, Yan Y, Zhao Z, Zhang S, Jia C, An J, Xu C, Zhang X, Jing T, Guo H, He M. Associations between polychlorinated biphenyls and cancer risk among type 2 diabetes: The modifying effects of lifestyle. CHEMOSPHERE 2024; 366:143442. [PMID: 39362376 DOI: 10.1016/j.chemosphere.2024.143442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/15/2024] [Accepted: 09/30/2024] [Indexed: 10/05/2024]
Abstract
A growing percentage of diabetes-related deaths has been attributed to cancer, with environmental factors playing important contributions. Thus, we studied the potential relationship between endocrine disruptors polychlorinated biphenyls (PCBs) and cancer risk in diabetes. We aimed to evaluate the association between serum seven indicator-PCB (PCB-28/52/101/118/138/153/180) levels and incident cancer, and further explore the possible modifying role of lifestyle. A total of 2806 type 2 diabetes mellitus (T2DM) cases were included from the Dongfeng-Tongji cohort at the baseline in 2008 and tracked until December 2018, and 320 incident cancers were identified during about 10-year follow-up. Cox proportional hazards models and competing risk regression models were used to reveal associations of baseline concentrations of PCBs with total cancer and specific cancer, respectively. Lifestyle score was determined by body mass index, waist circumference, physical activity, smoking, alcohol drinking, and diet. Each interquartile range (IQR) increment of non-dioxin-like PCBs (NDL-PCBs) generated an 8%-30% increase in cancer incidence. Individuals in the highest quartile for PCB-52, PCB-101, PCB-138, and lowly chlorinated PCBs had 1.44- to 1.68-fold higher cancer risk compared to those in the lowest quartile. Restricted cubic spline analyses and the quantile g-computation model showed similar results. Significant interactions were found between PCBs and fasting blood glucose or simplified insulin resistance assessment indicators. NDL-PCBs were positively and significantly associated with gastrointestinal cancer and respiratory cancer, especially with liver cancer, colorectal cancer, and lung cancer. Higher PCBs showed a significant increase in total cancer risk among participants with an unhealthy lifestyle, however, no associations were observed in those with a relatively healthy lifestyle (Pinteraction < 0.05). Our findings indicated an increased cancer risk associated with NDL-PCBs, highlighted the role of a healthy lifestyle in potentially reducing adverse impact, and provided preliminary data for environmental and public health interventions to alleviate the risk of cancer among diabetes.
Collapse
Affiliation(s)
- Peiwen Li
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yu Wang
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Qianying Liu
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yan Yan
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zhuoya Zhao
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Shiyang Zhang
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Chengyong Jia
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jun An
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Cheng Xu
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xin Zhang
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Tao Jing
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Huan Guo
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Meian He
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
3
|
Demelash Abera B, Alefe Adimas M. Health benefits and health risks of contaminated fish consumption: Current research outputs, research approaches, and perspectives. Heliyon 2024; 10:e33905. [PMID: 39050454 PMCID: PMC11268356 DOI: 10.1016/j.heliyon.2024.e33905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 06/28/2024] [Accepted: 06/28/2024] [Indexed: 07/27/2024] Open
Abstract
Background Fish contains high-quality omega-3 fatty acids, protein, vitamins, and minerals and due to this it is termed as an essential component of a balanced diet. But there have been concerns raised about the risks of consuming fish that is contaminated with toxins such as methylmercury, polychlorinated biphenyls (PCBs), dioxins, pesticides, and plastic waste. Consumption of contaminated fish containing these pollutants is raising global mortality and morbidity rates. Scope and approaches The review examines the current research outputs on the health benefits and potential health risks of fish consumption. The review also discusses various approaches to mitigating the health problems caused by fish consumption, highlights the roles of balancing the risks and benefits when consuming fish. Key findings and conclusion Different findings indicated that contaminants cause cancer, kidney failure, adverse neurological effect, cardiovascular diseases, and so on to vulnerable groups such as pregnant, child breast-feeding and children. In conclusion, there is a need to get more tangible evidence about the advantages and disadvantages of fish consumption to safeguard the wellbeing of the society.
Collapse
|
4
|
Khalid A, Abbasi NA, Jamil N, Syed JH, Ahmad SR, Qadir A. Level of polychlorinated biphenyls in tumor and blood serum of breast cancer patients and control subjects from Punjab, Pakistan. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:171908. [PMID: 38527533 DOI: 10.1016/j.scitotenv.2024.171908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 03/19/2024] [Accepted: 03/21/2024] [Indexed: 03/27/2024]
Abstract
The current study examined the level of Polychlorinated biphenyls (PCBs) in tumor and blood serum of female breast cancer patients and control individuals recruited from Punjab, Pakistan. Breast tumor and blood serum from 40 patients and only blood serum from ten control subjects were obtained and concentration of 32 PCB congeners was analyzed through Gas chromatography coupled with Mass spectrophotometry. Sociodemographic variables of the patients along with essential clinical and haematological parameters were taken as covariates. Tumor reflects the highest median (min-max) concentration (ng g-1 lw) of ƩPCBs at 115.94 (0.05-17.75) followed by 16.53 (0.09-2.94) and 5.24 (0.01-0.59) in blood serum of cancer patients and control group respectively. Median concentrations (ng g-1 lw) of non-dioxine like ƩPCBs were considerably higher at 83.04, 32.89 and 4.27 compared to 13.03 and 3.50 and 0.97 for dioxin like ƩPCBs in tumor, serum of breast cancer patients and control subjects respectively. PCB-87 was most dominant congeners in tumor followed by PCB-170 and -82 whereas PCB-28 and -52 reflected greatest contribution in serum of breast cancer patients. Blood haemoglobin, potassium and chloride ions showed significant positive whereas body mass index reflect inverse relationship when regressed with ƩPCBs in tumor. This pioneer study depicts elevated concentrations of PCBs in patients compared to control, reflecting potential positive association of PCBs with breast cancer which need further confirmation. We concluded that chronic exposure to PCBs might be associated with an increasing number of breast cancer incidences in developing countries like Pakistan, which should be further elucidated through detail in vitro and in vivo studies.
Collapse
Affiliation(s)
- A Khalid
- College of Earth and Environmental Sciences (CEES), University of the Punjab, Lahore, Pakistan
| | - N A Abbasi
- College of Earth and Environmental Sciences (CEES), University of the Punjab, Lahore, Pakistan.
| | - N Jamil
- College of Earth and Environmental Sciences (CEES), University of the Punjab, Lahore, Pakistan
| | - J H Syed
- Department of Meteorology, COMSATS University, Islamabad, Pakistan
| | - S R Ahmad
- College of Earth and Environmental Sciences (CEES), University of the Punjab, Lahore, Pakistan
| | - A Qadir
- College of Earth and Environmental Sciences (CEES), University of the Punjab, Lahore, Pakistan.
| |
Collapse
|
5
|
Piell KM, Petri BJ, Xu J, Cai L, Rai SN, Li M, Wilkey DW, Merchant ML, Cave MC, Klinge CM. Chronic Aroclor 1260 exposure alters the mouse liver proteome, selenoproteins, and metals in steatotic liver disease. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 107:104430. [PMID: 38552755 DOI: 10.1016/j.etap.2024.104430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/19/2024] [Accepted: 03/23/2024] [Indexed: 04/09/2024]
Abstract
The prevalence of metabolic dysfunction-associated steatotic liver disease (MASLD) continues to increase due in part to the obesity epidemic and to environmental exposures to metabolism disrupting chemicals. A single gavage exposure of male mice to Aroclor 1260 (Ar1260), an environmentally relevant mixture of non-dioxin-like polychlorinated biphenyls (PCBs), resulted in steatohepatitis and altered RNA modifications in selenocysteine tRNA 34 weeks post-exposure. Unbiased approaches identified the liver proteome, selenoproteins, and levels of 25 metals. Ar1260 altered the abundance of 128 proteins. Enrichment analysis of the liver Ar1260 proteome included glutathione metabolism and translation of selenoproteins. Hepatic glutathione peroxidase 4 (GPX4) and Selenoprotein O (SELENOO) were increased and Selenoprotein F (SELENOF), Selenoprotein S (SELENOS), Selenium binding protein 2 (SELENBP2) were decreased with Ar1260 exposure. Increased copper, selenium (Se), and zinc and reduced iron levels were detected. These data demonstrate that Ar1260 exposure alters the (seleno)proteome, Se, and metals in MASLD-associated pathways.
Collapse
Affiliation(s)
- Kellianne M Piell
- Department of Biochemistry & Molecular Genetics, University of Louisville School of Medicine, Louisville, KY 40292, USA
| | - Belinda J Petri
- Department of Biochemistry & Molecular Genetics, University of Louisville School of Medicine, Louisville, KY 40292, USA; Kentucky IDeA Networks of Biomedical Research Excellence (KY INBRE) Bioinformatics Core, University of Louisville, Louisville, KY 40202, USA
| | - Jason Xu
- Pediatric Research Institute, Department of Pediatrics, University of Louisville School of Medicine, Louisville, KY 40292, USA
| | - Lu Cai
- Pediatric Research Institute, Department of Pediatrics, University of Louisville School of Medicine, Louisville, KY 40292, USA; Departments of Radiation Oncology, Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40292, USA; University of Louisville Center for Integrative Environmental Health Sciences (CIEHS), University of Louisville, Louisville, KY 40292, USA
| | - Shesh N Rai
- Division of Biostatistics and Bioinformatics, Department of Environmental and Public Health Sciences, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Ming Li
- Division of Nephrology & Hypertension, Department of Medicine, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Daniel W Wilkey
- University of Louisville Hepatobiology and Toxicology Center; University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Michael L Merchant
- University of Louisville Center for Integrative Environmental Health Sciences (CIEHS), University of Louisville, Louisville, KY 40292, USA; Division of Nephrology & Hypertension, Department of Medicine, University of Louisville School of Medicine, Louisville, KY 40202, USA; University of Louisville Hepatobiology and Toxicology Center; University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Matthew C Cave
- University of Louisville Center for Integrative Environmental Health Sciences (CIEHS), University of Louisville, Louisville, KY 40292, USA; University of Louisville Hepatobiology and Toxicology Center; University of Louisville School of Medicine, Louisville, KY 40202, USA; Division of Gastroenterology, Hepatology & Nutrition, Department of Medicine, University of Louisville School of Medicine, Louisville, KY 40292, USA; The University of Louisville Superfund Research Center, University of Louisville School of Medicine, Louisville, KY 40292, USA
| | - Carolyn M Klinge
- Department of Biochemistry & Molecular Genetics, University of Louisville School of Medicine, Louisville, KY 40292, USA; University of Louisville Center for Integrative Environmental Health Sciences (CIEHS), University of Louisville, Louisville, KY 40292, USA.
| |
Collapse
|
6
|
Murphy CC, Zaki TA. Changing epidemiology of colorectal cancer - birth cohort effects and emerging risk factors. Nat Rev Gastroenterol Hepatol 2024; 21:25-34. [PMID: 37723270 DOI: 10.1038/s41575-023-00841-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/22/2023] [Indexed: 09/20/2023]
Abstract
Incidence and mortality of colorectal cancer (CRC) are increasing worldwide, suggesting broad changes in the epidemiology of CRC. In this Review, we discuss the changes that are becoming evident, including trends in CRC incidence and mortality by age and birth cohort, and consider the contributions of early-life exposures and emerging risk factors to these changes. Importantly, incidence of CRC has increased among people born since the early 1950s in nearly all regions of the world. These so-called birth cohort effects imply the involvement of factors that influence the earliest stages of carcinogenesis and have effects across the life course. Accumulating evidence supports the idea that early-life exposures are important risk factors for CRC, including exposures during fetal development, childhood, adolescence and young adulthood. Environmental chemicals could also have a role because the introduction of many in the 1950s and 1960s coincides with increasing incidence of CRC among people born during those years. To reverse the expected increases in the global burden of CRC, participation in average-risk screening programmes needs to be increased by scaling up and implementing evidence-based screening strategies, and emerging risk factors responsible for these increases need to be identified.
Collapse
Affiliation(s)
- Caitlin C Murphy
- Department of Health Promotion & Behavioral Sciences, University of Texas Health Science Center at Houston (UTHealth Houston) School of Public Health, Houston, TX, USA.
| | - Timothy A Zaki
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| |
Collapse
|
7
|
Head KZ, Bolatimi OE, Gripshover TC, Tan M, Li Y, Audam TN, Jones SP, Klinge CM, Cave MC, Wahlang B. Investigating the effects of long-term Aroclor 1260 exposure on fatty liver disease in a diet-induced obesity mouse model. FRONTIERS IN GASTROENTEROLOGY (LAUSANNE, SWITZERLAND) 2023; 2:1180712. [PMID: 37426695 PMCID: PMC10327714 DOI: 10.3389/fgstr.2023.1180712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Introduction Polychlorinated biphenyls (PCBs) are persistent environmental toxicants that have been implicated in numerous health disorders including liver diseases such as non-alcoholic fatty liver disease (NAFLD). Toxicant-associated NAFLD, also known as toxicant-associated fatty liver disease (TAFLD), consists of a spectrum of disorders ranging from steatosis and steatohepatitis to fibrosis and hepatocellular carcinoma. Previously, our group demonstrated that 12-week exposure to the PCB mixture, Aroclor 1260, exacerbated steatohepatitis in high-fat diet (HFD)-fed mice; however, the longer-term effects of PCBs on TAFLD remain to be elucidated. This study aims to examine the longer-term effects of Aroclor 1260 (>30 weeks) in a diet-induced obesity model to better understand how duration of exposure can impact TAFLD. Methods Male C57BL/6 mice were exposed to Aroclor 1260 (20 mg/kg) or vehicle control by oral gavage at the beginning of the study period and fed either a low-fat diet (LFD) or HFD throughout the study period. Results Aroclor 1260 exposure (>30 weeks) led to steatohepatitis only in LFD-fed mice. Several Aroclor 1260 exposed LFD-fed mice also developed hepatocellular carcinoma (25%), which was absent in HFD-fed mice. The LFD+Aroclor1260 group also exhibited decreased hepatic Cyp7a1 expression and increased pro-fibrotic Acta2 expression. In contrast, longer term Aroclor 1260 exposure in conjunction with HFD did not exacerbate steatosis or inflammatory responses beyond those observed with HFD alone. Further, hepatic xenobiotic receptor activation by Aroclor 1260 was absent at 31 weeks post exposure, suggesting PCB redistribution to the adipose and other extra-hepatic tissues with time. Discussion Overall, the results demonstrated that longer-term PCB exposure worsened TAFLD outcomes independent of HFD feeding and suggests altered energy metabolism as a potential mechanism fueling PCB mediated toxicity without dietary insult. Additional research exploring mechanisms for these longer-term PCB mediated toxicity in TAFLD is warranted.
Collapse
Affiliation(s)
- Kimberly Z. Head
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, School of Medicine, University of Louisville, Louisville, KY, United States
- The Hepatobiology and Toxicology Center, University of Louisville, Louisville, KY, United States
| | - Oluwanifemi E. Bolatimi
- Department of Pharmacology and Toxicology, School of Medicine, University of Louisville, Louisville, KY, United States
| | - Tyler C. Gripshover
- Department of Pharmacology and Toxicology, School of Medicine, University of Louisville, Louisville, KY, United States
| | - Min Tan
- Department of Surgery, School of Medicine, University of Louisville, Louisville, KY, United States
| | - Yan Li
- Department of Surgery, School of Medicine, University of Louisville, Louisville, KY, United States
| | - Timothy N. Audam
- Center for Cardiometabolic Science, Department of Medicine, Division of Environmental Medicine, Christina Lee Brown Envirome Institute, University of Louisville, Louisville, KY, United States
| | - Steven P. Jones
- Center for Cardiometabolic Science, Department of Medicine, Division of Environmental Medicine, Christina Lee Brown Envirome Institute, University of Louisville, Louisville, KY, United States
| | - Carolyn M. Klinge
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Louisville, Louisville, KY, United States
- The Center for Integrative Environmental Health Sciences, University of Louisville, Louisville, KY, United States
| | - Matthew C. Cave
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, School of Medicine, University of Louisville, Louisville, KY, United States
- The Hepatobiology and Toxicology Center, University of Louisville, Louisville, KY, United States
- Department of Pharmacology and Toxicology, School of Medicine, University of Louisville, Louisville, KY, United States
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Louisville, Louisville, KY, United States
- The Center for Integrative Environmental Health Sciences, University of Louisville, Louisville, KY, United States
- University of Louisville (UofL) Superfund Research Center, University of Louisville, Louisville, KY, United States
- Robley Rex Department of Veterans Affairs Medical Center, Louisville, KY, United States
| | - Banrida Wahlang
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, School of Medicine, University of Louisville, Louisville, KY, United States
- The Hepatobiology and Toxicology Center, University of Louisville, Louisville, KY, United States
- The Center for Integrative Environmental Health Sciences, University of Louisville, Louisville, KY, United States
- University of Louisville (UofL) Superfund Research Center, University of Louisville, Louisville, KY, United States
| |
Collapse
|
8
|
Derivatives of Plastics as Potential Carcinogenic Factors: The Current State of Knowledge. Cancers (Basel) 2022; 14:cancers14194637. [PMID: 36230560 PMCID: PMC9562888 DOI: 10.3390/cancers14194637] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/14/2022] [Accepted: 09/20/2022] [Indexed: 11/17/2022] Open
Abstract
Simple Summary Nowadays, micro- and nanoplastic particles can be found almost everywhere, being especially harmful for humans. Their absorption, primarily via inhalation and digestive routes, might lead to a particularly dangerous accumulation of those substances within the human body. Due to the alarming increase in contamination worldwide and excessive production of plastics and synthetic materials, there is an urgent need to investigate the effects of those substances on human health. So far, it has been observed that nano- and microplastics might be extremely harmful, leading to serious health conditions, such as cancers of various human body systems. Abstract Micro- and nanoplatics have been already reported to be potential carcinogenic/mutagenic substances that might cause DNA damage, leading to carcinogenesis. Thus, the effects of micro- and nanoplastics exposure on human health are currently being investigated extensively to establish clear relationships between those substances and health consequences. So far, it has been observed that there exists a definite correlation between exposure to micro- and nanoplastic particles and the onset of several cancers. Therefore, we have conducted research using PubMed, Web of Science, and Scopus databases, searching for all the research papers devoted to cancers that could be potentially related to the subject of exposure to nano- and microplastics. Ultimately, in this paper, we have discussed several cancers, including hepatocellular carcinoma, pancreatic cancer, pancreatic ductal adenocarcinoma, biliary tract cancer, and some endocrine-related cancers.
Collapse
|