1
|
Wang H, Wang X, Cao Y, Chen Y, Zou Z, Lu X, Shan F, Tu J, Liu J, Liu J, Sa J, Zhou N, Peng SM, Zou JJ, Shen X, Zhai J, Chen Z, Holmes EC, Chen W, Shen Y. Identification of Corynebacterium ulcerans and Erysipelothrix sp. in Malayan pangolins-a potential threat to public health? mSphere 2024; 9:e0055124. [PMID: 39345123 PMCID: PMC11520285 DOI: 10.1128/msphere.00551-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 09/11/2024] [Indexed: 10/01/2024] Open
Abstract
The discovery of severe acute respiratory syndrome-coronavirus-2-like and Middle East respiratory syndrome-coronavirus-like viruses in Malayan pangolins has raised concerns about their potential role in the spread of zoonotic diseases. Herein, we describe the isolation and whole-genome sequencing of potentially zoonotic two bacterial pathogens from diseased Malaysian pangolins (Manis javanica)-Corynebacterium ulcerans and Erysipelothrix sp. The newly identified species were designated as C. ulcerans P69 and Erysipelothrix sp. P66. C. ulcerans P69 exhibited 99.2% whole-genome nucleotide identity to human bacterial isolate 4940, suggesting that it might have zoonotic potential. Notably, C. ulcerans P69 lacked the diphtheria toxin (tox) gene that is widely used in vaccines to protect humans from corynebacterial infection, which suggests that the current vaccine may be of limited efficacy against this pangolin strain. C. ulcerans P69 also contains other known virulence-associated genes such as pld and exhibits resistance to several antibiotics (erythromycin, clindamycin, penicillin G, gentamicin, tetracycline), which may affect its effective control. Erysipelothrix sp. P66 was closely related to Erysipelothrix sp. strain 2-related strains, exhibiting 98.8% whole-genome nucleotide identity. This bacterium is lethal in mice, and two commercial vaccines failed to protect its challenge, such that it could potentially pose a threat to the swine industry. Overall, this study highlights that, in addition to viruses, pangolins harbor bacteria that may pose a potential threat to humans and domestic animals, and which merit attention. IMPORTANCE This study firstly reports the presence of two potentially zoonotic bacteria, Corynebacterium ulcerans and Erysipelothrix sp., in diseased Malaysian pangolins collected in 2019. The pangolin C. ulcerans is lethal in mice and resists many antibiotics. It clustered with a lethal human strain but lacked the diphtheria toxin gene. Diphtheria toxin is widely used as a vaccine around the world to protect humans from the infection of corynebacteria. The lack of the tox gene suggests that the current vaccine may be of limited efficacy against this pangolin strain. The pangolin Erysipelothrix sp. is the sister clade of Erysipelothrix rhusiopathiae. It is lethal in mice, and two commercial vaccines failed to protect the mice against challenge with the pangolin Erysipelothrix sp., such that this strain could potentially pose a threat to the swine industry. These findings emphasize the potential threat of pangolin bacteria.
Collapse
Affiliation(s)
- Hai Wang
- State Key Laboratory for Animal Disease Control and Prevention, Guangdong Laboratory for Lingnan Modern Agriculture, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Xiao Wang
- State Key Laboratory for Animal Disease Control and Prevention, Guangdong Laboratory for Lingnan Modern Agriculture, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Yilin Cao
- State Key Laboratory for Animal Disease Control and Prevention, Guangdong Laboratory for Lingnan Modern Agriculture, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Yiting Chen
- State Key Laboratory for Animal Disease Control and Prevention, Guangdong Laboratory for Lingnan Modern Agriculture, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Zanjian Zou
- State Key Laboratory for Animal Disease Control and Prevention, Guangdong Laboratory for Lingnan Modern Agriculture, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Xingbang Lu
- State Key Laboratory for Animal Disease Control and Prevention, Guangdong Laboratory for Lingnan Modern Agriculture, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Fen Shan
- Guangzhou Zoo, Guangzhou Wildlife Research Center, Guangzhou, China
| | - Jieying Tu
- College of Veterinary Medicine, National Risk Assessment Laboratory for Antimicrobial Resistant of Microorganisms in Animals, Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, Key Laboratory of Zoonosis of Ministry of Agricultural and Rural Affairs, Center for Emerging and Zoonotic Diseases, South China Agricultural University, Guangzhou, China
| | - Jianhua Liu
- College of Veterinary Medicine, National Risk Assessment Laboratory for Antimicrobial Resistant of Microorganisms in Animals, Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, Key Laboratory of Zoonosis of Ministry of Agricultural and Rural Affairs, Center for Emerging and Zoonotic Diseases, South China Agricultural University, Guangzhou, China
| | - Jiameng Liu
- State Key Laboratory for Animal Disease Control and Prevention, Guangdong Laboratory for Lingnan Modern Agriculture, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Jiaqi Sa
- Guangzhou Zoo, Guangzhou Wildlife Research Center, Guangzhou, China
| | - Niu Zhou
- Guangzhou Zoo, Guangzhou Wildlife Research Center, Guangzhou, China
| | - Shi-Ming Peng
- Guangzhou Zoo, Guangzhou Wildlife Research Center, Guangzhou, China
| | - Jie-Jian Zou
- Guangdong Provincial Wildlife Monitoring and Rescue Center, Guangzhou, China
| | - Xuejuan Shen
- State Key Laboratory for Animal Disease Control and Prevention, Guangdong Laboratory for Lingnan Modern Agriculture, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Junqiong Zhai
- Guangzhou Zoo, Guangzhou Wildlife Research Center, Guangzhou, China
| | - Zujin Chen
- Guangzhou Zoo, Guangzhou Wildlife Research Center, Guangzhou, China
| | - Edward C. Holmes
- School of Medical Sciences, University of Sydney, Sydney, New South Wales, Australia
| | - Wu Chen
- Guangzhou Zoo, Guangzhou Wildlife Research Center, Guangzhou, China
| | - Yongyi Shen
- State Key Laboratory for Animal Disease Control and Prevention, Guangdong Laboratory for Lingnan Modern Agriculture, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, Guangzhou, Guangdong, China
| |
Collapse
|
2
|
Wattrang E, Sørensen Dalgaard T, Eriksson H, Söderlund R. Erysipelothrix spp. and other Erysipelotrichales detected by 16S rRNA microbial community profiling in samples from healthy conventionally reared chickens and their environment. Access Microbiol 2024; 6:000736.v3. [PMID: 39045252 PMCID: PMC11261693 DOI: 10.1099/acmi.0.000736.v3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 04/23/2024] [Indexed: 07/25/2024] Open
Abstract
Outbreaks of erysipelas, a disease caused by infection with Erysipelothrix rhusiopathiae (ER), is a re-emerging problem in cage-free laying hen flocks. The source of ER infection in hens is usually unknown and serological evidence has also indicated the presence of ER or other antigenically related bacteria in healthy flocks. The aim of the present study was to evaluate sample collection, culture methods and DNA-based methodology to detect ER and other Erysipelotrichales in samples from healthy chickens and their environment. We used samples from a research facility with conventionally reared chickens with no history of erysipelas outbreaks where hens with high titres of IgY recognising ER previously have been observed. Microbial DNA was extracted from samples either directly or after pre-culture in nonselective or ER-selective medium. Real-time PCR was used for detection of Erysipelothrix spp. and high-throughput amplicon sequencing of 16S rRNA sequencing was used for detection of Erysipelotrichales. A pilot serological analysis of some Erysipelotrichales members with IgY from unvaccinated and ER-vaccinated high-biosecurity chickens, as well as conventionally reared chickens, was also performed. All samples were negative for ER, E. tonsillarum and E. piscisicarius by PCR analysis. However, 16S rRNA community profiling indicated the presence of several Erysipelotrichales genera in both environmental samples and chicken intestinal samples, including Erysipelothrix spp. that were detected in environmental samples. Sequences from Erysipelothrix spp. were most frequently detected in samples pre-cultured in ER-selective medium. At species level the presence of Erysipelothrix anatis and/or Erysipelothrix aquatica was indicated. Serological results indicated that IgY raised to ER showed some cross-reactivity with E. anatis. Hence, environmental samples pre-cultured in selective medium and analysis by 16S rRNA sequencing proved a useful method for detection of Erysipelotrichales, including Erysipelothrix spp., in chicken flocks. The observation of such bacteria in environmental samples offers a possible explanation for the observation of high antibody titres to ER in flocks without a history of clinical erysipelas.
Collapse
Affiliation(s)
- Eva Wattrang
- Department of Microbiology, Swedish Veterinary Agency, Uppsala, Sweden
| | | | - Helena Eriksson
- Department of Animal Health and Antimicrobial Strategies, Swedish Veterinary Agency, Uppsala, Sweden
| | - Robert Söderlund
- Department of Microbiology, Swedish Veterinary Agency, Uppsala, Sweden
| |
Collapse
|
3
|
Dec M, Zomer A, Webster J, Nowak T, Stępień-Pyśniak D, Urban-Chmiel R. Integrative and Conjugative Elements and Prophage DNA as Carriers of Resistance Genes in Erysipelothrix rhusiopathiae Strains from Domestic Geese in Poland. Int J Mol Sci 2024; 25:4638. [PMID: 38731857 PMCID: PMC11083093 DOI: 10.3390/ijms25094638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 04/21/2024] [Accepted: 04/23/2024] [Indexed: 05/13/2024] Open
Abstract
Goose erysipelas is a serious problem in waterfowl breeding in Poland. However, knowledge of the characteristics of Erysipelothrix rhusiopathiae strains causing this disease is limited. In this study, the antimicrobial susceptibility and serotypes of four E. rhusiopathiae strains from domestic geese were determined, and their whole-genome sequences (WGSs) were analyzed to detect resistance genes, integrative and conjugative elements (ICEs), and prophage DNA. Sequence type and the presence of resistance genes and transposons were compared with 363 publicly available E. rhusiopathiae strains, as well as 13 strains of other Erysipelothrix species. Four strains tested represented serotypes 2 and 5 and the MLST groups ST 4, 32, 242, and 243. Their assembled circular genomes ranged from 1.8 to 1.9 kb with a GC content of 36-37%; a small plasmid was detected in strain 1023. Strains 1023 and 267 were multidrug-resistant. The resistance genes detected in the genome of strain 1023 were erm47, tetM, and lsaE-lnuB-ant(6)-Ia-spw cluster, while strain 267 contained the tetM and ermB genes. Mutations in the gyrA gene were detected in both strains. The tetM gene was embedded in a Tn916-like transposon, which in strain 1023, together with the other resistance genes, was located on a large integrative and conjugative-like element of 130 kb designated as ICEEr1023. A minor integrative element of 74 kb was identified in strain 1012 (ICEEr1012). This work contributes to knowledge about the characteristics of E. rhusiopathiae bacteria and, for the first time, reveals the occurrence of erm47 and ermB resistance genes in strains of this species. Phage infection appears to be responsible for the introduction of the ermB gene into the genome of strain 267, while ICEs most likely play a key role in the spread of the other resistance genes identified in E. rhusiopathiae.
Collapse
Affiliation(s)
- Marta Dec
- Department of Veterinary Prevention and Avian Diseases, University of Life Sciences in Lublin, 20-033 Lublin, Poland; (D.S.-P.); (R.U.-C.)
| | - Aldert Zomer
- Division of Infectious Diseases and Immunology, Faculty of Veterinaty Medicine, Utrecht University, 3584 CL Utrecht, The Netherlands;
- WOAH Reference Laboratory for Campylobacteriosis, WHO Collaborating Centre for Reference and Research on Campylobacter and Antimicrobial Resistance from a One Health Perspective, 3584 CL Utrecht, The Netherlands
| | - John Webster
- NSW Department of Primary Industries, Elizabeth Macarthur Agricultural Institute, PMB 4008, Narellan, NSW 2570, Australia;
| | - Tomasz Nowak
- Diagnostic Veterinary Laboratory “Vet-Lab Brudzew Dr. Piotr Kwieciński”, 62-720 Brudzew, Poland;
| | - Dagmara Stępień-Pyśniak
- Department of Veterinary Prevention and Avian Diseases, University of Life Sciences in Lublin, 20-033 Lublin, Poland; (D.S.-P.); (R.U.-C.)
| | - Renata Urban-Chmiel
- Department of Veterinary Prevention and Avian Diseases, University of Life Sciences in Lublin, 20-033 Lublin, Poland; (D.S.-P.); (R.U.-C.)
| |
Collapse
|
4
|
Zhong J, Medvecky M, Tornos J, Clessin A, Le Net R, Gantelet H, Gamble A, Forde TL, Boulinier T. Erysipelothrix amsterdamensis sp. nov., associated with mortalities among endangered seabirds. Int J Syst Evol Microbiol 2024; 74. [PMID: 38359084 DOI: 10.1099/ijsem.0.006264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024] Open
Abstract
Infectious diseases threaten endangered species, particularly in small isolated populations. Seabird populations on the remote Amsterdam Island in the Indian Ocean have been in decline for the past three decades, with avian cholera caused by Pasteurella multocida proposed as the primary driver. However, Erysipelothrix species have also been sporadically detected from albatrosses on Amsterdam Island and may be contributing to some of the observed mortality. In this study, we genomically characterized 16 Erysipelothrix species isolates obtained from three Indian yellow-nosed albatross (Thalassarche carteri) chick carcasses in 2019. Histological analyses suggest that they died of bacterial septicaemia. Two isolates were sequenced using both Illumina short-read and MinION long-read approaches, which - following hybrid assembly - resulted in closed circular genomes. Mapping of Illumina reads from the remaining isolates to one of these new reference genomes revealed that all 16 isolates were closely related, with a maximum of 13 nucleotide differences distinguishing any pair of isolates. The nucleotide diversity of isolates obtained from the same or different carcasses was similar, suggesting all three chicks were likely infected from a common source. These genomes were compared with a global collection of genomes from Erysipelothrix rhusiopathiae and other species from the same genus. The isolates from albatrosses were phylogenetically distinct, sharing a most recent common ancestor with E. rhusiopathiae. Based on phylogenomic analysis and standard thresholds for average nucleotide identity and digital DNA-DNA hybridization, these isolates represent a novel Erysipelothrix species, for which we propose the name Erysipelothrix amsterdamensis sp. nov. The type strain is A18Y020dT (=CIP 112216T=DSM 115297T). The implications of this bacterium for albatross conservation will require further study.
Collapse
Affiliation(s)
- Jiadong Zhong
- School of Biodiversity, One Health & Veterinary Medicine, University of Glasgow, Glasgow, G12 8QQ, UK
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, PR China
| | - Matej Medvecky
- School of Biodiversity, One Health & Veterinary Medicine, University of Glasgow, Glasgow, G12 8QQ, UK
- Bioinformatics Research Technology Platform, University of Warwick, Coventry, CV4 7AL, UK
| | - Jérémy Tornos
- CEFE, UMR 5175, Univ Montpellier, CNRS, EPHE, IRD, Montpellier, France
- Ceva Biovac, Beaucouzé, France
| | - Augustin Clessin
- CEFE, UMR 5175, Univ Montpellier, CNRS, EPHE, IRD, Montpellier, France
- École Normale Supérieure de Lyon, 69342 Lyon Cedex 07, France
| | - Rozenn Le Net
- Vet Diagnostics, 69260 Charbonnières-les-Bains, France
| | | | - Amandine Gamble
- School of Biodiversity, One Health & Veterinary Medicine, University of Glasgow, Glasgow, G12 8QQ, UK
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, USA
- Department of Public and Ecosystem Health, Cornell University, Ithaca, New York, USA
| | - Taya L Forde
- School of Biodiversity, One Health & Veterinary Medicine, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Thierry Boulinier
- CEFE, UMR 5175, Univ Montpellier, CNRS, EPHE, IRD, Montpellier, France
| |
Collapse
|
5
|
Chang RK, Miller MA, Tekedar HC, Rose D, García JC, LaFrentz BR, Older CE, Waldbieser GC, Pomaranski E, Shahin K, Camus AC, Batac F, Byrne BA, Murray MJ, Griffin MJ, Soto E. Pathology, microbiology, and genetic diversity associated with Erysipelothrix rhusiopathiae and novel Erysipelothrix spp. infections in southern sea otters ( Enhydra lutris nereis). Front Microbiol 2024; 14:1303235. [PMID: 38361579 PMCID: PMC10867225 DOI: 10.3389/fmicb.2023.1303235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 12/11/2023] [Indexed: 02/17/2024] Open
Abstract
Erysipelothrix spp., including E. rhusiopathiae, are zoonotic bacterial pathogens that can cause morbidity and mortality in mammals, fish, reptiles, birds, and humans. The southern sea otter (SSO; Enhydra lutris nereis) is a federally-listed threatened species for which infectious disease is a major cause of mortality. We estimated the frequency of detection of these opportunistic pathogens in dead SSOs, described pathology associated with Erysipelothrix infections in SSOs, characterized the genetic diversity and antimicrobial susceptibility of SSO isolates, and evaluated the virulence of two novel Erysipelothrix isolates from SSOs using an in vivo fish model. From 1998 to 2021 Erysipelothrix spp. were isolated from six of >500 necropsied SSOs. Erysipelothrix spp. were isolated in pure culture from three cases, while the other three were mixed cultures. Bacterial septicemia was a primary or contributing cause of death in five of the six cases. Other pathology observed included suppurative lymphadenopathy, fibrinosuppurative arteritis with thrombosis and infarction, bilateral uveitis and endophthalmitis, hypopyon, petechia and ecchymoses, mucosal infarction, and suppurative meningoencephalitis and ventriculitis. Short to long slender Gram-positive or Gram-variable bacterial rods were identified within lesions, alone or with other opportunistic bacteria. All six SSO isolates had the spaA genotype-four isolates clustered with spaA E. rhusiopathiae strains from various terrestrial and marine animal hosts. Two isolates did not cluster with any known Erysipelothrix spp.; whole genome sequencing revealed a novel Erysipelothrix species and a novel E. rhusiopathiae subspecies. We propose the names Erysipelothrix enhydrae sp. nov. and Erysipelothrix rhusiopathiae ohloneorum ssp. nov. respectively. The type strains are E. enhydrae UCD-4322-04 and E. rhusiopathiae ohloneorum UCD-4724-06, respectively. Experimental injection of tiger barbs (Puntigrus tetrazona) resulted in infection and mortality from the two novel Erysipelothrix spp. Antimicrobial susceptibility testing of Erysipelothrix isolates from SSOs shows similar susceptibility profiles to isolates from other terrestrial and aquatic animals. This is the first description of the pathology, microbial characteristics, and genetic diversity of Erysipelothrix isolates recovered from diseased SSOs. Methods presented here can facilitate case recognition, aid characterization of Erysipelothrix isolates, and illustrate assessment of virulence using fish models.
Collapse
Affiliation(s)
- Ri K. Chang
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
- Monterey Bay Aquarium, Monterey, CA, United States
| | - Melissa A. Miller
- Marine Wildlife Veterinary Care and Research Center, California Department of Fish and Wildlife, Santa Cruz, CA, United States
- Wildlife Health Center, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Hasan C. Tekedar
- College of Veterinary Medicine, Mississippi State University, Stoneville, MS, United States
| | - Divya Rose
- College of Veterinary Medicine, Mississippi State University, Stoneville, MS, United States
| | - Julio C. García
- United States Department of Agriculture, Agricultural Research Service, Aquatic Animal Health Research Unit, Auburn, AL, United States
| | - Benjamin R. LaFrentz
- United States Department of Agriculture, Agricultural Research Service, Aquatic Animal Health Research Unit, Auburn, AL, United States
| | - Caitlin E. Older
- USDA-ARS, Warmwater Aquaculture Research Unit, Stoneville, MS, United States
| | | | - Eric Pomaranski
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Khalid Shahin
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
- Aquatic Animal Diseases Laboratory, Aquaculture Division, National Institute of Oceanography and Fisheries, Suez, Egypt
| | - Alvin C. Camus
- College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - Francesca Batac
- Marine Wildlife Veterinary Care and Research Center, California Department of Fish and Wildlife, Santa Cruz, CA, United States
| | - Barbara A. Byrne
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | | | - Matt J. Griffin
- College of Veterinary Medicine, Mississippi State University, Stoneville, MS, United States
| | - Esteban Soto
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| |
Collapse
|
6
|
Population Structure and Genomic Characteristics of Australian Erysipelothrix rhusiopathiae Reveals Unobserved Diversity in the Australian Pig Industry. Microorganisms 2023; 11:microorganisms11020297. [PMID: 36838261 PMCID: PMC9964597 DOI: 10.3390/microorganisms11020297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/18/2023] [Accepted: 01/19/2023] [Indexed: 01/26/2023] Open
Abstract
Erysipelothrix rhusiopathiae is a bacterial pathogen that is the causative agent of erysipelas in a variety of animals, including swine, emus, turkeys, muskox, caribou, moose, and humans. This study aims to investigate the population structure and genomic features of Australian isolates of E. rhusiopathiae in the Australian pig industry and compare them to the broader scope of isolates worldwide. A total of 178 isolates (154 Australian, seven vaccine isolates, six international isolates, and 11 of unknown origin) in this study were screened against an MLST scheme and publicly available reference isolates, identifying 59 new alleles, with isolates separating into two main single locus variant groups. Investigation with BLASTn revealed the presence of the spaA gene in 171 (96%) of the isolates, with three main groups of SpaA protein sequences observed amongst the isolates. Novel SpaA protein sequences, categorised here as group 3 sequences, consisted of two sequence types forming separate clades to groups 1 and 2, with amino acid variants at positions 195 (D/A), 303 (G/E) and 323(P/L). In addition to the newly identified groups, five new variant positions were identified, 124 (S/N), 307 (Q/R), 323 (P/L), 379 (M/I), and 400 (V/I). Resistance screening identified genes related to lincomycin, streptomycin, erythromycin, and tetracycline resistance. Of the 29 isolates carrying these resistance genes, 82% belonged to SpaA group 2-N101S (n = 22) or 2-N101S-I257L (n = 2). In addition, 79% (n = 23) of these 29 isolates belonged to MLST group ST 5. Our results illustrate that Australia appears to have a unique diversity of E. rhusiopathiae isolates in pig production industries within the wider global context of isolates.
Collapse
|
7
|
Genomic Landscape Highlights Molecular Mechanisms Involved in Silicate Solubilization, Stress Tolerance, and Potential Growth-Promoting Activity of Bacterium Enterobacter sp. LR6. Cells 2022; 11:cells11223622. [PMID: 36429050 PMCID: PMC9688052 DOI: 10.3390/cells11223622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 11/09/2022] [Accepted: 11/11/2022] [Indexed: 11/18/2022] Open
Abstract
Silicon (Si) is gaining widespread attention due to its prophylactic activity to protect plants under stress conditions. Despite Si's abundance in the earth's crust, most soils do not have enough soluble Si for plants to absorb. In the present study, a silicate-solubilizing bacterium, Enterobacter sp. LR6, was isolated from the rhizospheric soil of rice and subsequently characterized through whole-genome sequencing. The size of the LR6 genome is 5.2 Mb with a GC content of 54.9% and 5182 protein-coding genes. In taxogenomic terms, it is similar to E. hormaechei subsp. xiangfangensis based on average nucleotide identity (ANI) and digital DNA-DNA hybridization (dDDH). LR6 genomic data provided insight into potential genes involved in stress response, secondary metabolite production, and growth promotion. The LR6 genome contains two aquaporins, of which the aquaglyceroporin (GlpF) is responsible for the uptake of metalloids including arsenic (As) and antimony (Sb). The yeast survivability assay confirmed the metalloid transport activity of GlpF. As a biofertilizer, LR6 isolate has a great deal of tolerance to high temperatures (45 °C), salinity (7%), and acidic environments (pH 9). Most importantly, the present study provides an understanding of plant-growth-promoting activity of the silicate-solubilizing bacterium, its adaptation to various stresses, and its uptake of different metalloids including As, Ge, and Si.
Collapse
|
8
|
Eisenberg T, Mühldorfer K, Erhard M, Fawzy A, Kehm S, Ewers C, Semmler T, Blom J, Lipski A, Rau J, Kämpfer P, Glaeser SP. Erysipelothrix anatis sp. nov., Erysipelothrix aquatica sp. nov. and Erysipelothrix urinaevulpis sp. nov., three novel species of the genus, and emended description of Erysipelothrix. Int J Syst Evol Microbiol 2022; 72. [DOI: 10.1099/ijsem.0.005454] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Seven genotypically distinct strains assigned to the genus
Erysipelothrix
were isolated in different laboratories from several animal sources. Strain D17_0559-3-2-1T and three further strains were isolated from samples of duck, pig and goose. The strains had >99 % 16S rRNA gene sequence similarity to each other and to strain VA92-K48T and two further strains isolated from samples of medical leech and a turtle. The closest related type strains to the seven strains were those of
Erysipelothrix inopinata
(96.74 %) and
Erysipelothrix rhusiopathiae
(95.93 %). Average nucleotide identity, amino acid identity and in silico DNA–DNA hybridization results showed that the strains represented two separate novel species. One further phylogenetically distinct strain (165301687T) was isolated from fox urine. The strain had highest 16S rRNA gene sequence similarity to the type strains of
Erysipelothrix tonsillarum
(95.67 %), followed by
Erysipelothrix piscisicarius
(95.58 %) and
Erysipelothrix larvae
(94.22 %) and represented a further novel species. Chemotaxonomic and physiological data of the novel strains were assessed, but failed to unequivocally differentiate the novel species from existing members of the genus. MALDI-TOF MS data proved the discrimination of at least strain 165301687T from all currently described species. Based on the presented phylogenomic and physiological data, we propose three novel species, Erysipelothrix anatis sp. nov. with strain D17_0559-3-2-1T (=DSM 111258T= CIP 111884T=CCM 9044T) as type strain, Erysipelothrix aquatica sp. nov. with strain VA92-K48T (=DSM 106012T=LMG 30351T=CIP 111492T) as type strain and Erysipelothrix urinaevulpis sp. nov. with strain 165301687T (=DSM 106013T= LMG 30352T= CIP 111494T) as type strain.
Collapse
Affiliation(s)
- Tobias Eisenberg
- Department of Veterinary Medicine, Hessian State Laboratory (LHL), Giessen, Germany
- Institute of Hygiene and Infectious Diseases of Animals, Justus Liebig University Giessen, Giessen, Germany
| | - Kristin Mühldorfer
- Department of Wildlife Diseases, Leibniz Institute for Zoo and Wildlife Research, Berlin, Germany
| | | | - Ahmad Fawzy
- Department of Medicine and Infectious Diseases, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
- Department of Veterinary Medicine, Hessian State Laboratory (LHL), Giessen, Germany
| | - Sabine Kehm
- LHL, Border Control Post, Frankfurt, Germany
| | - Christa Ewers
- Institute of Hygiene and Infectious Diseases of Animals, Justus Liebig University Giessen, Giessen, Germany
| | - Torsten Semmler
- NG1 Microbial Genomics, Robert Koch Institute, Berlin, Germany
| | - Jochen Blom
- Bioinformatics and Systems Biology, Justus Liebig University, Giessen, Germany
| | - André Lipski
- Institut für Ernährungs- und Lebensmittelwissenschaften, Friedrich-Wilhelms-Universität, Bonn, Germany
| | - Jörg Rau
- Chemisches und Veterinäruntersuchungsamt Stuttgart, Fellbach, Germany
| | - Peter Kämpfer
- Institut für angewandte Mikrobiologie, Justus Liebig University, Giessen, Germany
| | - Stefanie P. Glaeser
- Institut für angewandte Mikrobiologie, Justus Liebig University, Giessen, Germany
| |
Collapse
|
9
|
Lee K, Park SY, Seo HW, Cho Y, Choi SG, Seo S, Han W, Lee NK, Kwon H, Han JE, Kim JH. Pathological and Genomic Findings of Erysipelothrix rhusiopathiae Isolated From a Free-Ranging Rough-Toothed Dolphin Steno bredanensis (Cetacea: Delphinidae) Stranded in Korea. Front Vet Sci 2022; 9:774836. [PMID: 35601406 PMCID: PMC9120913 DOI: 10.3389/fvets.2022.774836] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 04/08/2022] [Indexed: 12/01/2022] Open
Abstract
Erysipelas, caused by Erysipelothrix rhusiopathiae, is considered one of the most serious infectious diseases of captive and free-ranging cetaceans worldwide, as these animals are known to be highly susceptible to the bacterial infections. The potential diversity between E. rhusiopathiae isolates from captive cetaceans has been previously described; however, the microbiological features of the free-ranging cetacean isolates remain unclear. Here, we describe a case of bacteremia in a rough-toothed dolphin (Steno bredanensis) caused by E. rhusiopathiae. Additionally, we present the first genomic features of the bacteria from free-ranging cetacean individuals. Histopathological and microbial examinations revealed that E. rhusiopathiae caused bacteremia and systemic infection in the dolphin. The genome of the isolated E. rhusiopathiae strain KC-Sb-R1, which was classified as Clade 1 possessing SpaB gene, was clearly differentiated from the other swine-isolated E. rhusiopathiae, and the comparison of its serovar-defining chromosomal region revealed that our isolate was greatly similar to those of other previously reported serovar 2/15 isolates, including the captive-dolphin isolate. Moreover, most of the potential virulence factors in the strain KC-Sb-R1 were similar to those in the strain Fujisawa. Further, a potential cytotoxicity of the isolate was confirmed, suggesting that marine mammal-isolated E. rhusiopathiae could possess strong pathogenic potential in other animals, including humans. These results would further increase our understanding on the risk factors for controlling zoonotic pathogens of emerging infectious diseases in captive or free-ranging cetaceans, and also provide important insight into the diversity of E. rhusiopathiae in animals.
Collapse
Affiliation(s)
- Kyunglee Lee
- Cetacean Research Institute, National Institute of Fisheries Science, Ulsan, South Korea
| | - Seon Young Park
- Infectious Diseases Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea
| | - Hwi Won Seo
- Infectious Diseases Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea
| | - Yuna Cho
- Cetacean Research Institute, National Institute of Fisheries Science, Ulsan, South Korea
| | - Seok-Gwan Choi
- Cetacean Research Institute, National Institute of Fisheries Science, Ulsan, South Korea
| | | | | | - Nam-Kyung Lee
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea
| | - Hyemin Kwon
- Infectious Diseases Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea
| | - Jee Eun Han
- College of Veterinary Medicine, Kyungpook National University, Daegu, South Korea
- *Correspondence: Jee Eun Han
| | - Ji Hyung Kim
- Infectious Diseases Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea
- Department of Food Science and Biotechnology, Gachon University, Seongnam, South Korea
- Ji Hyung Kim
| |
Collapse
|
10
|
First Report of Genetic Variability of Erysipelothrix sp. Strain 2 in Turkeys Associated to Vero Cells Morphometric Alteration. Pathogens 2021; 10:pathogens10020141. [PMID: 33535396 PMCID: PMC7912226 DOI: 10.3390/pathogens10020141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/23/2021] [Accepted: 01/25/2021] [Indexed: 11/17/2022] Open
Abstract
Erysipelas is a disease caused by the Erysipelothrix genus, whose main species is the E. rhusiopathiae, the causative agent of animal erysipelas and human erysipeloid. We isolated Erysipelothrix sp. strain 2 (ES2) from turkey's organs during an outbreak in Brazilian commercial and breeder flocks with sepsis and high mortality levels. We studied 18 flocks, accounting for 182 samples, being eight flocks (84 samples) as ES2 positive with individuals demonstrating clinical symptoms and high mortality. We obtained the genetic variability of 19 samples with PFGE and found two clones, both from the same flock but different samples, and two clusters. Interestingly, we found 15 strains with high genetic variability among and within flocks. We have found a positive association between the proximity of ES2 positive turkey flocks and commercial swine sites through epidemiological analysis. We infected Vero cells with two different isolates and three distinct concentrations of ES2. After performing the morphometry, we recorded enlargement of the nucleus and nucleolus. Moreover, we performed fluorescence assays that resulted in apoptotic and necrotic cells. We demonstrated that ES2 could multiply in the extracellular medium and invade and survive inside Vero cells. For the first time, our finds show that ES2 may have similar behavior as E. rhusiopathiae as a facultative intracellular microorganism, which may represent a hazard for humans.
Collapse
|