1
|
Sun H, Lin Z, Gong Y, Yin L, Zhang D, Wang Y, Liu Y. DUSP8-attenuated ERK1/2 signaling mediates lipogenesis and steroidogenesis in chicken granulosa cells. Theriogenology 2024; 226:10-19. [PMID: 38820772 DOI: 10.1016/j.theriogenology.2024.05.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/23/2024] [Accepted: 05/25/2024] [Indexed: 06/02/2024]
Abstract
The lipogenesis and steroidogenesis of granulosa cells are crucial during follicular development, yet it remains unclear whether dual-specificity phosphatase 8 (DUSP8) is involved. In this study, the specific role of DUSP8 in lipogenesis and steroidogenesis was investigated through culturing chicken granulosa cells in vitro. The results revealed that the expression levels of adipogenic genes were elevated after DUSP8 overexpression and reduced after knockdown. The same was observed for lipid deposition in granulosa cells. Meanwhile, the steroidogenic gene expression and progesterone synthesis were promoted after DUSP8 overexpression and inhibited after knockdown. In addition, we also found that DUSP8 blocked the phosphorylation of extracellular regulatory kinase 1/2 (ERK1/2). Based on the previous results that activated ERK1/2 signaling inhibited lipid deposition and progesterone synthesis in chicken granulosa cells, we demonstrated that DUSP8 promoted lipid deposition and progesterone synthesis through mediating the ERK1/2 signaling pathway. The results will improve our understanding of the molecular regulatory mechanisms regarding lipid metabolism and progesterone synthesis in chicken granulosa cells.
Collapse
Affiliation(s)
- Hao Sun
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Zhongzhen Lin
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Yanrong Gong
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Lingqian Yin
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Donghao Zhang
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Yan Wang
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Yiping Liu
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China.
| |
Collapse
|
2
|
Zhu G, Wang X, Wang Y, Huang T, Zhang X, He J, Shi N, Chen J, Zhang J, Zhang M, Li J. Comparative transcriptomic study on the ovarian cancer between chicken and human. Poult Sci 2024; 103:104021. [PMID: 39002367 PMCID: PMC11298922 DOI: 10.1016/j.psj.2024.104021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/05/2024] [Accepted: 06/19/2024] [Indexed: 07/15/2024] Open
Abstract
The laying hen is the spontaneous model of ovarian tumor. A comprehensive comparison based on RNA-seq from hens and women may shed light on the molecular mechanisms of ovarian cancer. We performed next-generation sequencing of microRNA and mRNA expression profiles in 9 chicken ovarian cancers and 4 normal ovaries, which has been deposited in GSE246604. Together with 6 public datasets (GSE21706, GSE40376, GSE18520, GSE27651, GSE66957, TCGA-OV), we conducted a comparative transcriptomics study between chicken and human. In the present study, miR-451, miR-2188-5p, and miR-10b-5p were differentially expressed in normal ovaries, early- and late-stage ovarian cancers. We also disclosed 499 up-regulated genes and 1,061 down-regulated genes in chicken ovarian cancer. The molecular signals from 9 cancer hallmarks, 25 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways, and 369 Gene Ontology (GO) pathways exhibited abnormalities in ovarian cancer compared to normal ovaries via Gene Set Enrichment Analysis (GSEA). In the comparative analysis across species, we have uncovered the conservation of 5 KEGG and 76 GO pathways between chicken and human including the mismatch repair and ECM receptor interaction pathways. Moreover, a total of 174 genes contributed to the core enrichment for these KEGG and GO pathways were identified. Among these genes, the 22 genes were found to be associated with overall survival in patients with ovarian cancer. In general, we revealed the microRNA profiles of ovarian cancers in hens and updated the mRNA profiles previously derived from microarrays. And we also disclosed the molecular pathways and core genes of ovarian cancer shared between hens and women, which informs model animal studies and gene-targeted drug development.
Collapse
Affiliation(s)
- Guoqiang Zhu
- Key laboratory of Bio-resources and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China; Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, China
| | - Xinglong Wang
- Key laboratory of Bio-resources and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China; Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, China
| | - Yajun Wang
- Key laboratory of Bio-resources and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China; Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, China
| | - Tianjiao Huang
- Key laboratory of Bio-resources and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China; Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, China
| | - Xiao Zhang
- Key laboratory of Bio-resources and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China; Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, China
| | - Jiliang He
- Key laboratory of Bio-resources and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China; Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, China
| | - Ningkun Shi
- Key laboratory of Bio-resources and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China; Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, China
| | - Juntao Chen
- Key laboratory of Bio-resources and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China; Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, China
| | - Jiannan Zhang
- Key laboratory of Bio-resources and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China; Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, China
| | - Mao Zhang
- Division of Vascular Surgery, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Juan Li
- Key laboratory of Bio-resources and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China; Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, China.
| |
Collapse
|
3
|
Li X, Du H, Zhou H, Huang Y, Tang S, Yu C, Guo Y, Luo W, Gong Y. FOXL2 regulates RhoA expression to change actin cytoskeleton rearrangement in granulosa cells of chicken pre-ovulatory follicles†. Biol Reprod 2024; 111:391-405. [PMID: 38832713 DOI: 10.1093/biolre/ioae082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 04/04/2024] [Accepted: 06/01/2024] [Indexed: 06/05/2024] Open
Abstract
Forkhead box L2 (FOXL2) is an indispensable key regulator of female follicular development, and it plays important roles in the morphogenesis, proliferation, and differentiation of follicle granulosa cells, such as establishing normal estradiol signaling and regulating steroid hormone synthesis. Nevertheless, the effects of FOXL2 on granulosa cell morphology and the underlying mechanism remain unknown. Using FOXL2 ChIP-seq analysis, we found that FOXL2 target genes were significantly enriched in the actin cytoskeleton-related pathways. We confirmed that FOXL2 inhibited the expression of RhoA, a key gene for actin cytoskeleton rearrangement, by binding to TCATCCATCTCT in RhoA promoter region. In addition, FOXL2 overexpression in granulosa cells induced the depolymerization of F-actin and disordered the actin filaments, resulting in a slowdown in the expansion of granulosa cells, while FOXL2 silencing inhibited F-actin depolymerization and stabilized the actin filaments, thereby accelerating granulosa cell expansion. RhoA/ROCK pathway inhibitor Y-27632 exhibited similar effects to FOXL2 overexpression, even reversed the actin polymerization in FOXL2 silencing granulosa cells. This study revealed for the first time that FOXL2 regulated granulosa cell actin cytoskeleton by RhoA/ROCK pathway, thus affecting granulosa cell expansion. Our findings provide new insights for constructing the regulatory network of FOXL2 and propose a potential mechanism for facilitating rapid follicle expansion, thereby laying a foundation for further understanding follicular development.
Collapse
Affiliation(s)
- Xuelian Li
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Wuhan, Hubei, PR China
- College of Animal Science and Technology and College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, PR China
| | - Hongting Du
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Wuhan, Hubei, PR China
- College of Animal Science and Technology and College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, PR China
| | - Haobo Zhou
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Wuhan, Hubei, PR China
- College of Animal Science and Technology and College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, PR China
| | - Ying Huang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Wuhan, Hubei, PR China
- College of Animal Science and Technology and College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, PR China
| | - Shuixin Tang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Wuhan, Hubei, PR China
- College of Animal Science and Technology and College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, PR China
| | - Chengzhi Yu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Wuhan, Hubei, PR China
- College of Animal Science and Technology and College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, PR China
| | - Yan Guo
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Wuhan, Hubei, PR China
- College of Animal Science and Technology and College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, PR China
| | - Wei Luo
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Wuhan, Hubei, PR China
- College of Animal Science and Technology and College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, PR China
| | - Yanzhang Gong
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Wuhan, Hubei, PR China
- College of Animal Science and Technology and College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, PR China
| |
Collapse
|
4
|
Clark KL, Shukla M, George JW, Gustin S, Rowley MJ, Davis JS. An environmentally relevant mixture of per- and polyfluoroalkyl substances (PFAS) impacts proliferation, steroid hormone synthesis, and gene transcription in primary human granulosa cells. Toxicol Sci 2024; 200:57-69. [PMID: 38603627 PMCID: PMC11199914 DOI: 10.1093/toxsci/kfae049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2024] Open
Abstract
Per- and polyfluoroalkyl substances (PFAS) are a group of synthetic chemicals that are resistant to biodegradation and are environmentally persistent. PFAS are found in many consumer products and are a major source of water and soil contamination. This study investigated the effects of an environmentally relevant PFAS mixture (perfluorooctanoic acid [PFOA], perfluorooctanesulfonic acid [PFOS], perfluorohexanesulfonic acid [PFHxS]) on the transcriptome and function of human granulosa cells (hGCs). Primary hGCs were harvested from follicular aspirates of healthy, reproductive-age women who were undergoing oocyte retrieval for in vitro fertilization. Liquid Chromatography with tandem mass spectrometry (LC/MS-MS) was performed to identify PFAS compounds in pure follicular fluid. Cells were cultured with vehicle control or a PFAS mixture (2 nM PFHxS, 7 nM PFOA, 10 nM PFOS) for 96 h. Analyses of cell proliferation/apoptosis, steroidogenesis, and gene expression were measured via 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assays/immunofluorescence, ELISA/western blotting, and RNA sequencing/bioinformatics, respectively. PFOA, PFOS, and PFHxS were detected in 100% of follicle fluid samples. Increased cell proliferation was observed in hGCs treated with the PFAS mixture with no impacts on cellular apoptosis. The PFAS mixture also altered steroid hormone synthesis, increasing both follicle-stimulating hormone-stimulated and basal progesterone secretion and concomitant upregulation of STAR protein. RNA sequencing revealed inherent differences in transcriptomic profiles in hGCs after PFAS exposure. This study demonstrates functional and transcriptomic changes in hGCs after exposure to a PFAS mixture, improving our knowledge about the impacts of PFAS exposures and female reproductive health. These findings suggest that PFAS compounds can disrupt normal granulosa cell function with possible long-term consequences on overall reproductive health.
Collapse
Affiliation(s)
- Kendra L Clark
- Department of Obstetrics and Gynecology, University of Nebraska Medical Center, Omaha, Nebraska 68198, USA
- Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, Nebraska 68105, USA
| | - Mamta Shukla
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, Nebraska 68198, USA
| | - Jitu W George
- Department of Obstetrics and Gynecology, University of Nebraska Medical Center, Omaha, Nebraska 68198, USA
- Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, Nebraska 68105, USA
| | - Stephanie Gustin
- Department of Obstetrics and Gynecology, University of Nebraska Medical Center, Omaha, Nebraska 68198, USA
- Heartland Center for Reproductive Medicine, Omaha, Nebraska 68138, USA
| | - M Jordan Rowley
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, Nebraska 68198, USA
| | - John S Davis
- Department of Obstetrics and Gynecology, University of Nebraska Medical Center, Omaha, Nebraska 68198, USA
- Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, Nebraska 68105, USA
| |
Collapse
|
5
|
Chen J, Wang W, Li S, Wang Z, Zuo W, Nong T, Li Y, Liu H, Wei P, He X. RNA-seq reveals role of cell-cycle regulating genes in the pathogenicity of a field very virulent infectious bursal disease virus. Front Vet Sci 2024; 11:1334586. [PMID: 38362295 PMCID: PMC10867150 DOI: 10.3389/fvets.2024.1334586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 01/10/2024] [Indexed: 02/17/2024] Open
Abstract
Infectious bursal disease virus (IBDV) infection causes highly contagious and immunosuppressive disease in poultry. The thymus, serving as the primary organ for T cell maturation and differentiation, plays an important role in the pathogenicity of IBDV in the infected chickens. However, there are no reports on the molecular pathogenesis of IBDV in the thymus currently. The aim of the study was to elucidate the molecular mechanisms underlying the pathogenicity of a field very virulent (vv) IBDV strain NN1172 in the thymus of SPF chickens using integrative transcriptomic and proteomic analyses. Our results showed that a total of 4,972 Differentially expressed genes (DEGs) in the thymus of NN1172-infected chickens by transcriptomic analysis, with 2,796 up-regulated and 2,176 down-regulated. Meanwhile, the proteomic analysis identified 726 differentially expressed proteins (DEPs) in the infected thymus, with 289 up-regulated and 437 down-regulated. Overall, a total of 359 genes exhibited differentially expression at both mRNA and protein levels, with 134 consistently up-regulated and 198 genes consistently down-regulated, as confirmed through a comparison of the RNA-seq and the proteomic datasets. The gene ontology (GO) analysis unveiled the involvement of both DEGs and DEPs in diverse categories encompassing cellular components, biological processes, and molecular functions in the pathological changes in IBDV-infected thymus. The Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis revealed that the host mainly displayed severely disruption of cell survival/repair, proliferation and metabolism pathway, meanwhile, the infection triggers antiviral immune activation with a potential emphasis on the MDA5 pathway. Network inference analysis identified seven core hub genes, which include CDK1, TYMS, MCM5, KIF11, CCNB2, MAD2L1, and MCM4. These genes are all associated with cell-cycle regulating pathway and are likely key mediators in the pathogenesis induced by NN1172 infection in the thymus. This study discovered dominant pathways and genes which enhanced our understanding of the molecular mechanisms underlying IBDV pathogenesis in the thymus.
Collapse
Affiliation(s)
- Jinnan Chen
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, School of Marine Sciences and Biotechnology, Guangxi Minzu University, Nanning, China
| | - Weiwei Wang
- Institute for Poultry Science and Health, Guangxi University, Nanning, China
| | - Shangquan Li
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, School of Marine Sciences and Biotechnology, Guangxi Minzu University, Nanning, China
| | - Zhiyuan Wang
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, School of Marine Sciences and Biotechnology, Guangxi Minzu University, Nanning, China
| | - Wenbo Zuo
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, School of Marine Sciences and Biotechnology, Guangxi Minzu University, Nanning, China
| | - Tingbin Nong
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, School of Marine Sciences and Biotechnology, Guangxi Minzu University, Nanning, China
| | - Yihai Li
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, School of Marine Sciences and Biotechnology, Guangxi Minzu University, Nanning, China
| | - Hongquan Liu
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, School of Marine Sciences and Biotechnology, Guangxi Minzu University, Nanning, China
| | - Ping Wei
- Institute for Poultry Science and Health, Guangxi University, Nanning, China
| | - Xiumiao He
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, School of Marine Sciences and Biotechnology, Guangxi Minzu University, Nanning, China
| |
Collapse
|
6
|
Zhang S, Zhang L, Wang L, Wang H, Wu J, Cai H, Mo C, Yang J. Machine learning identified MDK score has prognostic value for idiopathic pulmonary fibrosis based on integrated bulk and single cell expression data. Front Genet 2023; 14:1246983. [PMID: 38075691 PMCID: PMC10704369 DOI: 10.3389/fgene.2023.1246983] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 11/10/2023] [Indexed: 03/09/2024] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive and fatal lung disease that poses a significant challenge to medical professionals due to its increasing incidence and prevalence coupled with the limited understanding of its underlying molecular mechanisms. In this study, we employed a novel approach by integrating five expression datasets from bulk tissue with single-cell datasets; they underwent pseudotime trajectory analysis, switch gene selection, and cell communication analysis. Utilizing the prognostic information derived from the GSE47460 dataset, we identified 22 differentially expressed switch genes that were correlated with clinical indicators as important genes. Among these genes, we found that the midkine (MDK) gene has the potential to serve as a marker of Idiopathic pulmonary fibrosis because its cellular communicating genes are differentially expressed in the epithelial cells. We then utilized midkine and its cellular communication-related genes to calculate the midkine score. Machine learning models were further constructed through midkine and related genes to predict Idiopathic pulmonary fibrosis disease through the bulk gene expression datasets. The midkine score demonstrated a correlation with clinical indexes, and the machine learning model achieved an AUC of 0.94 and 0.86 in the Idiopathic pulmonary fibrosis classification task based on lung tissue samples and peripheral blood mononuclear cell samples, respectively. Our findings offer valuable insights into the pathogenesis of Idiopathic pulmonary fibrosis, providing new therapeutic directions and target genes for further investigation.
Collapse
Affiliation(s)
- Shichen Zhang
- Center of Growth, Metabolism, and Aging, Key Laboratory of Bio-Resources and Eco-Environment, College of Life Sciences, Sichuan University, Chengdu, China
| | - Lanlan Zhang
- State Key Laboratory of Respiratory Health and Multimorbidity, Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Lu Wang
- Center of Growth, Metabolism, and Aging, Key Laboratory of Bio-Resources and Eco-Environment, College of Life Sciences, Sichuan University, Chengdu, China
| | - Hongqiu Wang
- Systems Hub, The Hong Kong University of Science and Technology (Guangzhou), Guangzhou, China
| | - Jiaxin Wu
- Center of Growth, Metabolism, and Aging, Key Laboratory of Bio-Resources and Eco-Environment, College of Life Sciences, Sichuan University, Chengdu, China
| | - Haoyang Cai
- Center of Growth, Metabolism, and Aging, Key Laboratory of Bio-Resources and Eco-Environment, College of Life Sciences, Sichuan University, Chengdu, China
| | - Chunheng Mo
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Jian Yang
- Center of Growth, Metabolism, and Aging, Key Laboratory of Bio-Resources and Eco-Environment, College of Life Sciences, Sichuan University, Chengdu, China
| |
Collapse
|
7
|
Ning Z, Deng X, Li L, Feng J, Du X, Amevor FK, Tian Y, Li L, Rao Y, Yi Z, Du X, Cui Z, Zhao X. miR-128-3p regulates chicken granulosa cell function via 14-3-3β/FoxO and PPAR-γ/LPL signaling pathways. Int J Biol Macromol 2023; 241:124654. [PMID: 37119902 DOI: 10.1016/j.ijbiomac.2023.124654] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 04/23/2023] [Accepted: 04/24/2023] [Indexed: 05/01/2023]
Abstract
MicroRNAs (miRNAs) are class of 22 nt short RNA sequences which inhibit protein translation through binding to the 3'UTR of its target genes. The continuous ovulatory property of chicken follicle makes it a perfect model for studying granulosa cell (GC) functions. In this study, we found that large number of miRNAs including miR-128-3p, were differentially expressed in the GCs of F1 and F5 follicles of chicken. Subsequently, the results revealed that miR-128-3p inhibited proliferation, the formation of lipid droplets, and hormone secretion in chicken primary GCs through directly targeting YWHAB and PPAR-γ genes. To determine the effects of 14-3-3β (encoded by YWHAB) protein on GCs functions, we overexpressed or inhibited the expression of YWHAB, and the results showed that YWHAB inhibited the function of FoxO proteins. Collectively, we found that miR-128-3p was highly expressed in the chicken F1 follicles compared to the F5 follicles. In addition, the results indicated that miR-128-3p promoted GC apoptosis through 14-3-3β/FoxO pathway via repressing YWHAB, and inhibited lipid synthesis by impeding the PPAR-γ/LPL pathway, as well as reduced the secretion of progesterone and estrogen. Taken together, the results showed that miR-128-3p plays a regulatory role in chicken granulosa cell function via 14-3-3β/FoxO and PPAR-γ/LPL signaling pathways.
Collapse
Affiliation(s)
- Zifan Ning
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, PR China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology (Institute of Animal Genetics and Breeding), Sichuan Agricultural University, PR China
| | - Xun Deng
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, PR China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology (Institute of Animal Genetics and Breeding), Sichuan Agricultural University, PR China
| | - Liang Li
- Institute of Animal Husbandry and Veterinary Medicine, Guizhou Provincial Academy of Agricultural Sciences, Guiyang, PR China
| | - Jing Feng
- Institute of Animal Husbandry and Veterinary Medicine, College of Agriculture and Animal Husbandry of Tibet Autonomous Region, Lhasa, PR China
| | - Xiaxia Du
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, PR China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology (Institute of Animal Genetics and Breeding), Sichuan Agricultural University, PR China
| | - Felix Kwame Amevor
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, PR China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology (Institute of Animal Genetics and Breeding), Sichuan Agricultural University, PR China
| | - Yaofu Tian
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, PR China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology (Institute of Animal Genetics and Breeding), Sichuan Agricultural University, PR China
| | - Lingxiang Li
- Bazhong Academy of Agriculture and Forestry Sciences, Bazhong, PR China
| | - Yong Rao
- Bazhong Academy of Agriculture and Forestry Sciences, Bazhong, PR China
| | - Zhixin Yi
- Bazhong Academy of Agriculture and Forestry Sciences, Bazhong, PR China
| | - Xiaohui Du
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, PR China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology (Institute of Animal Genetics and Breeding), Sichuan Agricultural University, PR China
| | - Zhifu Cui
- College of Animal Science and Technology, Southwest University, Chongqing, PR China.
| | - Xiaoling Zhao
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, PR China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology (Institute of Animal Genetics and Breeding), Sichuan Agricultural University, PR China.
| |
Collapse
|
8
|
Roos K, Rooda I, Keif RS, Liivrand M, Smolander OP, Salumets A, Velthut-Meikas A. Single-cell RNA-seq analysis and cell-cluster deconvolution of the human preovulatory follicular fluid cells provide insights into the pathophysiology of ovarian hyporesponse. Front Endocrinol (Lausanne) 2022; 13:945347. [PMID: 36339426 PMCID: PMC9635625 DOI: 10.3389/fendo.2022.945347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 09/22/2022] [Indexed: 11/13/2022] Open
Abstract
Reduction in responsiveness to gonadotropins or hyporesponsiveness may lead to the failure of in vitro fertilization (IVF), due to a low number of retrieved oocytes. The ovarian sensitivity index (OSI) is used to reflect the ovarian responsiveness to gonadotropin stimulation before IVF. Although introduced to clinical practice already years ago, its usefulness to predict clinical outcomes requires further research. Nevertheless, pathophysiological mechanisms of ovarian hyporesponse, along with advanced maternal age and in younger women, have not been fully elucidated. Follicles consist of multiple cell types responsible for a repertoire of biological processes including responding to pituitary gonadotropins necessary for follicle growth and oocyte maturation as well as ovulation. Encouraging evidence suggests that hyporesponse could be influenced by many contributing factors, therefore, investigating the variability of ovarian follicular cell types and their gene expression in hyporesponders is highly informative for increasing their prognosis for IVF live birth. Due to advancements in single-cell analysis technologies, the role of somatic cell populations in the development of infertility of ovarian etiology can be clarified. Here, somatic cells were collected from the fluid of preovulatory ovarian follicles of patients undergoing IVF, and RNA-seq was performed to study the associations between OSI and gene expression. We identified 12 molecular pathways differentially regulated between hypo- and normoresponder patient groups (FDR<0.05) from which extracellular matrix organization, post-translational protein phosphorylation, and regulation of Insulin-like Growth Factor (IGF) transport and uptake by IGF Binding Proteins were regulated age-independently. We then generated single-cell RNA-seq data from matching follicles revealing 14 distinct cell clusters. Using cell cluster-specific deconvolution from the bulk RNA-seq data of 18 IVF patients we integrated the datasets as a novel approach and discovered that the abundance of three cell clusters significantly varied between hypo- and normoresponder groups suggesting their role in contributing to the deviations from normal ovarian response to gonadotropin stimulation. Our work uncovers new information regarding the differences in the follicular gene expression between hypo- and normoresponders. In addition, the current study fills the gap in understanding the inter-patient variability of cell types in human preovulatory follicles, as revealed by single-cell analysis of follicular fluid cells.
Collapse
Affiliation(s)
- Kristine Roos
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
- Nova Vita Clinic AS, Tallinn, Estonia
| | - Ilmatar Rooda
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
- Division of Obstetrics and Gynecology, Department of Clinical Science, Intervention and Technology, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Robyn-Stefany Keif
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
| | - Maria Liivrand
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
| | - Olli-Pekka Smolander
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
| | - Andres Salumets
- Division of Obstetrics and Gynecology, Department of Clinical Science, Intervention and Technology, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
- Department of Obstetrics and Gynaecology, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
- Competence Centre on Health Technologies, Tartu, Estonia
| | - Agne Velthut-Meikas
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
| |
Collapse
|
9
|
Li H, Shen J, Ma S, Zhao F, Zhao W, Chen F, Fu Y, Li B, Cheng J, Deng Y. TGF-β1 suppresses de novo cholesterol biosynthesis in granulosa-lutein cells by down-regulating DHCR24 expression via the GSK-3β/EZH2/H3K27me3 signaling pathway. Int J Biol Macromol 2022; 224:1118-1128. [DOI: 10.1016/j.ijbiomac.2022.10.196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 10/12/2022] [Accepted: 10/18/2022] [Indexed: 11/05/2022]
|
10
|
Benson A, Steed J, Malloy M, Davis AJ. Quantitative Protein Analysis of ZPB2, ZPB1 and ZPC in the Germinal Disc and a Non-Germinal Disc Region of the Inner Perivitelline Layer in Two Genetic Lines of Turkey Hens That Differ in Fertility. Animals (Basel) 2022; 12:ani12131672. [PMID: 35804570 PMCID: PMC9265051 DOI: 10.3390/ani12131672] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/22/2022] [Accepted: 06/27/2022] [Indexed: 11/16/2022] Open
Abstract
The avian inner perivitelline layer (IPVL), containing the zona pellucida (ZP) family of proteins, surrounds the ovulated ovum. In mammalian species, ZP proteins serve as key component(s) in binding sperm and initiating the acrosome reaction. Sperm binding at the germinal disc (GD) region of the IPVL initiates fertilization in avian species, and the amount of sperm binding at the GD reflects female fertility. The current research determined whether reported differences in mRNA expression in two genetic lines of turkey hens (E, high fertility and F, low fertility) translated to the protein level. ZPB2 in the IPVL is greater in the GD region compared with the nongerminal disc (NGD) region, as indicated by both mRNA and protein expression. However, protein expressions of ZPB1 and ZPC in the IPVL of E- and F-line turkey hens was in contrast to previously reported mRNA expression. The results indicate that the mRNA expression of ZP proteins at their site of synthesis in E- and F-line hens often does not directly correlate with the IPVL abundance of these proteins. The greater protein concentration of ZPB2 in the GD region compared with the NGD regions suggests that this protein may be critical for sperm binding at the GD region.
Collapse
|
11
|
Expression of Nerve Growth Factor and Its Receptor TrkA in the Reproductive System of Adult Zebrafish. Vet Sci 2022; 9:vetsci9050225. [PMID: 35622754 PMCID: PMC9144415 DOI: 10.3390/vetsci9050225] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 04/29/2022] [Accepted: 05/03/2022] [Indexed: 02/04/2023] Open
Abstract
Nerve growth factor (NGF), a member of the neurotrophin family, has emerged as an active mediator in different crucial events in the peripheral and central nervous system. At the same time, several studies showed that this neurotrophin can also play a role in non-neuronal tissues (e.g., among gonads). In spite of a large number of studies present in mammals, investigations devoted to NGF and its receptor TrkA in the reproductive system of other animal models, such as teleost fish, are scarce. To increase our knowledge of NGF and its receptor in a vertebrate gonads model, the present report describes the expression patterns of ngf and trka mRNA in the testis and ovary of adult zebrafish. By using chromogenic and fluorescence in situ hybridization, we demonstrate that in the testis of adult zebrafish, ngf and its receptor trka are mainly expressed in spermatogony B and spermatocytes. In the ovary of this fish, ngf and trka are expressed at different stages of oocyte development. Altogether, these results show that this neurotrophin and its receptor have an important role in the reproductive system that is conserved during vertebrate evolution.
Collapse
|
12
|
Characterization of Four Orphan Receptors (GPR3, GPR6, GPR12 and GPR12L) in Chickens and Ducks and Regulation of GPR12 Expression in Ovarian Granulosa Cells by Progesterone. Genes (Basel) 2021; 12:genes12040489. [PMID: 33801713 PMCID: PMC8065388 DOI: 10.3390/genes12040489] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 03/20/2021] [Accepted: 03/22/2021] [Indexed: 11/29/2022] Open
Abstract
The three structurally related orphan G protein-coupled receptors, GRP3, GPR6, and GPR12, are reported to be constitutively active and likely involved in the regulation of many physiological/pathological processes, such as neuronal outgrowth and oocyte meiotic arrest in mammals. However, the information regarding these orphan receptors in nonmammalian vertebrates is extremely limited. Here, we reported the structure, constitutive activity, and tissue expression of these receptors in two representative avian models: chickens and ducks. The cloned duck GPR3 and duck/chicken GPR6 and GPR12 are intron-less and encode receptors that show high amino acid (a.a.) sequence identities (66–88%) with their respective mammalian orthologs. Interestingly, a novel GPR12-like receptor (named GPR12L) sharing 66% a.a. identity to that in vertebrates was reported in the present study. Using dual-luciferase reporter assay and Western blot, we demonstrated that GPR3, GPR6, GPR12, and GPR12L are constitutively active and capable of stimulating the cAMP/PKA signaling pathway without ligand stimulation in birds (and zebrafish), indicating their conserved signaling property across vertebrates. RNA-seq data/qRT-PCR assays revealed that GPR6 and GPR12L expression is mainly restricted to the chicken brain, while GPR12 is highly expressed in chicken ovarian granulosa cells (GCs) and oocytes of 6 mm growing follicles and its expression in cultured GCs is upregulated by progesterone. Taken together, our data reveal the structure, function, and expression of GPR3, GPR6, GPR12, and GPR12L in birds, thus providing the first piece of evidence that GPR12 expression is upregulated by gonadal steroid (i.e., progesterone) in vertebrates.
Collapse
|