1
|
Barrett CF, Pace MC, Corbett CW. Plastid genome evolution in leafless members of the orchid subfamily Orchidoideae, with a focus on Degranvillea dermaptera. AMERICAN JOURNAL OF BOTANY 2024; 111:e16370. [PMID: 38989916 DOI: 10.1002/ajb2.16370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 04/25/2024] [Accepted: 04/25/2024] [Indexed: 07/12/2024]
Abstract
PREMISE Leafless, heterotrophic plants are prime examples of organismal modification, the genomic consequences of which have received considerable interest. In particular, plastid genomes (plastomes) are being sequenced at a high rate, allowing continual refinement of conceptual models of reductive evolution in heterotrophs. However, numerous sampling gaps exist, hindering the ability to conduct comprehensive phylogenomic analyses in these plants. METHODS Using floral tissue from an herbarium specimen, we sequenced and analyzed the plastome of Degranvillea dermaptera, a rarely collected, leafless orchid species from South America about which little is known, including its phylogenetic affinities. RESULTS The plastome is the most reduced of those sequenced among the orchid subfamily Orchidoideae. In Degranvillea, it has lost the majority of genes found in leafy autotrophic species, is structurally rearranged, and has similar gene content to the most reduced plastomes among the orchids. We found strong evidence for the placement of Degranvillea within the subtribe Spiranthinae using models that explicitly account for heterotachy, or lineage-specific evolutionary rate variation over time. We further found evidence of relaxed selection on several genes and of correlations among substitution rates and several other "traits" of the plastome among leafless members of orchid subfamily Orchidoideae. CONCLUSIONS Our findings advance knowledge on the phylogenetic relationships and paths of plastid genome evolution among the orchids, which have experienced more independent transitions to heterotrophy than any other plant family. This study demonstrates the importance of herbarium collections in comparative genomics of poorly known species of conservation concern.
Collapse
Affiliation(s)
- Craig F Barrett
- Department of Biology, West Virginia University, 53 Campus Drive, Morgantown, 26506, WV, USA
| | - Matthew C Pace
- New York Botanical Garden, 2900 Southern Boulevard, Bronx, 10458, NY, USA
| | - Cameron W Corbett
- Department of Biology, West Virginia University, 53 Campus Drive, Morgantown, 26506, WV, USA
| |
Collapse
|
2
|
Ji HY, Ye C, Chen YQ, Li JW, Hidayat A, Miao JL, Li JH, Wu JY, Zhai JW, Lan SR, Jin XH. Phylogenomics and biogeographical diversification of Collabieae (Orchidaceae) and its implication in the reconstruction of the dynamic history of Asian evergreen broadleaved forests. Mol Phylogenet Evol 2024; 196:108084. [PMID: 38688440 DOI: 10.1016/j.ympev.2024.108084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 02/16/2024] [Accepted: 04/24/2024] [Indexed: 05/02/2024]
Abstract
The tribe Collabieae (Epidendroideae, Orchidaceae) comprises approximately 500 species. Generic delimitation within Collabieae are confusing and phylogenetic interrelationships within the Collabieae have not been well resolved. Plastid genomes and nuclear internal transcribed spacer (ITS) sequences were used to estimate the phylogenetic relationships, ancestral ranges, and diversification rates of Collabieae. The results showed that Collabieae was subdivided into nine clades with high support. We proposed to combine Ancistrochilus and Pachystoma into Spathoglottis, merge Collabium and Chrysoglossum into Diglyphosa, and separate Pilophyllum and Hancockia as distinctive genera. The diversification of the nine clades of Collabieae might be associated with the uplift of the Himalayas during the Late Oligocene/Early Miocene. The enhanced East Asian summer monsoon in the Late Miocene may have promoted the rapid diversification of Collabieae at a sustained high diversification rate. The increased size of terrestrial pseudobulbs may be one of the drivers of Collabieae diversification. Our results suggest that the establishment and development of evergreen broadleaved forests facilitated the diversification of Collabieae.
Collapse
Affiliation(s)
- Hong-Yu Ji
- State Key Laboratory of Plant Diversity and Speciality Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, China; Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Chao Ye
- State Key Laboratory of Plant Diversity and Speciality Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Yan-Qiong Chen
- College of Geography and Oceanography, Minjiang University, Fuzhou, China
| | - Jian-Wu Li
- Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Yunnan, China
| | - Arief Hidayat
- Research Center for Biosystematics and Evolution, National Research and Innovation Agency, Cibinong, Indonesia
| | - Jiang-Lin Miao
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, China
| | | | - Jian-Yong Wu
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment (MEE), China
| | - Jun-Wen Zhai
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, China.
| | - Si-Ren Lan
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, China.
| | - Xiao-Hua Jin
- State Key Laboratory of Plant Diversity and Speciality Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, China; China National Botanical Garden, Beijing, China.
| |
Collapse
|
3
|
Wang Y, Wang H, Ye C, Wang Z, Ma C, Lin D, Jin X. Progress in systematics and biogeography of Orchidaceae. PLANT DIVERSITY 2024; 46:425-434. [PMID: 39280975 PMCID: PMC11390685 DOI: 10.1016/j.pld.2024.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 05/10/2024] [Accepted: 05/13/2024] [Indexed: 09/18/2024]
Abstract
Orchidaceae are one of the largest families of angiosperms in terms of species richness. In the last decade, numerous studies have delved into reconstructing the phylogenetic framework of Orchidaceae, leveraging data from plastid, mitochondrial and nuclear sources. These studies have provided new insights into the systematics, diversification and biogeography of Orchidaceae, establishing a robust foundation for future research. Nevertheless, pronounced controversies persist regarding the precise placement of certain lineages within these phylogenetic frameworks. To address these discrepancies and deepen our understanding of the phylogenetic structure of Orchidaceae, we provide a comprehensive overview and analysis of phylogenetic studies focusing on contentious groups within Orchidaceae since 2015, delving into discussions on the underlying reasons for observed topological conflicts. We also provide a novel phylogenetic framework at the subtribal level. Furthermore, we examine the tempo and mode underlying orchid species diversity from the perspective of historical biogeography, highlighting factors contributing to extensive speciation. Ultimately, we delineate avenues for future research aimed at enhancing our understanding of Orchidaceae phylogeny and diversity.
Collapse
Affiliation(s)
- Yajun Wang
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, the Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
| | - Hanchen Wang
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, the Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
| | - Chao Ye
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, the Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
| | - Zhiping Wang
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, the Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
| | - Chongbo Ma
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, the Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
| | - Dongliang Lin
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, the Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
| | - Xiaohua Jin
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, the Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
| |
Collapse
|
4
|
Muti RM, Barrett CF, Sinn BT. Evolution of Whirly1 in the angiosperms: sequence, splicing, and expression in a clade of early transitional mycoheterotrophic orchids. FRONTIERS IN PLANT SCIENCE 2024; 15:1241515. [PMID: 39006962 PMCID: PMC11239579 DOI: 10.3389/fpls.2024.1241515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 06/07/2024] [Indexed: 07/16/2024]
Abstract
The plastid-targeted transcription factor Whirly1 (WHY1) has been implicated in chloroplast biogenesis, plastid genome stability, and fungal defense response, which together represent characteristics of interest for the study of autotrophic losses across the angiosperms. While gene loss in the plastid and nuclear genomes has been well studied in mycoheterotrophic plants, the evolution of the molecular mechanisms impacting genome stability is completely unknown. Here, we characterize the evolution of WHY1 in four early transitional mycoheterotrophic orchid species in the genus Corallorhiza by synthesizing the results of phylogenetic, transcriptomic, and comparative genomic analyses with WHY1 genomic sequences sampled from 21 orders of angiosperms. We found an increased number of non-canonical WHY1 isoforms assembled from all but the greenest Corallorhiza species, including intron retention in some isoforms. Within Corallorhiza, phylotranscriptomic analyses revealed the presence of tissue-specific differential expression of WHY1 in only the most photosynthetically capable species and a coincident increase in the number of non-canonical WHY1 isoforms assembled from fully mycoheterotrophic species. Gene- and codon-level tests of WHY1 selective regimes did not infer significant signal of either relaxed selection or episodic diversifying selection in Corallorhiza but did so for relaxed selection in the late-stage full mycoheterotrophic orchids Epipogium aphyllum and Gastrodia elata. Additionally, nucleotide substitutions that most likely impact the function of WHY1, such as nonsense mutations, were only observed in late-stage mycoheterotrophs. We propose that our findings suggest that splicing and expression changes may precede the selective shifts we inferred for late-stage mycoheterotrophic species, which therefore does not support a primary role for WHY1 in the transition to mycoheterotrophy in the Orchidaceae. Taken together, this study provides the most comprehensive view of WHY1 evolution across the angiosperms to date.
Collapse
Affiliation(s)
- Rachel M. Muti
- Department of Biology and Earth Science, Otterbein University, Westerville, OH, United States
- Department of Hematology and Medical Oncology, Emory University, Atlanta, GA, United States
| | - Craig F. Barrett
- Department of Biology, West Virginia University, Morgantown, WV, United States
| | - Brandon T. Sinn
- Department of Biology and Earth Science, Otterbein University, Westerville, OH, United States
- Faculty of Biology, University of Latvia, Riga, Latvia
| |
Collapse
|
5
|
Goedderz S, Clements MA, Bent SJ, Nicholls JA, Patel VS, Crayn DM, Schlüter PM, Nargar K. Plastid phylogenomics reveals evolutionary relationships in the mycoheterotrophic orchid genus Dipodium and provides insights into plastid gene degeneration. FRONTIERS IN PLANT SCIENCE 2024; 15:1388537. [PMID: 38938632 PMCID: PMC11210000 DOI: 10.3389/fpls.2024.1388537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 05/13/2024] [Indexed: 06/29/2024]
Abstract
The orchid genus Dipodium R.Br. (Epidendroideae) comprises leafy autotrophic and leafless mycoheterotrophic species, with the latter confined to sect. Dipodium. This study examined plastome degeneration in Dipodium in a phylogenomic and temporal context. Whole plastomes were reconstructed and annotated for 24 Dipodium samples representing 14 species and two putatively new species, encompassing over 80% of species diversity in sect. Dipodium. Phylogenomic analysis based on 68 plastid loci including a broad outgroup sampling across Orchidaceae found that sect. Leopardanthus is the sister lineage to sect. Dipodium. Dipodium ensifolium, the only leafy autotrophic species in sect. Dipodium, was found to be a sister to all leafless, mycoheterotrophic species, supporting a single evolutionary origin of mycoheterotrophy in the genus. Divergence-time estimations found that Dipodium arose ca. 33.3 Ma near the lower boundary of the Oligocene and that crown diversification commenced in the late Miocene, ca. 11.3 Ma. Mycoheterotrophy in the genus was estimated to have evolved in the late Miocene, ca. 7.3 Ma, in sect. Dipodium. The comparative assessment of plastome structure and gene degradation in Dipodium revealed that plastid ndh genes were pseudogenised or physically lost in all Dipodium species, including in leafy autotrophic species of both Dipodium sections. Levels of plastid ndh gene degradation were found to vary among species as well as within species, providing evidence of relaxed selection for retention of the NADH dehydrogenase complex within the genus. Dipodium exhibits an early stage of plastid genome degradation, as all species were found to have retained a full set of functional photosynthesis-related genes and housekeeping genes. This study provides important insights into plastid genome degradation along the transition from autotrophy to mycoheterotrophy in a phylogenomic and temporal context.
Collapse
Affiliation(s)
- Stephanie Goedderz
- Australian Tropical Herbarium, James Cook University, Cairns, QLD, Australia
- Department of Plant Evolutionary Biology, Institute of Biology, University of Hohenheim, Stuttgart, Germany
| | - Mark A. Clements
- Centre for Australian National Biodiversity Research (joint venture between Parks Australia and CSIRO), Canberra, ACT, Australia
| | - Stephen J. Bent
- Data61, Commonwealth Industrial and Scientific Research Organisation (CSIRO), Brisbane, QLD, Australia
| | - James A. Nicholls
- Australian National Insect Collection, Commonwealth Industrial and Scientific Research Organisation (CSIRO), Canberra, ACT, Australia
| | - Vidushi S. Patel
- National Research Collections Australia, Commonwealth Industrial and Scientific Research Organisation (CSIRO), Canberra, ACT, Australia
| | - Darren M. Crayn
- Australian Tropical Herbarium, James Cook University, Cairns, QLD, Australia
| | - Philipp M. Schlüter
- Department of Plant Evolutionary Biology, Institute of Biology, University of Hohenheim, Stuttgart, Germany
| | - Katharina Nargar
- Australian Tropical Herbarium, James Cook University, Cairns, QLD, Australia
- National Research Collections Australia, Commonwealth Industrial and Scientific Research Organisation (CSIRO), Canberra, ACT, Australia
| |
Collapse
|
6
|
Lundquist CR, Rudall PJ, Sukri RS, Conejero M, Smith A, Lopez-Garcia M, Vignolini S, Metali F, Whitney HM. Living jewels: iterative evolution of iridescent blue leaves from helicoidal cell walls. ANNALS OF BOTANY 2024; 134:131-150. [PMID: 38551515 PMCID: PMC11161568 DOI: 10.1093/aob/mcae045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 04/15/2024] [Indexed: 06/09/2024]
Abstract
BACKGROUND AND AIMS Structural colour is responsible for the remarkable metallic blue colour seen in the leaves of several plants. Species belonging to only ten genera have been investigated to date, revealing four photonic structures responsible for structurally coloured leaves. One of these is the helicoidal cell wall, known to create structural colour in the leaf cells of five taxa. Here we investigate a broad selection of land plants to understand the phylogenetic distribution of this photonic structure in leaves. METHODS We identified helicoidal structures in the leaf epidermal cells of 19 species using transmission electron microscopy. Pitch measurements of the helicoids were compared with the reflectance spectra of circularly polarized light from the cells to confirm the structure-colour relationship. RESULTS By incorporating species examined with a polarizing filter, our results increase the number of taxa with photonic helicoidal cell walls to species belonging to at least 35 genera. These include 19 monocot genera, from the orders Asparagales (Orchidaceae) and Poales (Cyperaceae, Eriocaulaceae, Rapateaceae) and 16 fern genera, from the orders Marattiales (Marattiaceae), Schizaeales (Anemiaceae) and Polypodiales (Blechnaceae, Dryopteridaceae, Lomariopsidaceae, Polypodiaceae, Pteridaceae, Tectariaceae). CONCLUSIONS Our investigation adds considerably to the recorded diversity of plants with structurally coloured leaves. The iterative evolution of photonic helicoidal walls has resulted in a broad phylogenetic distribution, centred on ferns and monocots. We speculate that the primary function of the helicoidal wall is to provide strength and support, so structural colour could have evolved as a potentially beneficial chance function of this structure.
Collapse
Affiliation(s)
- Clive R Lundquist
- School of Biological Sciences, University of Bristol, Bristol, UK
- Jodrell Laboratory, Royal Botanic Gardens Kew, Richmond, Surrey, UK
| | - Paula J Rudall
- Jodrell Laboratory, Royal Botanic Gardens Kew, Richmond, Surrey, UK
| | - Rahayu S Sukri
- Faculty of Science, Universiti Brunei Darussalam, Bandar Seri Begawan, Brunei Darussalam
| | - María Conejero
- Jodrell Laboratory, Royal Botanic Gardens Kew, Richmond, Surrey, UK
| | - Alyssa Smith
- Department of Chemistry, University of Cambridge, UK
| | - Martin Lopez-Garcia
- Department of Nanophotonics, International Iberian Nanotechnology Laboratory, 4715-330 Braga, Portugal
| | - Silvia Vignolini
- Max Planck Institute of Colloids and Interfaces, 14476 Potsdam, Germany
| | - Faizah Metali
- Faculty of Science, Universiti Brunei Darussalam, Bandar Seri Begawan, Brunei Darussalam
| | | |
Collapse
|
7
|
Simpson L, Clements MA, Orel HK, Crayn DM, Nargar K. Plastid phylogenomics clarifies broad-level relationships in Bulbophyllum (Orchidaceae) and provides insights into range evolution of Australasian section Adelopetalum. FRONTIERS IN PLANT SCIENCE 2024; 14:1219354. [PMID: 38854888 PMCID: PMC11157511 DOI: 10.3389/fpls.2023.1219354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 11/13/2023] [Indexed: 06/11/2024]
Abstract
The hyperdiverse orchid genus Bulbophyllum is the second largest genus of flowering plants and exhibits a pantropical distribution with a center of diversity in tropical Asia. The only Bulbophyllum section with a center of diversity in Australasia is sect. Adelopetalum. However, the phylogenetic placement, interspecific relationships, and spatio-temporal evolution of this section remain largely unclear. To infer broad-level relationships within Bulbophyllum, and interspecific relationships within sect. Adelopetalum, a genome skimming dataset was generated for 89 samples, which yielded 70 plastid coding regions and a nuclear ribosomal DNA cistron. For 18 additional samples, Sanger data from two plastid loci (matK and ycf1) and nuclear ITS were added using a supermatrix approach. The study provided new insights into broad-level relationships in Bulbophyllum, including phylogenetic evidence for the non-monophyly of sections Beccariana, Brachyantha, Brachypus, Cirrhopetaloides, Cirrhopetalum, Desmosanthes, Minutissima, Oxysepala, Polymeres, and Sestochilos. Section Adelopetalum and sect. Minutissima s.s. formed a highly supported clade that was resolved as a sister group to the remainder of the genus. Divergence time estimations based on a relaxed molecular clock model placed the origin of Bulbophyllum in the Early Oligocene (ca. 33.2 Ma) and sect. Adelopetalum in the Late Oligocene (ca. 23.6 Ma). Ancestral range estimations based on a BAYAREALIKE model identified the Australian continent as the ancestral area of the sect. Adelopetalum. The section underwent crown diversification from the mid-Miocene to the late Pleistocene, predominantly in continental Australia. At least two independent long-distance dispersal events were inferred eastward from the Australian continent to New Zealand and to New Caledonia from the early Pliocene onwards, likely mediated by predominantly westerly winds of the Southern hemisphere. Retraction and fragmentation of the eastern Australian rainforests from the early Miocene onwards are likely drivers of lineage divergence within sect. Adelopetalum facilitating allopatric speciation.
Collapse
Affiliation(s)
- Lalita Simpson
- Australian Tropical Herbarium, James Cook University, Cairns, QLD, Australia
- College of Science and Engineering, James Cook University, Cairns, QLD, Australia
| | - Mark A. Clements
- Centre for Australian National Biodiversity Research (joint venture between Parks Australia and Commonwealth Industrial and Scientific Research Organisation (CSIRO)), Canberra, ACT, Australia
| | - Harvey K. Orel
- School of BioSciences, The University of Melbourne, Parkville, VIC, Australia
- National Research Collections Australia, Commonwealth Industrial and Scientific Research Organisation (CSIRO), Canberra, ACT, Australia
| | - Darren M. Crayn
- Australian Tropical Herbarium, James Cook University, Cairns, QLD, Australia
| | - Katharina Nargar
- Australian Tropical Herbarium, James Cook University, Cairns, QLD, Australia
- National Research Collections Australia, Commonwealth Industrial and Scientific Research Organisation (CSIRO), Canberra, ACT, Australia
| |
Collapse
|
8
|
Pérez-Escobar OA, Bogarín D, Przelomska NAS, Ackerman JD, Balbuena JA, Bellot S, Bühlmann RP, Cabrera B, Cano JA, Charitonidou M, Chomicki G, Clements MA, Cribb P, Fernández M, Flanagan NS, Gravendeel B, Hágsater E, Halley JM, Hu AQ, Jaramillo C, Mauad AV, Maurin O, Müntz R, Leitch IJ, Li L, Negrão R, Oses L, Phillips C, Rincon M, Salazar GA, Simpson L, Smidt E, Solano-Gomez R, Parra-Sánchez E, Tremblay RL, van den Berg C, Tamayo BSV, Zuluaga A, Zuntini AR, Chase MW, Fay MF, Condamine FL, Forest F, Nargar K, Renner SS, Baker WJ, Antonelli A. The origin and speciation of orchids. THE NEW PHYTOLOGIST 2024; 242:700-716. [PMID: 38382573 DOI: 10.1111/nph.19580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 12/04/2023] [Indexed: 02/23/2024]
Abstract
Orchids constitute one of the most spectacular radiations of flowering plants. However, their origin, spread across the globe, and hotspots of speciation remain uncertain due to the lack of an up-to-date phylogeographic analysis. We present a new Orchidaceae phylogeny based on combined high-throughput and Sanger sequencing data, covering all five subfamilies, 17/22 tribes, 40/49 subtribes, 285/736 genera, and c. 7% (1921) of the 29 524 accepted species, and use it to infer geographic range evolution, diversity, and speciation patterns by adding curated geographical distributions from the World Checklist of Vascular Plants. The orchids' most recent common ancestor is inferred to have lived in Late Cretaceous Laurasia. The modern range of Apostasioideae, which comprises two genera with 16 species from India to northern Australia, is interpreted as relictual, similar to that of numerous other groups that went extinct at higher latitudes following the global climate cooling during the Oligocene. Despite their ancient origin, modern orchid species diversity mainly originated over the last 5 Ma, with the highest speciation rates in Panama and Costa Rica. These results alter our understanding of the geographic origin of orchids, previously proposed as Australian, and pinpoint Central America as a region of recent, explosive speciation.
Collapse
Affiliation(s)
| | - Diego Bogarín
- Lankester Botanical Garden, University of Costa Rica, P.O. Box 302-7050, Cartago, Costa Rica
- Naturalis Biodiversity Centre, Leiden, CR 2333, the Netherlands
| | - Natalia A S Przelomska
- Royal Botanic Gardens, Kew, London, TW9 3AE, UK
- University of Portsmouth, Portsmouth, PO1 2DY, UK
| | - James D Ackerman
- University of Puerto Rico - Rio Piedras, San Juan, PR, 00925-2537, USA
| | | | | | | | - Betsaida Cabrera
- Jardín Botánico Rafael Maria Moscoso, Santo Domingo, 21-9, Dominican Republic
| | | | | | | | - Mark A Clements
- Centre for Australian National Biodiversity Research (joint venture between Parks Australia and CSIRO), GPO Box 1700, Canberra, ACT, 2601, Australia
| | | | - Melania Fernández
- Lankester Botanical Garden, University of Costa Rica, P.O. Box 302-7050, Cartago, Costa Rica
| | - Nicola S Flanagan
- Universidad Pontificia Javeriana, Seccional Cali, Cali, 760031, Colombia
| | | | | | | | - Ai-Qun Hu
- Singapore Botanic Gardens, 1 Cluny Road, Singapore, 257494, Singapore
| | - Carlos Jaramillo
- Smithsonian Tropical Research Institute, Apartado, Panama City, 0843-03092, Panama
| | | | | | - Robert Müntz
- Reserva Biológica Guaitil, Eisenstadt, 7000, Austria
| | | | - Lan Li
- National Research Collections Australia, Commonwealth Industrial and Scientific Research Organisation (CSIRO), GPO Box 1700, Canberra, ACT, 2601, Australia
| | | | - Lizbeth Oses
- Lankester Botanical Garden, University of Costa Rica, P.O. Box 302-7050, Cartago, Costa Rica
| | - Charlotte Phillips
- Royal Botanic Gardens, Kew, London, TW9 3AE, UK
- University of Portsmouth, Portsmouth, PO1 2DY, UK
| | - Milton Rincon
- Jardín Botánico Jose Celestino Mutis, Bogota, 111071, Colombia
| | | | - Lalita Simpson
- Australian Tropical Herbarium, James Cook University, GPO Box 6811, Cairns, Qld, 4878, Australia
| | - Eric Smidt
- Universidade Federal do Paraná, Curitiba, 19031, Brazil
| | | | | | | | - Cassio van den Berg
- Universidade Estadual de Feira de Santana, Feira de Santana, 44036-900, Brazil
| | | | | | | | - Mark W Chase
- Royal Botanic Gardens, Kew, London, TW9 3AE, UK
- Department of Environment and Agriculture, Curtin University, Perth, WA, 6102, Australia
| | | | - Fabien L Condamine
- Institut des Sciences de l'Evolution de Montpellier (Université de Montpellier|CNRS|IRD|EPHE), Place Eugène Bataillon, Montpellier, 34000, France
| | | | - Katharina Nargar
- National Research Collections Australia, Commonwealth Industrial and Scientific Research Organisation (CSIRO), GPO Box 1700, Canberra, ACT, 2601, Australia
- Australian Tropical Herbarium, James Cook University, GPO Box 6811, Cairns, Qld, 4878, Australia
- Scientific Research Organisation (CSIRO), GPO Box 1700, Canberra, ACT, 2601, Australia
| | | | | | - Alexandre Antonelli
- Royal Botanic Gardens, Kew, London, TW9 3AE, UK
- Department of Biological and Environmental Sciences, Gothenburg Global Biodiversity Centre, Gothenburg, 417 56, Sweden
- University of Gothenburg, Gothenburg, 417 56, Sweden
- Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
- Department of Biology, University of Oxford, Oxford, OX1 3SZ, UK
| |
Collapse
|
9
|
Kim SH, Yang J, Cho MS, Stuessy TF, Crawford DJ, Kim SC. Chloroplast Genome Provides Insights into Molecular Evolution and Species Relationship of Fleabanes ( Erigeron: Tribe Astereae, Asteraceae) in the Juan Fernández Islands, Chile. PLANTS (BASEL, SWITZERLAND) 2024; 13:612. [PMID: 38475459 DOI: 10.3390/plants13050612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/21/2024] [Accepted: 02/22/2024] [Indexed: 03/14/2024]
Abstract
Erigeron represents the third largest genus on the Juan Fernández Islands, with six endemic species, five of which occur exclusively on the younger Alejandro Selkirk Island with one species on both islands. While its continental sister species is unknown, Erigeron on the Juan Fernández Islands appears to be monophyletic and most likely evolved from South American progenitor species. We characterized the complete chloroplast genomes of five Erigeron species, including accessions of E. fernandezia and one each from Alejandro Selkirk and Robinson Crusoe Islands, with the purposes of elucidating molecular evolution and phylogenetic relationships. We found highly conserved chloroplast genomes in size, gene order and contents, and further identified several mutation hotspot regions. In addition, we found two positively selected chloroplast genes (ccsA and ndhF) among species in the islands. The complete plastome sequences confirmed the monophyly of Erigeron in the islands and corroborated previous phylogenetic relationships among species. New findings in the current study include (1) two major lineages, E. turricola-E. luteoviridis and E. fernandezia-E. ingae-E. rupicola, (2) the non-monophyly of E. fernandezia occurring on the two islands, and (3) the non-monophyly of the alpine species E. ingae complex.
Collapse
Affiliation(s)
- Seon-Hee Kim
- Department of Botany, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - JiYoung Yang
- Research Institute for Dok-do and Ulleung-do Island, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Myong-Suk Cho
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Tod F Stuessy
- Department of Evolution, Ecology, and Organismal Biology, The Ohio State University, Columbus, OH 43210, USA
| | - Daniel J Crawford
- Department of Ecology and Evolutionary Biology and the Biodiversity Institute, The University of Kansas, Lawrence, KS 66045, USA
| | - Seung-Chul Kim
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|
10
|
Collobert G, Perez-Lamarque B, Dubuisson JY, Martos F. Gains and losses of the epiphytic lifestyle in epidendroid orchids: review and new analyses of succulence traits. ANNALS OF BOTANY 2023; 132:787-800. [PMID: 37777476 PMCID: PMC10799982 DOI: 10.1093/aob/mcad145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/13/2023] [Accepted: 09/29/2023] [Indexed: 10/02/2023]
Abstract
BACKGROUND AND AIMS Epiphytism has evolved repeatedly in plants and has resulted in a considerable number of species with original characteristics. Because water supply is generally erratic compared to that in soils, succulent forms in particular are widespread in epiphytic species. However, succulent organs also exist in terrestrial plants, and the question of the concomitant evolution of epiphytism and succulence has received little attention, not even in the epidendroid orchids, which account for 67.6 % of vascular epiphytes. METHODS We built a new time-calibrated phylogenetic tree of Epidendroideae with 203 genera treated in genus Orchidacearum, from which we reconstructed the evolution of epiphytism as well as traits related to water scarcity (stem and leaf succulence and the number of velamen layers), while testing for the correlated evolution between the two. Furthermore, we estimated the ancestral geographical ranges to evaluate the palaeoclimatic context in which epiphytism evolved. KEY RESULTS Epiphytism evolved at least three times: 39.0 million years ago (Mya) in the common ancestor of the Malaxideae and Cymbidieae that probably ranged from the Neotropics to Southeast Asia and Australia, 11.5 Mya in the Arethuseae in Southeast Asia and Australia, and 7.1 Mya in the neotropical Sobralieae, and it was notably lost in the Malaxidiinae, Collabieae, Calypsoeae, Bletiinae and Eulophiinae. Stem succulence is inferred to have evolved once, in a terrestrial ancestor at least 4.1 Mya before the emergence of epiphytic lineages. If lost, stem succulence was almost systematically replaced by leaf succulence in epiphytic lineages. CONCLUSIONS Epiphytism may have evolved in seasonally dry forests during the Eocene climatic cooling, among stem-succulent terrestrial orchids. Our results suggest that the emergence of stem succulence in early epidendroids was a key innovation in the evolution of epiphytism, facilitating the colonization of epiphytic environments that later led to the greatest diversification of epiphytic orchids.
Collapse
Affiliation(s)
- Géromine Collobert
- Institut de Systématique, Évolution, Biodiversité (ISYEB), Muséum national d’Histoire naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, CP 39, 57 rue Cuvier, 75005 Paris, France
| | - Benoît Perez-Lamarque
- Institut de Biologie de l’ENS (IBENS), École Normale Supérieure, CNRS, INSERM, Université PSL, 46 rue d’Ulm, 75005 Paris, France
| | - Jean-Yves Dubuisson
- Institut de Systématique, Évolution, Biodiversité (ISYEB), Muséum national d’Histoire naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, CP 39, 57 rue Cuvier, 75005 Paris, France
| | - Florent Martos
- Institut de Systématique, Évolution, Biodiversité (ISYEB), Muséum national d’Histoire naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, CP 39, 57 rue Cuvier, 75005 Paris, France
| |
Collapse
|
11
|
Klimpert NJ, Mayer JLS, Sarzi DS, Prosdocimi F, Pinheiro F, Graham SW. Phylogenomics and plastome evolution of a Brazilian mycoheterotrophic orchid, Pogoniopsis schenckii. AMERICAN JOURNAL OF BOTANY 2022; 109:2030-2050. [PMID: 36254561 DOI: 10.1002/ajb2.16084] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 09/23/2022] [Accepted: 09/27/2022] [Indexed: 06/16/2023]
Abstract
PREMISE Pogoniopsis likely represents an independent photosynthesis loss in orchids. We use phylogenomic data to better identify the phylogenetic placement of this fully mycoheterotrophic taxon, and investigate its molecular evolution. METHODS We performed likelihood analysis of plastid and mitochondrial phylogenomic data to localize the position of Pogoniopsis schenckii in orchid phylogeny, and investigated the evolution of its plastid genome. RESULTS All analyses place Pogoniopsis in subfamily Epidendroideae, with strongest support from mitochondrial data, which also place it near tribe Sobralieae with moderately strong support. Extreme rate elevation in Pogoniopsis plastid genes broadly depresses branch support; in contrast, mitochondrial genes are only mildly rate elevated and display very modest and localized reductions in bootstrap support. Despite considerable genome reduction, including loss of photosynthesis genes and multiple translation apparatus genes, gene order in Pogoniopsis plastomes is identical to related autotrophs, apart from moderately shifted inverted repeat (IR) boundaries. All cis-spliced introns have been lost in retained genes. Two plastid genes (accD, rpl2) show significant strengthening of purifying selection. A retained plastid tRNA gene (trnE-UUC) of Pogoniopsis lacks an anticodon; we predict that it no longer functions in translation but retains a secondary role in heme biosynthesis. CONCLUSIONS Slowly evolving mitochondrial genes clarify the placement of Pogoniopsis in orchid phylogeny, a strong contrast with analysis of rate-elevated plastome data. We documented the effects of the novel loss of photosynthesis: for example, despite massive gene loss, its plastome is fully colinear with other orchids, and it displays only moderate shifts in selective pressure in retained genes.
Collapse
Affiliation(s)
- Nathaniel J Klimpert
- Department of Botany, University of British Columbia, 6270 University Boulevard, Vancouver, British Columbia, V6T 1Z4, Canada
| | - Juliana Lischka Sampaio Mayer
- Departamento de Biologia Vegetal, Universidade Estadual de Campinas, 255 Rua Monteiro Lobato, Campinas, São Paulo, 13.083-862, Brazil
| | - Deise Schroder Sarzi
- Laboratório de Genômica e Biodiversidade, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal Do Rio de Janeiro, UFRJ/CCS/Bloco B33, Rio de Janeiro, RJ, 21.941-902, Brazil
| | - Francisco Prosdocimi
- Laboratório de Genômica e Biodiversidade, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal Do Rio de Janeiro, UFRJ/CCS/Bloco B33, Rio de Janeiro, RJ, 21.941-902, Brazil
| | - Fábio Pinheiro
- Departamento de Biologia Vegetal, Universidade Estadual de Campinas, 255 Rua Monteiro Lobato, Campinas, São Paulo, 13.083-862, Brazil
| | - Sean W Graham
- Department of Botany, University of British Columbia, 6270 University Boulevard, Vancouver, British Columbia, V6T 1Z4, Canada
| |
Collapse
|
12
|
Peng HW, Lian L, Zhang J, Erst AS, Wang W. Phylogenomics, plastome degradation and mycoheterotrophy evolution of Neottieae (Orchidaceae), with emphasis on the systematic position and Loess Plateau-Changbai Mountains disjunction of Diplandrorchis. BMC PLANT BIOLOGY 2022; 22:507. [PMID: 36316655 PMCID: PMC9624021 DOI: 10.1186/s12870-022-03906-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 10/25/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Mycoheterotrophy is a unique survival strategy adapted to dense forests and has attracted biologists' attention for centuries. However, its evolutionary origin and related plastome degradation are poorly understood. The tribe Neottieae contains various nutrition types, i.e., autotrophy, mixotrophy, and mycoheterotrophy. Here, we present a comprehensive phylogenetic analysis of the tribe based on plastome and nuclear ITS data. We inferred the evolutionary shift of nutrition types, constructed the patterns of plastome degradation, and estimated divergence times and ancestral ranges. We also used an integration of molecular dating and ecological niche modeling methods to investigate the disjunction between the Loess Plateau and Changbai Mountains in Diplandrorchis, a mycoheterotrophic genus endemic to China that was included in a molecular phylogenetic study for the first time. RESULTS Diplandrorchis was imbedded within Neottia and formed a clade with four mycoheterotrophic species. Autotrophy is the ancestral state in Neottieae, mixotrophy independently originated at least five times, and three shifts from mixotrophy to mycoheterotrophy independently occurred. The five mixotrophic lineages possess all plastid genes or lost partial/all ndh genes, whereas each of the three mycoheterotroph lineages has a highly reduced plastome: one lost part of its ndh genes and a few photosynthesis-related genes, and the other two lost almost all ndh, photosynthesis-related, rpo, and atp genes. These three mycoheterotrophic lineages originated at about 26.40 Ma, 25.84 Ma, and 9.22 Ma, respectively. Diplandrorchis had presumably a wide range in the Pliocene and migrated southward in the Pleistocene. CONCLUSIONS The Pleistocene climatic fluctuations and the resultant migration resulted in the Loess Plateau-Changbai Mountains disjunction of Diplandrorchis. In the evolution of mycoheterotrophic lineages, the loss of plastid-encoded genes and plastome degradation are staged and irreversible, constraining mycoheterotrophs to inhabit understories with low light levels. Accordingly, the rise of local forests might have promoted the origin of conditions in which mycoheterotrophy is advantageous.
Collapse
Affiliation(s)
- Huan-Wen Peng
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lian Lian
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jun Zhang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- Forestry College, Beihua University, Jilin, 132013, China
| | - Andrey S Erst
- Central Siberian Botanical Garden, Russian Academy of Sciences, Zolotodolinskaya str. 101, Novosibirsk, 630090, Russia
| | - Wei Wang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
13
|
BuscoPhylo: a webserver for Busco-based phylogenomic analysis for non-specialists. Sci Rep 2022; 12:17352. [PMID: 36253435 PMCID: PMC9576783 DOI: 10.1038/s41598-022-22461-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 10/14/2022] [Indexed: 01/10/2023] Open
Abstract
Here we present the BuscoPhylo tool that enables both students and established scientists to easily perform Busco-based phylogenomic analysis starting from a set of genomes sequences. BuscoPhylo is an efficient and user-friendly web server freely accessible at https://buscophylo.inra.org.ma/ . The source code, along with documentation, is freely available under an MIT license at https://github.com/alaesahbou/BuscoPhylo .
Collapse
|
14
|
Zhang D, Zhao XW, Li YY, Ke SJ, Yin WL, Lan S, Liu ZJ. Advances and prospects of orchid research and industrialization. HORTICULTURE RESEARCH 2022; 9:uhac220. [PMID: 36479582 PMCID: PMC9720451 DOI: 10.1093/hr/uhac220] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 09/22/2022] [Indexed: 06/17/2023]
Abstract
Orchidaceae is one of the largest, most diverse families in angiosperms with significant ecological and economical values. Orchids have long fascinated scientists by their complex life histories, exquisite floral morphology and pollination syndromes that exhibit exclusive specializations, more than any other plants on Earth. These intrinsic factors together with human influences also make it a keystone group in biodiversity conservation. The advent of sequencing technologies and transgenic techniques represents a quantum leap in orchid research, enabling molecular approaches to be employed to resolve the historically interesting puzzles in orchid basic and applied biology. To date, 16 different orchid genomes covering four subfamilies (Apostasioideae, Vanilloideae, Epidendroideae, and Orchidoideae) have been released. These genome projects have given rise to massive data that greatly empowers the studies pertaining to key innovations and evolutionary mechanisms for the breadth of orchid species. The extensive exploration of transcriptomics, comparative genomics, and recent advances in gene engineering have linked important traits of orchids with a multiplicity of gene families and their regulating networks, providing great potential for genetic enhancement and improvement. In this review, we summarize the progress and achievement in fundamental research and industrialized application of orchids with a particular focus on molecular tools, and make future prospects of orchid molecular breeding and post-genomic research, providing a comprehensive assemblage of state of the art knowledge in orchid research and industrialization.
Collapse
Affiliation(s)
- Diyang Zhang
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xue-Wei Zhao
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yuan-Yuan Li
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shi-Jie Ke
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Wei-Lun Yin
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Siren Lan
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhong-Jian Liu
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
15
|
Nanjala C, Wanga VO, Odago W, Mutinda ES, Waswa EN, Oulo MA, Mkala EM, Kuja J, Yang JX, Dong X, Hu GW, Wang QF. Plastome structure of 8 Calanthe s.l. species (Orchidaceae): comparative genomics, phylogenetic analysis. BMC PLANT BIOLOGY 2022; 22:387. [DOI: https:/doi.org/10.1186/s12870-022-03736-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 06/29/2022] [Indexed: 06/21/2023]
Abstract
Abstract
Background
Calanthe (Epidendroideae, Orchidaceae) is a pantropical genus distributed in Asia and Africa. Its species are of great importance in terms of economic, ornamental and medicinal values. However, due to limited and confusing delimitation characters, the taxonomy of the Calanthe alliance (Calanthe, Cephalantheropsis, and Phaius) has not been sufficiently resolved. Additionally, the limited genomic information has shown incongruences in its systematics and phylogeny. In this study, we used illumina platform sequencing, performed a de novo assembly, and did a comparative analysis of 8 Calanthe group species' plastomes: 6 Calanthe and 2 Phaius species. Phylogenetic analyses were used to reconstruct the relationships of the species as well as with other species of the family Orchidaceae.
Results
The complete plastomes of the Calanthe group species have a quadripartite structure with varied sizes ranging between 150,105bp-158,714bp, including a large single-copy region (LSC; 83,364bp- 87,450bp), a small single-copy region (SSC; 16,297bp -18,586bp), and a pair of inverted repeat regions (IRs; 25,222bp - 26,430bp). The overall GC content of these plastomes ranged between 36.6-36.9%. These plastomes encoded 131-134 differential genes, which included 85-88 protein-coding genes, 37-38 tRNA genes, and 8 rRNA genes. Comparative analysis showed no significant variations in terms of their sequences, gene content, gene order, sequence repeats and the GC content hence highly conserved. However, some genes were lost in C. delavayi (P. delavayi), including ndhC, ndhF, and ndhK genes. Compared to the coding regions, the non-coding regions had more sequence repeats hence important for species DNA barcoding. Phylogenetic analysis revealed a paraphyletic relationship in the Calanthe group, and confirmed the position of Phaius delavayi in the genus Calanthe as opposed to its previous placement in Phaius.
Conclusion
This study provides a report on the complete plastomes of 6 Calanthe and 2 Phaius species and elucidates the structural characteristics of the plastomes. It also highlights the power of plastome data to resolve phylogenetic relationships and clarifies taxonomic disputes among closely related species to improve our understanding of their systematics and evolution. Furthermore, it also provides valuable genetic resources and a basis for studying evolutionary relationships and population genetics among orchid species.
Collapse
|
16
|
Nanjala C, Wanga VO, Odago W, Mutinda ES, Waswa EN, Oulo MA, Mkala EM, Kuja J, Yang JX, Dong X, Hu GW, Wang QF. Plastome structure of 8 Calanthe s.l. species (Orchidaceae): comparative genomics, phylogenetic analysis. BMC PLANT BIOLOGY 2022; 22:387. [PMID: 35918646 PMCID: PMC9347164 DOI: 10.1186/s12870-022-03736-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 06/29/2022] [Indexed: 06/01/2023]
Abstract
BACKGROUND Calanthe (Epidendroideae, Orchidaceae) is a pantropical genus distributed in Asia and Africa. Its species are of great importance in terms of economic, ornamental and medicinal values. However, due to limited and confusing delimitation characters, the taxonomy of the Calanthe alliance (Calanthe, Cephalantheropsis, and Phaius) has not been sufficiently resolved. Additionally, the limited genomic information has shown incongruences in its systematics and phylogeny. In this study, we used illumina platform sequencing, performed a de novo assembly, and did a comparative analysis of 8 Calanthe group species' plastomes: 6 Calanthe and 2 Phaius species. Phylogenetic analyses were used to reconstruct the relationships of the species as well as with other species of the family Orchidaceae. RESULTS The complete plastomes of the Calanthe group species have a quadripartite structure with varied sizes ranging between 150,105bp-158,714bp, including a large single-copy region (LSC; 83,364bp- 87,450bp), a small single-copy region (SSC; 16,297bp -18,586bp), and a pair of inverted repeat regions (IRs; 25,222bp - 26,430bp). The overall GC content of these plastomes ranged between 36.6-36.9%. These plastomes encoded 131-134 differential genes, which included 85-88 protein-coding genes, 37-38 tRNA genes, and 8 rRNA genes. Comparative analysis showed no significant variations in terms of their sequences, gene content, gene order, sequence repeats and the GC content hence highly conserved. However, some genes were lost in C. delavayi (P. delavayi), including ndhC, ndhF, and ndhK genes. Compared to the coding regions, the non-coding regions had more sequence repeats hence important for species DNA barcoding. Phylogenetic analysis revealed a paraphyletic relationship in the Calanthe group, and confirmed the position of Phaius delavayi in the genus Calanthe as opposed to its previous placement in Phaius. CONCLUSION This study provides a report on the complete plastomes of 6 Calanthe and 2 Phaius species and elucidates the structural characteristics of the plastomes. It also highlights the power of plastome data to resolve phylogenetic relationships and clarifies taxonomic disputes among closely related species to improve our understanding of their systematics and evolution. Furthermore, it also provides valuable genetic resources and a basis for studying evolutionary relationships and population genetics among orchid species.
Collapse
Affiliation(s)
- Consolata Nanjala
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, 430074 China
| | - Vincent Okelo Wanga
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, 430074 China
| | - Wyclif Odago
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, 430074 China
| | - Elizabeth Syowai Mutinda
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, 430074 China
| | - Emmanuel Nyongesa Waswa
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, 430074 China
| | - Millicent Akinyi Oulo
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, 430074 China
| | - Elijah Mbandi Mkala
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, 430074 China
| | - Josiah Kuja
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Jia-Xin Yang
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, 430074 China
| | - Xiang Dong
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, 430074 China
| | - Guang-Wan Hu
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, 430074 China
| | - Qing-Feng Wang
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, 430074 China
| |
Collapse
|
17
|
Moraes AP, Engel TBJ, Forni-Martins ER, de Barros F, Felix LP, Cabral JS. Are chromosome number and genome size associated with habit and environmental niche variables? Insights from the Neotropical orchids. ANNALS OF BOTANY 2022; 130:11-25. [PMID: 35143612 PMCID: PMC9295925 DOI: 10.1093/aob/mcac021] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 02/09/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND AND AIMS The entangled relationship of chromosome number and genome size with species distribution has been the subject of study for almost a century, but remains an open question due to previous ecological and phylogenetic knowledge constraints. To better address this subject, we used the clade Maxillariinae, a widely distributed and karyotypically known orchid group, as a model system to infer such relationships in a robust methodological framework. METHODS Based on the literature and new data, we gathered the chromosome number and genome size for 93 and 64 species, respectively. We built a phylogenetic hypothesis and assessed the best macroevolutionary model for both genomic traits. Additionally, we collected together ecological data (preferences for bioclimatic variables, elevation and habit) used as explanatory variables in multivariate phylogenetic models explaining genomic traits. Finally, the impact of polyploidy was estimated by running the analyses with and without polyploids in the sample. KEY RESULTS The association between genomic and ecological data varied depending on whether polyploids were considered or not. Without polyploids, chromosome number failed to present consistent associations with ecological variables. With polyploids, there was a tendency to waive epiphytism and colonize new habitats outside humid forests. The genome size showed association with ecological variables: without polyploids, genome increase was associated with flexible habits, with higher elevation and with drier summers; with polyploids, genome size increase was associated with colonizing drier environments. CONCLUSIONS The chromosome number and genome size variations, essential but neglected traits in the ecological niche, are shaped in the Maxillariinae by both neutral and adaptive evolution. Both genomic traits are partially correlated to bioclimatic variables and elevation, even when controlling for phylogenetic constraints. While polyploidy was associated with shifts in the environmental niche, the genome size emerges as a central trait in orchid evolution by the association between small genome size and epiphytism, a key innovation to Neotropical orchid diversification.
Collapse
Affiliation(s)
| | - Thaissa Brogliato Junqueira Engel
- Universidade de Campinas – UNICAMP, Instituto de Biologia, Departamento de Biologia Vegetal, Programa de Pós Graduação em Biologia Vegetal, Campinas, 13083-970, São Paulo, Brazil
| | - Eliana R Forni-Martins
- Universidade de Campinas – UNICAMP, Instituto de Biologia, Departamento de Biologia Vegetal, Programa de Pós Graduação em Biologia Vegetal, Campinas, 13083-970, São Paulo, Brazil
| | - Fábio de Barros
- Instituto de Botânica, Núcleo de Pesquisa Orquidário do Estado, São Paulo, 04045-972, São Paulo, Brazil
| | - Leonardo P Felix
- Universidade Federal da Paraíba – UFPB, Campus II, Departamento de Ciências Biológicas, Areia, 58397-000, Paraíba, Brazil
| | - Juliano Sarmento Cabral
- University of Würzburg, Ecosystem Modeling, Center for Computational and Theoretical Biology (CCTB), Klara-Oppenheimer-Weg 32, D-97074, Würzburg, Germany
| |
Collapse
|
18
|
Nargar K, O’Hara K, Mertin A, Bent SJ, Nauheimer L, Simpson L, Zimmer H, Molloy BPJ, Clements MA. Evolutionary Relationships and Range Evolution of Greenhood Orchids (Subtribe Pterostylidinae): Insights From Plastid Phylogenomics. FRONTIERS IN PLANT SCIENCE 2022; 13:912089. [PMID: 35845679 PMCID: PMC9277221 DOI: 10.3389/fpls.2022.912089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 05/23/2022] [Indexed: 06/15/2023]
Abstract
Australia harbours a rich and highly endemic orchid flora with over 90% of native species found nowhere else. However, little is known about the assembly and evolution of Australia's orchid flora. Here, we used a phylogenomic approach to infer evolutionary relationships, divergence times and range evolution in Pterostylidinae (Orchidoideae), the second largest subtribe in the Australian orchid flora, comprising the genera Pterostylis and Achlydosa. Phylogenetic analysis of 75 plastid genes provided well-resolved and supported phylogenies. Intrageneric relationships in Pterostylis were clarified and monophyly of eight of 10 sections supported. Achlydosa was found to not form part of Pterostylidinae and instead merits recognition at subtribal level, as Achlydosinae. Pterostylidinae were inferred to have originated in eastern Australia in the early Oligocene, coinciding with the complete separation of Australia from Antarctica and the onset of the Antarctic Circumpolar Current, which led to profound changes in the world's climate. Divergence of all major lineages occurred during the Miocene, accompanied by increased aridification and seasonality of the Australian continent, resulting in strong vegetational changes from rainforest to more open sclerophyllous vegetation. The majority of extant species were inferred to have originated in the Quaternary, from the Pleistocene onwards. The rapid climatic oscillations during the Pleistocene may have acted as important driver of speciation in Pterostylidinae. The subtribe underwent lineage diversification mainly within its ancestral range, in eastern Australia. Long-distance dispersals to southwest Australia commenced from the late Miocene onwards, after the establishment of the Nullarbor Plain, which constitutes a strong edaphic barrier to mesic plants. Range expansions from the mesic into the arid zone of eastern Australia (Eremaean region) commenced from the early Pleistocene onwards. Extant distributions of Pterostylidinae in other Australasian regions, such as New Zealand and New Caledonia, are of more recent origin, resulting from long-distance dispersals from the Pliocene onwards. Temperate eastern Australia was identified as key source area for dispersals to other Australasian regions.
Collapse
Affiliation(s)
- Katharina Nargar
- Australian Tropical Herbarium, James Cook University, Cairns, QLD, Australia
- National Research Collections Australia, Commonwealth Industrial and Scientific Research Organisation (CSIRO), Canberra, ACT, Australia
| | - Kate O’Hara
- Australian Tropical Herbarium, James Cook University, Cairns, QLD, Australia
- National Research Collections Australia, Commonwealth Industrial and Scientific Research Organisation (CSIRO), Canberra, ACT, Australia
- Division of Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, ACT, Australia
| | - Allison Mertin
- Australian Tropical Herbarium, James Cook University, Cairns, QLD, Australia
- National Research Collections Australia, Commonwealth Industrial and Scientific Research Organisation (CSIRO), Canberra, ACT, Australia
| | - Stephen J. Bent
- DATA61, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Brisbane, QLD, Australia
| | - Lars Nauheimer
- Australian Tropical Herbarium, James Cook University, Cairns, QLD, Australia
| | - Lalita Simpson
- Australian Tropical Herbarium, James Cook University, Cairns, QLD, Australia
| | - Heidi Zimmer
- Centre for Australian National Biodiversity Research (Joint Venture Between Parks Australia and CSIRO), Canberra, ACT, Australia
| | - Brian P. J. Molloy
- Allan Herbarium, Manaaki Whenua – Landcare Research, Lincoln, New Zealand
| | - Mark A. Clements
- Centre for Australian National Biodiversity Research (Joint Venture Between Parks Australia and CSIRO), Canberra, ACT, Australia
| |
Collapse
|
19
|
Wong DCJ, Peakall R. Orchid Phylotranscriptomics: The Prospects of Repurposing Multi-Tissue Transcriptomes for Phylogenetic Analysis and Beyond. FRONTIERS IN PLANT SCIENCE 2022; 13:910362. [PMID: 35712597 PMCID: PMC9196242 DOI: 10.3389/fpls.2022.910362] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 04/21/2022] [Indexed: 06/10/2023]
Abstract
The Orchidaceae is rivaled only by the Asteraceae as the largest plant family, with the estimated number of species exceeding 25,000 and encompassing more than 700 genera. To gain insights into the mechanisms driving species diversity across both global and local scales, well-supported phylogenies targeting different taxonomic groups and/or geographical regions will be crucial. High-throughput sequencing technologies have revolutionized the field of molecular phylogenetics by simplifying the process of obtaining genome-scale sequence data. Consequently, there has been an explosive growth of such data in public repositories. Here we took advantage of this unprecedented access to transcriptome data from predominantly non-phylogenetic studies to assess if it can be repurposed to gain rapid and accurate phylogenetic insights across the orchids. Exhaustive searches revealed transcriptomic data for more than 100 orchid species spanning 5 subfamilies, 13 tribes, 21 subtribes, and 50 genera that were amendable for exploratory phylotranscriptomic analysis. Next, we performed re-assembly of the transcriptomes before strategic selection of the final samples based on a gene completeness evaluation. Drawing on these data, we report phylogenetic analyses at both deep and shallow evolutionary scales via maximum likelihood and shortcut coalescent species tree methods. In this perspective, we discuss some key outcomes of this study and conclude by highlighting other complementary, albeit rarely explored, insights beyond phylogenetic analysis that repurposed multi-tissue transcriptome can offer.
Collapse
|
20
|
Baranow P, Rojek J, Dudek M, Szlachetko D, Bohdanowicz J, Kapusta M, Jedrzejczyk I, Rewers M, Moraes AP. Chromosome Number and Genome Size Evolution in Brasolia and Sobralia (Sobralieae, Orchidaceae). Int J Mol Sci 2022; 23:ijms23073948. [PMID: 35409308 PMCID: PMC8999598 DOI: 10.3390/ijms23073948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/29/2022] [Accepted: 03/30/2022] [Indexed: 11/24/2022] Open
Abstract
Despite the clear circumscription of tribe Sobralieae (Orchidaceae), its internal relationships are still dubious. The recently delimited genus Brasolia, based on previous Sobralia species, is now assumed to be paraphyletic, with a third genus, Elleanthus, nested in it. The morphology of these three genera is significantly different, indicating the necessity of new data for a better genera delimitation. Though morphology and molecular data are available, cytogenetics data for Sobralieae is restricted to two Sobralia and one Elleanthus species. Aiming to evaluate the potential of cytogenetic data for Brasolia-Elleanthus-Sobralia genera delimitation, we present chromosome number and genome size data for 21 and 20 species, respectively, and used such data to infer the pattern of karyotype evolution in these genera. The analysis allowed us to infer x = 24 as the base chromosome number and genome size of average 1C-value of 5.0 pg for the common ancestor of Brasolia-Elleanthus-Sobralia. The recurrent descending dysploidy in Sobralieae and the punctual genome upsize suggest a recent diversification in Sobralieae but did not allow differing between Brasolia and Sobralia. However, the basal position of tribe Sobralieae in the subfamily Epidendroideae makes this tribe of interest to further studies clarifying the internal delimitation and pattern of karyotype evolution.
Collapse
Affiliation(s)
- Przemysław Baranow
- Department of Plant Taxonomy & Nature Conservation, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland; (P.B.); (M.D.); (D.S.)
| | - Joanna Rojek
- Department of Plant Cytology and Embryology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland; (J.B.); (M.K.)
- Correspondence:
| | - Magdalena Dudek
- Department of Plant Taxonomy & Nature Conservation, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland; (P.B.); (M.D.); (D.S.)
| | - Dariusz Szlachetko
- Department of Plant Taxonomy & Nature Conservation, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland; (P.B.); (M.D.); (D.S.)
| | - Jerzy Bohdanowicz
- Department of Plant Cytology and Embryology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland; (J.B.); (M.K.)
| | - Małgorzata Kapusta
- Department of Plant Cytology and Embryology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland; (J.B.); (M.K.)
| | - Iwona Jedrzejczyk
- Laboratory of Molecular Biology and Cytometry, Department of Agricultural Biotechnology, Bydgoszcz University of Science and Technology, Kaliskiego Ave 7, 85-796 Bydgoszcz, Poland; (I.J.); (M.R.)
| | - Monika Rewers
- Laboratory of Molecular Biology and Cytometry, Department of Agricultural Biotechnology, Bydgoszcz University of Science and Technology, Kaliskiego Ave 7, 85-796 Bydgoszcz, Poland; (I.J.); (M.R.)
| | - Ana Paula Moraes
- Laboratory of Cytogenomic and Evolution of Plants, Center of Natural and Human Science, Federal University of ABC (UFABC), Sao Bernardo do Campo 09606-045, SP, Brazil;
| |
Collapse
|
21
|
Choi IS, Cardoso D, de Queiroz LP, de Lima HC, Lee C, Ruhlman TA, Jansen RK, Wojciechowski MF. Highly Resolved Papilionoid Legume Phylogeny Based on Plastid Phylogenomics. FRONTIERS IN PLANT SCIENCE 2022; 13:823190. [PMID: 35283880 PMCID: PMC8905342 DOI: 10.3389/fpls.2022.823190] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 01/31/2022] [Indexed: 05/31/2023]
Abstract
Comprising 501 genera and around 14,000 species, Papilionoideae is not only the largest subfamily of Fabaceae (Leguminosae; legumes), but also one of the most extraordinarily diverse clades among angiosperms. Papilionoids are a major source of food and forage, are ecologically successful in all major biomes, and display dramatic variation in both floral architecture and plastid genome (plastome) structure. Plastid DNA-based phylogenetic analyses have greatly improved our understanding of relationships among the major groups of Papilionoideae, yet the backbone of the subfamily phylogeny remains unresolved. In this study, we sequenced and assembled 39 new plastomes that are covering key genera representing the morphological diversity in the subfamily. From 244 total taxa, we produced eight datasets for maximum likelihood (ML) analyses based on entire plastomes and/or concatenated sequences of 77 protein-coding sequences (CDS) and two datasets for multispecies coalescent (MSC) analyses based on individual gene trees. We additionally produced a combined nucleotide dataset comprising CDS plus matK gene sequences only, in which most papilionoid genera were sampled. A ML tree based on the entire plastome maximally supported all of the deep and most recent divergences of papilionoids (223 out of 236 nodes). The Swartzieae, ADA (Angylocalyceae, Dipterygeae, and Amburaneae), Cladrastis, Andira, and Exostyleae clades formed a grade to the remainder of the Papilionoideae, concordant with nine ML and two MSC trees. Phylogenetic relationships among the remaining five papilionoid lineages (Vataireoid, Dermatophyllum, Genistoid s.l., Dalbergioid s.l., and Baphieae + Non-Protein Amino Acid Accumulating or NPAAA clade) remained uncertain, because of insufficient support and/or conflicting relationships among trees. Our study fully resolved most of the deep nodes of Papilionoideae, however, some relationships require further exploration. More genome-scale data and rigorous analyses are needed to disentangle phylogenetic relationships among the five remaining lineages.
Collapse
Affiliation(s)
- In-Su Choi
- School of Life Sciences, Arizona State University, Tempe, AZ, United States
| | - Domingos Cardoso
- National Institute of Science and Technology in Interdisciplinary and Transdisciplinary Studies in Ecology and Evolution (INCT IN-TREE), Instituto de Biologia, Universidade Federal da Bahia, Salvador, Brazil
| | - Luciano P. de Queiroz
- Department of Biological Sciences, Universidade Estadual de Feira de Santana, Feira de Santana, Brazil
| | - Haroldo C. de Lima
- Instituto de Pesquisas Jardim Botânico do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Chaehee Lee
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, United States
| | - Tracey A. Ruhlman
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, United States
| | - Robert K. Jansen
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, United States
- Center of Excellence for Bionanoscience Research, King Abdulaziz University (KAU), Jeddah, Saudi Arabia
| | | |
Collapse
|
22
|
Sielemann K, Pucker B, Schmidt N, Viehöver P, Weisshaar B, Heitkam T, Holtgräwe D. Complete pan-plastome sequences enable high resolution phylogenetic classification of sugar beet and closely related crop wild relatives. BMC Genomics 2022; 23:113. [PMID: 35139817 PMCID: PMC8830136 DOI: 10.1186/s12864-022-08336-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 01/20/2022] [Indexed: 12/24/2022] Open
Abstract
Background As the major source of sugar in moderate climates, sugar-producing beets (Beta vulgaris subsp. vulgaris) have a high economic value. However, the low genetic diversity within cultivated beets requires introduction of new traits, for example to increase their tolerance and resistance attributes – traits that often reside in the crop wild relatives. For this, genetic information of wild beet relatives and their phylogenetic placements to each other are crucial. To answer this need, we sequenced and assembled the complete plastome sequences from a broad species spectrum across the beet genera Beta and Patellifolia, both embedded in the Betoideae (order Caryophyllales). This pan-plastome dataset was then used to determine the wild beet phylogeny in high-resolution. Results We sequenced the plastomes of 18 closely related accessions representing 11 species of the Betoideae subfamily and provided high-quality plastome assemblies which represent an important resource for further studies of beet wild relatives and the diverse plant order Caryophyllales. Their assembly sizes range from 149,723 bp (Beta vulgaris subsp. vulgaris) to 152,816 bp (Beta nana), with most variability in the intergenic sequences. Combining plastome-derived phylogenies with read-based treatments based on mitochondrial information, we were able to suggest a unified and highly confident phylogenetic placement of the investigated Betoideae species. Our results show that the genus Beta can be divided into the two clearly separated sections Beta and Corollinae. Our analysis confirms the affiliation of B. nana with the other Corollinae species, and we argue against a separate placement in the Nanae section. Within the Patellifolia genus, the two diploid species Patellifolia procumbens and Patellifolia webbiana are, regarding the plastome sequences, genetically more similar to each other than to the tetraploid Patellifolia patellaris. Nevertheless, all three Patellifolia species are clearly separated. Conclusion In conclusion, our wild beet plastome assemblies represent a new resource to understand the molecular base of the beet germplasm. Despite large differences on the phenotypic level, our pan-plastome dataset is highly conserved. For the first time in beets, our whole plastome sequences overcome the low sequence variation in individual genes and provide the molecular backbone for highly resolved beet phylogenomics. Hence, our plastome sequencing strategy can also guide genomic approaches to unravel other closely related taxa. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08336-8.
Collapse
Affiliation(s)
- Katharina Sielemann
- Genetics and Genomics of Plants, Center for Biotechnology (CeBiTec) & Faculty of Biology, Bielefeld University, 33615, Bielefeld, Germany.,Graduate School DILS, Bielefeld Institute for Bioinformatics Infrastructure (BIBI), Bielefeld University, 33615, Bielefeld, Germany
| | - Boas Pucker
- Genetics and Genomics of Plants, Center for Biotechnology (CeBiTec) & Faculty of Biology, Bielefeld University, 33615, Bielefeld, Germany.,Evolution and Diversity, Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA, UK.,Institute of Plant Biology, TU Braunschweig, Braunschweig, Germany
| | - Nicola Schmidt
- Faculty of Biology, Institute of Botany, Technische Universität Dresden, 01069, Dresden, Germany
| | - Prisca Viehöver
- Genetics and Genomics of Plants, Center for Biotechnology (CeBiTec) & Faculty of Biology, Bielefeld University, 33615, Bielefeld, Germany
| | - Bernd Weisshaar
- Genetics and Genomics of Plants, Center for Biotechnology (CeBiTec) & Faculty of Biology, Bielefeld University, 33615, Bielefeld, Germany
| | - Tony Heitkam
- Faculty of Biology, Institute of Botany, Technische Universität Dresden, 01069, Dresden, Germany.
| | - Daniela Holtgräwe
- Genetics and Genomics of Plants, Center for Biotechnology (CeBiTec) & Faculty of Biology, Bielefeld University, 33615, Bielefeld, Germany.
| |
Collapse
|
23
|
Jiang M, Zhu Y, Wu Q, Zhang H. Complete chloroplast genome of a rare and endangered plant species Phalaenopsis zhejiangensis: genomic features and phylogenetic relationship within Orchidaceae. MITOCHONDRIAL DNA PART B-RESOURCES 2021; 6:2872-2879. [PMID: 34532575 PMCID: PMC8439234 DOI: 10.1080/23802359.2021.1972049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
Phalaenopsis zhejiangensis is a rare and endangered plant species with extremely small populations. The complete chloroplast (cp) genome of P. zhejiangensis was assembled, its structural organization was described and comparative genomic analyses was carried out. The cp genome of P. zhejiangensis is 143,547 bp in length, with a GC content of 37.2%, which includes a pair of inverted repeats (IRs) of 24,464 bp separated by a small single-copy region of 10,764 bp and a large single-copy region of 83,856 bp. The cp genome contains 126 genes, consisting of 80 protein-coding genes, 38 transfer RNAs, and eight ribosomal RNAs. Six protein-coding genes, including ψndhB (two copies), ψndhD, ψndhG, ψndhK, and ψndhI, are identified as pseudogenes. Another six ndh genes, ndhA, ndhC, ndhE, ndhF, ndhH, and ndhJ, are missing from the plastid genome. A total of 41 cp simple sequence repeats (SSRs) were identified, including 40 mono-nucleotides and one di-nucleotides. Phylogenic analysis revealed P. zhejiangensis was nested inside the Phalaenopsis species and sister to P. wilsonii. The assembly and analysis of P. zhejiangensis cp genome will provide essential data for further study of taxonomy and systematics of Orchidaceae.
Collapse
Affiliation(s)
- Ming Jiang
- College of Life Sciences, Taizhou University, Taizhou, PR China
| | - Yan Zhu
- College of Life Sciences, Taizhou University, Taizhou, PR China
| | - Qian Wu
- College of Life Sciences, Taizhou University, Taizhou, PR China
| | - Huijuan Zhang
- College of Life Sciences, Taizhou University, Taizhou, PR China
| |
Collapse
|
24
|
Tu XD, Liu DK, Xu SW, Zhou CY, Gao XY, Zeng MY, Zhang S, Chen JL, Ma L, Zhou Z, Huang MZ, Chen SP, Liu ZJ, Lan SR, Li MH. Plastid phylogenomics improves resolution of phylogenetic relationship in the Cheirostylis and Goodyera clades of Goodyerinae (Orchidoideae, Orchidaceae). Mol Phylogenet Evol 2021; 164:107269. [PMID: 34324956 DOI: 10.1016/j.ympev.2021.107269] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 07/16/2021] [Accepted: 07/22/2021] [Indexed: 11/26/2022]
Abstract
Goodyerinae are one of phylogenetically unresolved groups of Orchidaceae. The lack of resolution achieved through the analyses of previous molecular sequences from one or a few markers has long confounded phylogenetic estimation and generic delimitation. Here, we present large-scale phylogenomic data to compare the plastome structure of the two main clades (Goodyera and Cheirostylis) in this subtribe and further adopt two strategies, combining plastid coding sequences and the whole plastome, to investigate phylogenetic relationships. A total of 46 species in 16 genera were sampled, including 39 species in 15 genera sequenced in this study. The plastomes of heterotrophic species are not drastically reduced in overall size, but display a pattern congruent with a loss of photosynthetic function. The plastomes of autotrophic species ranged from 147 to 165 kb and encoded from 132 to 137 genes. Three unusual structural features were detected: a 1.0-kb inversion in the large single-copy region of Goodyera schlechtendaliana; the loss and/or pseudogenization of ndh genes only in two species, Cheirostylis chinensis and C. montana; and the expansion of inverted repeat regions and contraction of small single-copy region in Hetaeria oblongifolia. Phylogenomic analyses provided improved resolution for phylogenetic relationships. All genera were recovered as monophyletic, except for Goodyera and Hetaeria, which were each recovered as non-monophyletic. Nomenclatural changes are needed until the broader sampling and biparental inherited markers. This study provides a phylogenetic framework of Goodyerinae and insight into plastome evolution of Orchidaceae.
Collapse
Affiliation(s)
- Xiong-De Tu
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian Colleges and Universities Engineering Research Institute of Conservation and Utilization of Natural Bioresources, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Ding-Kun Liu
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian Colleges and Universities Engineering Research Institute of Conservation and Utilization of Natural Bioresources, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shao-Wei Xu
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Cheng-Yuan Zhou
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xu-Yong Gao
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Meng-Yao Zeng
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Sai Zhang
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian Colleges and Universities Engineering Research Institute of Conservation and Utilization of Natural Bioresources, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jin-Liao Chen
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Liang Ma
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian Colleges and Universities Engineering Research Institute of Conservation and Utilization of Natural Bioresources, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhuang Zhou
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Zhejiang Institute of Subtropical Crops, Zhejiang Academy of Agricultural Sciences, Wenzhou 325005, China
| | - Ming-Zhong Huang
- Fujian Colleges and Universities Engineering Research Institute of Conservation and Utilization of Natural Bioresources, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Tropical Crops Genetic Resources Institute, Chinese Academy of Tropic Agricultural Sciences, Haikou 571101, China
| | - Shi-Pin Chen
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian Colleges and Universities Engineering Research Institute of Conservation and Utilization of Natural Bioresources, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhong-Jian Liu
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian Colleges and Universities Engineering Research Institute of Conservation and Utilization of Natural Bioresources, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Si-Ren Lan
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian Colleges and Universities Engineering Research Institute of Conservation and Utilization of Natural Bioresources, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Ming-He Li
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian Colleges and Universities Engineering Research Institute of Conservation and Utilization of Natural Bioresources, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
25
|
Pérez-Escobar OA, Dodsworth S, Bogarín D, Bellot S, Balbuena JA, Schley RJ, Kikuchi IA, Morris SK, Epitawalage N, Cowan R, Maurin O, Zuntini A, Arias T, Serna-Sánchez A, Gravendeel B, Torres Jimenez MF, Nargar K, Chomicki G, Chase MW, Leitch IJ, Forest F, Baker WJ. Hundreds of nuclear and plastid loci yield novel insights into orchid relationships. AMERICAN JOURNAL OF BOTANY 2021; 108:1166-1180. [PMID: 34250591 DOI: 10.1002/ajb2.1702] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 06/10/2021] [Indexed: 06/13/2023]
Abstract
PREMISE The inference of evolutionary relationships in the species-rich family Orchidaceae has hitherto relied heavily on plastid DNA sequences and limited taxon sampling. Previous studies have provided a robust plastid phylogenetic framework, which was used to classify orchids and investigate the drivers of orchid diversification. However, the extent to which phylogenetic inference based on the plastid genome is congruent with the nuclear genome has been only poorly assessed. METHODS We inferred higher-level phylogenetic relationships of orchids based on likelihood and ASTRAL analyses of 294 low-copy nuclear genes sequenced using the Angiosperms353 universal probe set for 75 species (representing 69 genera, 16 tribes, 24 subtribes) and a concatenated analysis of 78 plastid genes for 264 species (117 genera, 18 tribes, 28 subtribes). We compared phylogenetic informativeness and support for the nuclear and plastid phylogenetic hypotheses. RESULTS Phylogenetic inference using nuclear data sets provides well-supported orchid relationships that are highly congruent between analyses. Comparisons of nuclear gene trees and a plastid supermatrix tree showed that the trees are mostly congruent, but revealed instances of strongly supported phylogenetic incongruence in both shallow and deep time. The phylogenetic informativeness of individual Angiosperms353 genes is in general better than that of most plastid genes. CONCLUSIONS Our study provides the first robust nuclear phylogenomic framework for Orchidaceae and an assessment of intragenomic nuclear discordance, plastid-nuclear tree incongruence, and phylogenetic informativeness across the family. Our results also demonstrate what has long been known but rarely thoroughly documented: nuclear and plastid phylogenetic trees can contain strongly supported discordances, and this incongruence must be reconciled prior to interpretation in evolutionary studies, such as taxonomy, biogeography, and character evolution.
Collapse
Affiliation(s)
| | - Steven Dodsworth
- School of Biological Sciences, University of Portsmouth, Portsmouth, PO1 2UP, UK
| | - Diego Bogarín
- Lankester Botanic Garden, University of Costa Rica, Cartago, Costa Rica
| | | | | | | | | | | | | | - Robyn Cowan
- Royal Botanic Gardens Kew, Richmond, TW9 3AE, UK
| | | | | | | | | | | | | | - Katharina Nargar
- Australian Tropical Herbarium, James Cook University, Australia
- National Research Collections, Commonwealth Industrial and Scientific Research Organization, Australia
| | - Guillaume Chomicki
- Department of Animal and Plant Sciences, Alfred Denny Building, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK
| | - Mark W Chase
- Royal Botanic Gardens Kew, Richmond, TW9 3AE, UK
- Department of Environment and Agriculture, Curtin University, Bentley, Western Australia, 6102, Australia
| | | | - Félix Forest
- Royal Botanic Gardens Kew, Richmond, TW9 3AE, UK
| | | |
Collapse
|
26
|
Wei N, Pérez-Escobar OA, Musili PM, Huang WC, Yang JB, Hu AQ, Hu GW, Grace OM, Wang QF. Plastome Evolution in the Hyperdiverse Genus Euphorbia (Euphorbiaceae) Using Phylogenomic and Comparative Analyses: Large-Scale Expansion and Contraction of the Inverted Repeat Region. FRONTIERS IN PLANT SCIENCE 2021; 12:712064. [PMID: 34421963 PMCID: PMC8372406 DOI: 10.3389/fpls.2021.712064] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 07/05/2021] [Indexed: 05/09/2023]
Abstract
With c. 2,000 species, Euphorbia is one of the largest angiosperm genera, yet a lack of chloroplast genome (plastome) resources impedes a better understanding of its evolution. In this study, we assembled and annotated 28 plastomes from Euphorbiaceae, of which 15 were newly sequenced. Phylogenomic and comparative analyses of 22 plastome sequences from all four recognized subgenera within Euphorbia revealed that plastome length in Euphorbia is labile, presenting a range of variation c. 42 kb. Large-scale expansions of the inverted repeat (IR) region were identified, and at the extreme opposite, the near-complete loss of the IR region (with only 355 bp left) was detected for the first time in Euphorbiaceae. Other structural variations, including gene inversion and duplication, and gene loss/pseudogenization, were also observed. We screened the most promising molecular markers from both intergenic and coding regions for phylogeny-based utilities, and estimated maximum likelihood and Bayesian phylogenies from four datasets including whole plastome sequences. The monophyly of Euphorbia is supported, and its four subgenera are recovered in a successive sister relationship. Our study constitutes the first comprehensive investigation on the plastome structural variation in Euphorbia and it provides resources for phylogenetic research in the genus, facilitating further studies on its taxonomy, evolution, and conservation.
Collapse
Affiliation(s)
- Neng Wei
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- Royal Botanic Gardens, Kew, Richmond, United Kingdom
- Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | | | - Paul M. Musili
- East African Herbarium, National Museums of Kenya, Nairobi, Kenya
| | - Wei-Chang Huang
- Shanghai Chenshan Plant Science Research Center, Chinese Academy of Sciences, Chenshan Botanical Garden, Shanghai, China
| | - Jun-Bo Yang
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Ai-Qun Hu
- Royal Botanic Gardens, Kew, Richmond, United Kingdom
| | - Guang-Wan Hu
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, China
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, China
| | - Olwen M. Grace
- Royal Botanic Gardens, Kew, Richmond, United Kingdom
- *Correspondence: Olwen M. Grace,
| | - Qing-Feng Wang
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, China
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, China
- Qing-Feng Wang,
| |
Collapse
|