1
|
Falnes PØ. Closing in on human methylation-the versatile family of seven-β-strand (METTL) methyltransferases. Nucleic Acids Res 2024; 52:11423-11441. [PMID: 39351878 PMCID: PMC11514484 DOI: 10.1093/nar/gkae816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 08/15/2024] [Accepted: 09/20/2024] [Indexed: 10/30/2024] Open
Abstract
Methylation is a common biochemical reaction, and a number of methyltransferase (MTase) enzymes mediate the various methylation events occurring in living cells. Almost all MTases use the methyl donor S-adenosylmethionine (AdoMet), and, in humans, the largest group of AdoMet-dependent MTases are the so-called seven-β-strand (7BS) MTases. Collectively, the 7BS MTases target a wide range of biomolecules, i.e. nucleic acids and proteins, as well as several small metabolites and signaling molecules. They play essential roles in key processes such as gene regulation, protein synthesis and metabolism, as well as neurotransmitter synthesis and clearance. A decade ago, roughly half of the human 7BS MTases had been characterized experimentally, whereas the remaining ones merely represented hypothetical enzymes predicted from bioinformatics analysis, many of which were denoted METTLs (METhylTransferase-Like). Since then, considerable progress has been made, and the function of > 80% of the human 7BS MTases has been uncovered. In this review, I provide an overview of the (estimated) 120 human 7BS MTases, grouping them according to substrate specificities and sequence similarity. I also elaborate on the challenges faced when studying these enzymes and describe recent major advances in the field.
Collapse
Affiliation(s)
- Pål Ø Falnes
- Department of Biosciences, University of Oslo, PO Box 1066 Blindern, 0316Oslo, Norway
- CRESCO - Centre for Embryology and Healthy Development, University of Oslo and Oslo University Hospital, Oslo, Norway
| |
Collapse
|
2
|
Tang L, Tian H, Min Q, You H, Yin M, Yang L, Zhao Y, Wu X, Li M, Du F, Chen Y, Deng S, Li X, Chen M, Gu L, Sun Y, Xiao Z, Li W, Shen J. Decoding the epitranscriptome: a new frontier for cancer therapy and drug resistance. Cell Commun Signal 2024; 22:513. [PMID: 39434167 PMCID: PMC11492518 DOI: 10.1186/s12964-024-01854-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 09/25/2024] [Indexed: 10/23/2024] Open
Abstract
As the role of RNA modification in gene expression regulation and human diseases, the "epitranscriptome" has been shown to be an important player in regulating many physiological and pathological processes. Meanwhile, the phenomenon of cancer drug resistance is becoming more and more frequent, especially in the case of cancer chemotherapy resistance. In recent years, research on relationship between post-transcriptional modification and cancer including drug resistance has become a hot topic, especially the methylation of the sixth nitrogen site of RNA adenosine-m6A (N6-methyladenosine). m6A modification is the most common post-transcriptional modification of eukaryotic mRNA, accounting for 80% of RNA methylation modifications. At the same time, several other modifications of RNA, such as N1-methyladenosine (m1A), 5-methylcytosine (m5C), 3-methylcytosine (m3C), pseudouridine (Ψ) and N7-methylguanosine (m7G) have also been demonstrated to be involved in cancer and drug resistance. This review mainly discusses the research progress of RNA modifications in the field of cancer and drug resistance and targeting of m6A regulators by small molecule modulators, providing reference for future study and development of combination therapy to reverse cancer drug resistance.
Collapse
Affiliation(s)
- Lu Tang
- Department of Pharmacology, School of Pharmacy, Laboratory of Molecular Pharmacology, Southwest Medical University, Luzhou, Sichuan, 646000, China
- Scientific Research and Experimental Training Center, Sichuan College of Traditional Chinese Medicine, Mianyang, China
| | - Hua Tian
- Department of Pharmacology, School of Pharmacy, Laboratory of Molecular Pharmacology, Southwest Medical University, Luzhou, Sichuan, 646000, China
- School of Nursing, Chongqing College of Humanities, Science & Technology, Chongqing, 401520, China
| | - Qi Min
- Department of Pharmacy, Mianyang Hospital of TCM, Sichuan Mianyang, 621000, China
| | - Huili You
- Department of Pharmacology, School of Pharmacy, Laboratory of Molecular Pharmacology, Southwest Medical University, Luzhou, Sichuan, 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China
| | - Mengshuang Yin
- Department of Pharmacology, School of Pharmacy, Laboratory of Molecular Pharmacology, Southwest Medical University, Luzhou, Sichuan, 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China
| | - Liqiong Yang
- Department of Pharmacology, School of Pharmacy, Laboratory of Molecular Pharmacology, Southwest Medical University, Luzhou, Sichuan, 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China
| | - Yueshui Zhao
- Department of Pharmacology, School of Pharmacy, Laboratory of Molecular Pharmacology, Southwest Medical University, Luzhou, Sichuan, 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China
| | - Xu Wu
- Department of Pharmacology, School of Pharmacy, Laboratory of Molecular Pharmacology, Southwest Medical University, Luzhou, Sichuan, 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China
| | - Mingxing Li
- Department of Pharmacology, School of Pharmacy, Laboratory of Molecular Pharmacology, Southwest Medical University, Luzhou, Sichuan, 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China
| | - Fukuan Du
- Department of Pharmacology, School of Pharmacy, Laboratory of Molecular Pharmacology, Southwest Medical University, Luzhou, Sichuan, 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China
| | - Yu Chen
- Department of Pharmacology, School of Pharmacy, Laboratory of Molecular Pharmacology, Southwest Medical University, Luzhou, Sichuan, 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China
| | - Shuai Deng
- Department of Pharmacology, School of Pharmacy, Laboratory of Molecular Pharmacology, Southwest Medical University, Luzhou, Sichuan, 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China
| | - Xiaobing Li
- Department of Pharmacology, School of Pharmacy, Laboratory of Molecular Pharmacology, Southwest Medical University, Luzhou, Sichuan, 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China
| | - Meijuan Chen
- Department of Pharmacology, School of Pharmacy, Laboratory of Molecular Pharmacology, Southwest Medical University, Luzhou, Sichuan, 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China
| | - Li Gu
- Department of Pharmacology, School of Pharmacy, Laboratory of Molecular Pharmacology, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Yuhong Sun
- Department of Pharmacology, School of Pharmacy, Laboratory of Molecular Pharmacology, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Zhangang Xiao
- Department of Pharmacology, School of Pharmacy, Laboratory of Molecular Pharmacology, Southwest Medical University, Luzhou, Sichuan, 646000, China.
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China.
| | - Wanping Li
- Department of Pharmacology, School of Pharmacy, Laboratory of Molecular Pharmacology, Southwest Medical University, Luzhou, Sichuan, 646000, China.
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China.
| | - Jing Shen
- Department of Pharmacology, School of Pharmacy, Laboratory of Molecular Pharmacology, Southwest Medical University, Luzhou, Sichuan, 646000, China.
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China.
| |
Collapse
|
3
|
Goulart Stollmaier J, Watson PR, Christianson DW. Design, Synthesis, and Structural Evaluation of Acetylated Phenylthioketone Inhibitors of HDAC10. ACS Med Chem Lett 2024; 15:1715-1723. [PMID: 39411528 PMCID: PMC11472544 DOI: 10.1021/acsmedchemlett.4c00293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/27/2024] [Accepted: 08/28/2024] [Indexed: 10/19/2024] Open
Abstract
Histone deacetylase 10 (HDAC10) is unique among the greater HDAC family due to its unusually narrow substrate specificity as a polyamine deacetylase, specifically as an N 8-acetylspermidine hydrolase. Polyamines are essential for cell growth and proliferation; consequently, inhibition of polyamine deacetylation represents a possible strategy for cancer chemotherapy. In this work, we have designed six acetylated phenylthioketone inhibitors of HDAC10 containing positively charged para- and meta-substituted amino groups designed to target interactions with E274, the gatekeeper that recognizes the positively charged ammonium group of the substrate N 8-acetylspermidine. We prepared each of these inhibitors through a short synthetic route of six steps. By adapting a low-cost colorimetric activity assay, we measured low-micromolar IC50 values for these compounds against a humanized construct of zebrafish HDAC10 (A24E-D94A HDAC10). Selected inhibitors were cocrystallized with A24E-D94A zebrafish HDAC10 and zebrafish HDAC6 to provide insight into class IIb isozyme affinity and selectivity.
Collapse
Affiliation(s)
- Juana Goulart Stollmaier
- Roy and Diana
Vagelos Laboratories,
Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104-6323, United States
| | - Paris R. Watson
- Roy and Diana
Vagelos Laboratories,
Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104-6323, United States
| | - David W. Christianson
- Roy and Diana
Vagelos Laboratories,
Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104-6323, United States
| |
Collapse
|
4
|
Zhang Y, Sun C, Guo Z, Liu L, Zhang X, Sun K, Zheng Y, Gates AJ, Todd JD, Zhang XH. An S-methyltransferase that produces the climate-active gas dimethylsulfide is widespread across diverse marine bacteria. Nat Microbiol 2024; 9:2614-2625. [PMID: 39198690 PMCID: PMC11445057 DOI: 10.1038/s41564-024-01788-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 07/22/2024] [Indexed: 09/01/2024]
Abstract
Hydrogen sulfide (H2S), methanethiol (MeSH) and dimethylsulfide (DMS) are abundant sulfur gases with roles in biogeochemical cycling, chemotaxis and/or climate regulation. Catabolism of the marine osmolyte dimethylsulfoniopropionate (DMSP) is a major source of DMS and MeSH, but both also result from S-methylation of H2S via MddA, an H2S and MeSH S-methyltransferase whose gene is abundant in soil but scarce in marine environments. Here we identify the S-adenosine methionine (SAM)-dependent MeSH and H2S S-methyltransferase 'MddH', which is widespread in diverse marine bacteria and some freshwater and soil bacteria. mddH is predicted in up to ~5% and ~15% of seawater and coastal sediment bacteria, respectively, which is considerably higher than mddA. Furthermore, marine mddH transcript levels are similar to those for the most abundant DMSP lyase gene dddP. This study implies that the importance of H2S and MeSH S-methylation pathways in marine environments is significantly underestimated.
Collapse
Affiliation(s)
- Yunhui Zhang
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, College of Marine Life Sciences, and Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao, China
| | - Chuang Sun
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, College of Marine Life Sciences, and Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, China
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Zihua Guo
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, College of Marine Life Sciences, and Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, China
| | - Liyan Liu
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, College of Marine Life Sciences, and Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, China
| | - Xiaotong Zhang
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, College of Marine Life Sciences, and Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, China
| | - Kai Sun
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, College of Marine Life Sciences, and Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, China
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Yanfen Zheng
- Marine Agriculture Research Center, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Andrew J Gates
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Jonathan D Todd
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, College of Marine Life Sciences, and Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, China.
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, UK.
| | - Xiao-Hua Zhang
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, College of Marine Life Sciences, and Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, China.
- Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao, China.
| |
Collapse
|
5
|
Salih MQ, Steiner L, Goessler W, Hama JR, Lajin B. Urinary excretion of H 2S methylation metabolites in oil refinery workers. Toxicol Lett 2024; 401:82-88. [PMID: 39303962 DOI: 10.1016/j.toxlet.2024.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 08/19/2024] [Accepted: 09/18/2024] [Indexed: 09/22/2024]
Abstract
Hydrogen sulfide (H2S) is a toxic gas emitted through natural and anthropogenic activities. Chronic exposure to inhaled H2S at low sub-toxic levels is common among workers in oil refineries and may have important health implications. Inhaled H2S can be oxidized to thiosulfate or methylated to dimethylsulfide (DMS) which can be methylated to the novel human metabolite trimethylsulfonium (TMS) or oxidized to dimethylsulfoxide (DMSO) but the extent of methylation of inhaled H2S is currently unknown in humans. A total of 80 participants were recruited of which 40 were workers in an oil refinery in Kurdistan region, Iraq including those working in close contact with the facility area where H2S was measured at 1.5-5.0 mg m-3, and 40 controls living in a nearby city with no detectable H2S or perceptible odor (<0.1 mg m-3). A total of 240 urine samples were measured for multiple H2S-related metabolites. DMSO was consistently found in all urine samples with concentrations generally within the range of 1.0-10 µM. Although these concentrations were 10-100-fold higher than TMS urinary levels, clear correlation between DMSO and TMS was observed (rs 0.55, P < 0.0001), which supports DMS as common precursor. DMSO urinary levels were elevated in the oil refinery workers in close contact with the facilities (5.0 vs. 3.3 µM, P 0.03), but TMS was unaltered (0.13 vs. 0.14 µM, P 0.68). Overall, the results suggest that the investigated methylation metabolites are not sufficiently sensitive to low occupational exposure levels of inhaled H2S.
Collapse
Affiliation(s)
- Mamoon Q Salih
- Department of Medical Laboratory, Aynda Private Technical Institute, Erbil, Kurdistan Region 44001, Iraq
| | - Lorenz Steiner
- Institute of Chemistry, Analytical Chemistry for the Health and Environment, University of Graz, Universitaetsplatz 1, Graz, Austria
| | - Walter Goessler
- Institute of Chemistry, Analytical Chemistry for the Health and Environment, University of Graz, Universitaetsplatz 1, Graz, Austria
| | - Jawameer R Hama
- Department of Agroecology, Aarhus University, Forsøgsvej 1, Slagelse 4200, Denmark
| | - Bassam Lajin
- Institute of Chemistry, Analytical Chemistry for the Health and Environment, University of Graz, Universitaetsplatz 1, Graz, Austria; Institute of Chemistry, ChromICP, University of Graz, Universitaetsplatz 1, Graz, Austria.
| |
Collapse
|
6
|
Mu H, Ye L, Wang B. Detailed resume of S-methyltransferases: Categories, structures, biological functions and research advancements in related pathophysiology and pharmacotherapy. Biochem Pharmacol 2024; 226:116361. [PMID: 38876259 DOI: 10.1016/j.bcp.2024.116361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/19/2024] [Accepted: 06/10/2024] [Indexed: 06/16/2024]
Abstract
Methylation is a vital chemical reaction in the metabolism of many drugs, neurotransmitters, hormones, and exogenous compounds. Among them, S-methylation plays a significant role in the biotransformation of sulfur-containing compounds, particularly chemicals with sulfhydryl groups. Currently, only three S-methyltransferases have been reported: thiopurine methyltransferase (TPMT), thiol methyltransferase (TMT), and thioether methyltransferase (TEMT). These enzymes are involved in various biological processes such as gene regulation, signal transduction, protein repair, tumor progression, and biosynthesis and degradation reactions in animals, plants, and microorganisms. Furthermore, they play pivotal roles in the metabolic pathways of essential drugs and contribute to the advancement of diseases such as tumors. This paper reviews the research progress on relevant structural features, metabolic mechanisms, inhibitor development, and influencing factors (gene polymorphism, S-adenosylmethionine level, race, sex, age, and disease) of S-methyltransferases. We hope that a better comprehension of S-methyltransferases will help to provide a reference for the development of novel strategies for related disorders and improve long-term efficacy.
Collapse
Affiliation(s)
- Hongfei Mu
- Department of Drug Metabolism, Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD Study, State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China.
| | - Lisha Ye
- Department of Drug Metabolism, Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD Study, State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China.
| | - Baolian Wang
- Department of Drug Metabolism, Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD Study, State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China.
| |
Collapse
|
7
|
González Dalmasy JM, Fitzsimmons CM, Frye WJE, Perciaccante AJ, Jewell CP, Jenkins LM, Batista PJ, Robey RW, Gottesman MM. The thiol methyltransferase activity of TMT1A (METTL7A) is conserved across species. Chem Biol Interact 2024; 394:110989. [PMID: 38574836 PMCID: PMC11056289 DOI: 10.1016/j.cbi.2024.110989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 03/10/2024] [Accepted: 04/02/2024] [Indexed: 04/06/2024]
Abstract
Although few resistance mechanisms for histone deacetylase inhibitors (HDACis) have been described, we recently demonstrated that TMT1A (formerly METTL7A) and TMT1B (formerly METTL7B) can mediate resistance to HDACis with a thiol as the zinc-binding group by methylating and inactivating the drug. TMT1A and TMT1B are poorly characterized, and their normal physiological role has yet to be determined. As animal model systems are often used to determine the physiological function of proteins, we investigated whether the ability of these methyltransferases to methylate thiol-based HDACis is conserved across different species. We found that TMT1A was conserved across rats, mice, chickens, and zebrafish, displaying 85.7%, 84.8%, 60.7%, and 51.0% amino acid sequence identity, respectively, with human TMT1A. Because TMT1B was not found in the chicken or zebrafish, we focused our studies on the TMT1A homologs. HEK-293 cells were transfected to express mouse, rat, chicken, or zebrafish homologs of TMT1A and all conferred resistance to the thiol-based HDACIs NCH-51, KD-5170, and romidepsin compared to empty vector-transfected cells. Additionally, all homologs blunted the downstream effects of HDACi treatment such as increased p21 expression, increased acetylated histone H3, and cell cycle arrest. Increased levels of dimethylated romidepsin were also found in the culture medium of cells transfected to express any of the TMT1A homologs after a 24 h incubation with romidepsin compared to empty-vector transfected cells. Our results indicate that the ability of TMT1A to methylate molecules is conserved across species. Animal models may therefore be useful in elucidating the role of these enzymes in humans.
Collapse
Affiliation(s)
- José M González Dalmasy
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Christina M Fitzsimmons
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - William J E Frye
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Andrew J Perciaccante
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Connor P Jewell
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Lisa M Jenkins
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Pedro J Batista
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Robert W Robey
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Michael M Gottesman
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
8
|
Robey RW, Fitzsimmons CM, Guiblet WM, Frye WJ, Dalmasy JMG, Wang L, Russell DA, Huff LM, Perciaccante AJ, Ali-Rahmani F, Lipsey CC, Wade HM, Mitchell AV, Maligireddy SS, Terrero D, Butcher D, Edmondson EF, Jenkins LM, Nikitina T, Zhurkin VB, Tiwari AK, Piscopio AD, Totah RA, Bates SE, Arda HE, Gottesman MM, Batista PJ. The Methyltransferases METTL7A and METTL7B Confer Resistance to Thiol-Based Histone Deacetylase Inhibitors. Mol Cancer Ther 2024; 23:464-477. [PMID: 38151817 PMCID: PMC11223745 DOI: 10.1158/1535-7163.mct-23-0144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 08/25/2023] [Accepted: 12/20/2023] [Indexed: 12/29/2023]
Abstract
Histone deacetylase inhibitors (HDACi) are part of a growing class of epigenetic therapies used for the treatment of cancer. Although HDACis are effective in the treatment of T-cell lymphomas, treatment of solid tumors with this class of drugs has not been successful. Overexpression of the multidrug resistance protein P-glycoprotein (P-gp), encoded by ABCB1, is known to confer resistance to the HDACi romidepsin in vitro, yet increased ABCB1 expression has not been associated with resistance in patients, suggesting that other mechanisms of resistance arise in the clinic. To identify alternative mechanisms of resistance to romidepsin, we selected MCF-7 breast cancer cells with romidepsin in the presence of the P-gp inhibitor verapamil to reduce the likelihood of P-gp-mediated resistance. The resulting cell line, MCF-7 DpVp300, does not express P-gp and was found to be selectively resistant to romidepsin but not to other HDACis such as belinostat, panobinostat, or vorinostat. RNA-sequencing analysis revealed upregulation of the mRNA coding for the putative methyltransferase, METTL7A, whose paralog, METTL7B, was previously shown to methylate thiol groups on hydrogen sulfide and captopril. As romidepsin has a thiol as the zinc-binding moiety, we hypothesized that METTL7A could inactivate romidepsin and other thiol-based HDACis via methylation of the thiol group. We demonstrate that expression of METTL7A or METTL7B confers resistance to thiol-based HDACis and that both enzymes are capable of methylating thiol-containing HDACis. We thus propose that METTL7A and METTL7B confer resistance to thiol-based HDACis by methylating and inactivating the zinc-binding thiol.
Collapse
Affiliation(s)
- Robert W. Robey
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Christina M. Fitzsimmons
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Wilfried M. Guiblet
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
- Present address: Advanced Biomedical Computational Science, Frederick National Laboratory for Cancer Research, Frederick, MD
| | - William J.E. Frye
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - José M. González Dalmasy
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Li Wang
- Laboratory of Receptor Biology and Gene Expression, Developmental Genomics Group, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Drake A. Russell
- Department of Medicinal Chemistry, University of Washington, Seattle, WA
| | - Lyn M. Huff
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Andrew J. Perciaccante
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Fatima Ali-Rahmani
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
- Present Address: Taiho Pharmaceutical, Princeton, NJ
| | - Crystal C. Lipsey
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Heidi M. Wade
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Allison V. Mitchell
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Siddhardha S. Maligireddy
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - David Terrero
- Department of Pharmacology and Experimental Therapeutics, Department of Cancer Cell and Cancer Biology, University of Toledo, Toledo, OH
| | - Donna Butcher
- Molecular Histopathology Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Elijah F. Edmondson
- Molecular Histopathology Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Lisa M. Jenkins
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Tatiana Nikitina
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Victor B. Zhurkin
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Amit K. Tiwari
- Department of Pharmacology and Experimental Therapeutics, Department of Cancer Cell and Cancer Biology, University of Toledo, Toledo, OH
| | | | - Rheem A. Totah
- Department of Medicinal Chemistry, University of Washington, Seattle, WA
| | - Susan E. Bates
- Division of Hematology/Oncology, Department of Medicine, Columbia University Medical Center, New York, NY and Hematology/Oncology Research Department, James J. Peters Department of Veterans Affairs Medical Center, New York, NY
| | - H. Efsun Arda
- Laboratory of Receptor Biology and Gene Expression, Developmental Genomics Group, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Michael M. Gottesman
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Pedro J. Batista
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| |
Collapse
|
9
|
Zhang L, Liu X, Zhou S, Wang P, Zhang X. Glycolysis Modulation by METTL7B Shapes Acute Lymphoblastic Leukemia Cell Proliferation and Chemotherapy Response. Hum Cell 2024; 37:478-490. [PMID: 38294636 DOI: 10.1007/s13577-024-01025-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 01/01/2024] [Indexed: 02/01/2024]
Abstract
Acute lymphoblastic leukemia (ALL) is a devastating hematological malignancy characterized by uncontrolled proliferation of immature lymphoid cells. While advances in treatment have improved patient outcomes, challenges remain in enhancing therapeutic efficacy and understanding underlying molecular mechanisms. Methyltransferase-like 7B (METTL7B), known for its methyltransferase activity, has been implicated in various solid tumors, yet its role in ALL remains unexplored. Here, we reveal that high METTL7B expression is correlated with poorer prognosis in ALL patients. Employing genetic manipulation strategies, we demonstrate that METTL7B depletion reduces ALL cell proliferation and enhances chemosensitivity. Mechanistically, we uncover METTL7B's involvement in modulating glycolysis, a crucial metabolic pathway supporting ALL cell growth. Furthermore, METTL7B's methyltransferase activity is identified as a determinant of its impact on glycolysis and proliferation. This study sheds light on METTL7B's multifaceted role in ALL, highlighting its potential as a therapeutic target and offering insights into the metabolic rewiring crucial for ALL progression.
Collapse
Affiliation(s)
- Li Zhang
- Department of Human Anatomy, School of Basic Medical Sciences, Binzhou Medical University, Yantai, Shandong, China
| | - Xiao Liu
- Department of Hematology, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Shuai Zhou
- Department of Human Anatomy, School of Basic Medical Sciences, Binzhou Medical University, Yantai, Shandong, China
| | - Peng Wang
- Department of Critical Care Unit, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Xuan Zhang
- Department of Geriatric Respiratory Disease, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China.
| |
Collapse
|
10
|
Zong S, Gao J. Identifying the tumor immune microenvironment-associated prognostic genes for prostate cancer. Discov Oncol 2024; 15:42. [PMID: 38376699 PMCID: PMC10879074 DOI: 10.1007/s12672-023-00856-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 12/29/2023] [Indexed: 02/21/2024] Open
Abstract
PURPOSE This study aimed to explore novel tumor immune microenvironment (TIME)-associated biomarkers in prostate adenocarcinoma (PRAD). METHODS PRAD RNA-sequencing data were obtained from UCSC Xena database as the training dataset. The ESTIMATE package was used to evaluate stromal, immune, and tumor purity scores. Differentially expressed genes (DEGs) related to TIME were screened using the immune and stromal scores. Gene functions were analyzed using DAVID. The LASSO method was performed to screen prognostic TIME-related genes. Kaplan-Meier curves were used to evaluate the prognosis of samples. The correlation between the screened genes and immune cell infiltration was explored using Tumor IMmune Estimation Resource. The GSE70768 dataset from the Gene Expression Omnibus was used to validate the expression of the screened genes. RESULTS The ESTIMATE results revealed that high immune, stromal, and ESTIMATE scores and low tumor purity had better prognoses. Function analysis indicated that DEGs are involved in the cytokine-cytokine receptor interaction signaling pathway. In TIME-related DEGs, METTL7B, HOXB8, and TREM1 were closely related to the prognosis. Samples with low expression levels of METTL7B, HOXB8, and TREM1 had better survival times. Similarly, both the validation dataset and qRT-PCR suggested that METTL7B, HOXB8, and TREM1 were significantly decreased. The three genes showed a positive correlation with immune infiltration. CONCLUSIONS This study identified three TIME-related genes, namely, METTL7B, HOXB8, and TREM1, which correlated with the prognosis of patients with PRAD. Targeting the TIME-related genes might have important clinical implications when making decisions for immunotherapy in PRAD.
Collapse
Affiliation(s)
- Shi Zong
- Department of Urology, Union Hospital of Jilin University, No.126, Xian Tai Road, Chang Chun, 130021, China
| | - Ji Gao
- Department of Urology, Union Hospital of Jilin University, No.126, Xian Tai Road, Chang Chun, 130021, China.
| |
Collapse
|
11
|
Antonaros F, Obermayer-Pietsch B, Ramacieri G, Vione B, Locatelli C, Goessler W, Caracausi M, Lajin B. First clinical evidence that trimethylsulfonium can serve as a biomarker for the production of the signaling molecule hydrogen sulfide. Clin Chim Acta 2024; 554:117780. [PMID: 38266970 DOI: 10.1016/j.cca.2024.117780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 01/03/2024] [Accepted: 01/10/2024] [Indexed: 01/26/2024]
Abstract
BACKGROUND Hydrogen sulfide (H2S) is established as the third gaseous signaling molecule and is known to be overproduced in down syndrome (DS) due to the extra copy of the CBS gene on chromosome 21, which has been suggested to contribute to the clinical manifestation of this condition. We recently discovered trimethylsulfonium (TMS) in human urine and highlighted its potential as a selective methylation metabolite of endogenously produced H2S, but the clinical utility of this novel metabolite has not been previously investigated. We hypothesize that the elevation of H2S production in DS would be reflected by an elevation in the methylation product TMS. METHODS To test this hypothesis, a case-control study was performed and the urinary levels of TMS were found to be higher in the DS group (geo. mean 4.5 nM, 95 % CI 2.4-3.9) than in the control (N) group (3.1 nM, 3.5-6.0), p-value 0.01, whereas the commonly used biomarker of hydrogen sulfide, thiosulfate, failed to reflect this alteration in H2S production (15 µM (N) vs. 13 µM (DS), p-value 0.24. RESULTS The observed association is in line with the proposed hypothesis and provides first clinical evidence of the utility of TMS as a novel and more sensitive biomarker for the endogenous production of the third gaseous signaling molecule than the conventionally used biomarker thiosulfate, which is heavily dependent on bacterial hydrogen sulfide production. CONCLUSION This work shows that TMS must be explored in clinical conditions where altered metabolism of hydrogen sulfide is implicated.
Collapse
Affiliation(s)
- Francesca Antonaros
- Department of Biomedical and Neuromotor Sciences, Unit of Histology, Embryology and Applied Biology, University of Bologna, Via Belmeloro 8, 40126 Bologna (BO), Italy
| | - Barbara Obermayer-Pietsch
- Division of Endocrinology and Diabetology, Endocrinology Lab Platform, Department of Internal Medicine and Gynecology and Obstetrics, Medical University of Graz, Auenbruggerplatz 15, 8036 Graz, Austria; BioTechMed-GRAZ, 8010 Graz, Austria
| | - Giuseppe Ramacieri
- Department of Medical and Surgical Science, University of Bologna, Via Massarenti 11, 40138 Bologna (BO), Italy
| | - Beatrice Vione
- Department of Biomedical and Neuromotor Sciences, Unit of Histology, Embryology and Applied Biology, University of Bologna, Via Belmeloro 8, 40126 Bologna (BO), Italy; Department of Medical and Surgical Science, University of Bologna, Via Massarenti 11, 40138 Bologna (BO), Italy
| | - Chiara Locatelli
- Neonatology Unit, St. Orsola-Malpighi Polyclinic, Via Massarenti 9, 40138 Bologna, BO, Italy
| | - Walter Goessler
- Neonatology Unit, St. Orsola-Malpighi Polyclinic, Via Massarenti 9, 40138 Bologna, BO, Italy; BioTechMed-GRAZ, 8010 Graz, Austria
| | - Maria Caracausi
- Department of Biomedical and Neuromotor Sciences, Unit of Histology, Embryology and Applied Biology, University of Bologna, Via Belmeloro 8, 40126 Bologna (BO), Italy
| | - Bassam Lajin
- Institute of Chemistry, Analytical Chemistry for the Health and Environment, University of Graz, Universitaetsplatz 1, 8010 Graz, Austria; Institute of Chemistry, ChromICP, University of Graz, Universitaetsplatz 1, 8010 Graz, Austria; BioTechMed-GRAZ, 8010 Graz, Austria.
| |
Collapse
|
12
|
Zhang Y, Liu X, Li F, Yin J, Yang H, Li X, Liu X, Chai X, Niu T, Zeng S, Jia Q, Zhu F. INTEDE 2.0: the metabolic roadmap of drugs. Nucleic Acids Res 2024; 52:D1355-D1364. [PMID: 37930837 PMCID: PMC10767827 DOI: 10.1093/nar/gkad1013] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/13/2023] [Accepted: 10/19/2023] [Indexed: 11/08/2023] Open
Abstract
The metabolic roadmap of drugs (MRD) is a comprehensive atlas for understanding the stepwise and sequential metabolism of certain drug in living organisms. It plays a vital role in lead optimization, personalized medication, and ADMET research. The MRD consists of three main components: (i) the sequential catalyses of drug and its metabolites by different drug-metabolizing enzymes (DMEs), (ii) a comprehensive collection of metabolic reactions along the entire MRD and (iii) a systematic description on efficacy & toxicity for all metabolites of a studied drug. However, there is no database available for describing the comprehensive metabolic roadmaps of drugs. Therefore, in this study, a major update of INTEDE was conducted, which provided the stepwise & sequential metabolic roadmaps for a total of 4701 drugs, and a total of 22 165 metabolic reactions containing 1088 DMEs and 18 882 drug metabolites. Additionally, the INTEDE 2.0 labeled the pharmacological properties (pharmacological activity or toxicity) of metabolites and provided their structural information. Furthermore, 3717 drug metabolism relationships were supplemented (from 7338 to 11 055). All in all, INTEDE 2.0 is highly expected to attract broad interests from related research community and serve as an essential supplement to existing pharmaceutical/biological/chemical databases. INTEDE 2.0 can now be accessible freely without any login requirement at: http://idrblab.org/intede/.
Collapse
Affiliation(s)
- Yang Zhang
- School of Pharmacy, Hebei Medical University, Shijiazhuang 050017, China
| | - Xingang Liu
- School of Pharmacy, Hebei Medical University, Shijiazhuang 050017, China
| | - Fengcheng Li
- College of Pharmaceutical Sciences, National Key Laboratory of Advanced Drug Delivery and Release Systems, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China
- The Children's Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310052, China
| | - Jiayi Yin
- College of Pharmaceutical Sciences, National Key Laboratory of Advanced Drug Delivery and Release Systems, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China
- Department of Clinical Pharmacy, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310052, China
| | - Hao Yang
- School of Pharmacy, Hebei Medical University, Shijiazhuang 050017, China
| | - Xuedong Li
- School of Pharmacy, Hebei Medical University, Shijiazhuang 050017, China
| | - Xinyu Liu
- School of Pharmacy, Hebei Medical University, Shijiazhuang 050017, China
| | - Xu Chai
- School of Pharmacy, Hebei Medical University, Shijiazhuang 050017, China
| | - Tianle Niu
- School of Pharmacy, Hebei Medical University, Shijiazhuang 050017, China
| | - Su Zeng
- College of Pharmaceutical Sciences, National Key Laboratory of Advanced Drug Delivery and Release Systems, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Qingzhong Jia
- School of Pharmacy, Hebei Medical University, Shijiazhuang 050017, China
| | - Feng Zhu
- School of Pharmacy, Hebei Medical University, Shijiazhuang 050017, China
- College of Pharmaceutical Sciences, National Key Laboratory of Advanced Drug Delivery and Release Systems, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou 330110, China
| |
Collapse
|
13
|
González Dalmasy JM, Fitzsimmons CM, Frye WJ, Perciaccante AJ, Jewell CP, Jenkins LM, Batista PJ, Robey RW, Gottesman MM. The thiol methyltransferase activity of TMT1A (METTL7A) is conserved across species. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.17.567538. [PMID: 38076968 PMCID: PMC10705543 DOI: 10.1101/2023.11.17.567538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/22/2023]
Abstract
Although few resistance mechanisms for histone deacetylase inhibitors (HDACis) have been described, we recently demonstrated that TMT1A (formerly METTL7A) and TMT1B (formerly METTL7B) can mediate resistance to HDACis with a thiol as the zinc-binding group by methylating and inactivating the drug. TMT1A and TMT1B are poorly characterized, and their normal physiological role has yet to be determined. As animal model systems are often used to determine the physiological function of proteins, we investigated whether the ability of these methyltransferases to methylate thiol-based HDACis is conserved across different species. We found that TMT1A was conserved across rats, mice, chickens, and zebrafish, displaying 85.7%, 84.8%, 60.7% and 51.0% amino acid sequence identity, respectively, with human TMT1A. Because TMT1B was not found in the chicken or zebrafish, we focused our studies on the TMT1A homologs. HEK-293 cells were transfected to express mouse, rat, chicken, or zebrafish homologs of TMT1A and all conferred resistance to the thiol-based HDACIs NCH-51, KD-5170 and romidepsin compared to empty vector-transfected cells. Additionally, all homologs blunted the downstream effects of HDACi treatment such as increased p21 expression, increased acetylated histone H3, and cell cycle arrest. Increased levels of dimethylated romidepsin were also found in the culture medium of cells transfected to express any of the TMT1A homologs after a 24 h incubation with romidepsin compared to empty-vector transfected cells. Our results indicate that the ability of TMT1A to methylate molecules is conserved across species. Animal models may therefore be useful in elucidating the role of these enzymes in humans.
Collapse
Affiliation(s)
- José M. González Dalmasy
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health. Bethesda, MD
| | - Christina M. Fitzsimmons
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health. Bethesda, MD
| | - William J.E. Frye
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health. Bethesda, MD
| | - Andrew J. Perciaccante
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health. Bethesda, MD
| | - Connor P. Jewell
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health. Bethesda, MD
| | - Lisa M. Jenkins
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health. Bethesda, MD
| | - Pedro J. Batista
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health. Bethesda, MD
| | - Robert W. Robey
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health. Bethesda, MD
| | - Michael M. Gottesman
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health. Bethesda, MD
| |
Collapse
|
14
|
Philipp TM, Scheller AS, Krafczyk N, Klotz LO, Steinbrenner H. Methanethiol: A Scent Mark of Dysregulated Sulfur Metabolism in Cancer. Antioxidants (Basel) 2023; 12:1780. [PMID: 37760083 PMCID: PMC10525899 DOI: 10.3390/antiox12091780] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/15/2023] [Accepted: 09/16/2023] [Indexed: 09/29/2023] Open
Abstract
In order to cope with increased demands for energy and metabolites as well as to enhance stress resilience, tumor cells develop various metabolic adaptations, representing a hallmark of cancer. In this regard, the dysregulation of sulfur metabolism that may result in elevated levels of volatile sulfur compounds (VSCs) in body fluids, breath, and/or excretions of cancer patients has recently gained attention. Besides hydrogen sulfide (H2S), methanethiol is the predominant cancer-associated VSC and has been proposed as a promising biomarker for non-invasive cancer diagnosis. Gut bacteria are the major exogenous source of exposure to this foul-smelling toxic gas, with methanethiol-producing strains such as Fusobacterium nucleatum highly abundant in the gut microbiome of colorectal carcinoma (CRC) patients. Physiologically, methanethiol becomes rapidly degraded through the methanethiol oxidase (MTO) activity of selenium-binding protein 1 (SELENBP1). However, SELENBP1, which is considered a tumor suppressor, is often downregulated in tumor tissues, and this has been epidemiologically linked to poor clinical outcomes. In addition to impaired removal, an increase in methanethiol levels may derive from non-enzymatic reactions, such as a Maillard reaction between glucose and methionine, two metabolites enriched in cancer cells. High methionine concentrations in cancer cells may also result in enzymatic methanethiol production in mitochondria. Moreover, enzymatic endogenous methanethiol production may occur through methyltransferase-like protein 7B (METTL7B), which is present at elevated levels in some cancers, including CRC and hepatocellular carcinoma (HCC). In conclusion, methanethiol contributes to the scent of cancer as part of the cancer-associated signature combination of volatile organic compounds (VOCs) that are increasingly being exploited for non-invasive early cancer diagnosis.
Collapse
Affiliation(s)
| | | | | | | | - Holger Steinbrenner
- Institute of Nutritional Sciences, Nutrigenomics Section, Friedrich Schiller University Jena, D-07743 Jena, Germany; (T.M.P.); (A.S.S.); (N.K.); (L.-O.K.)
| |
Collapse
|
15
|
Reed JR, Guidry JJ, Eyer M, Backes WL. The Influence of Lipid Microdomain Heterogeneity on Protein-Protein Interactions: Proteomic Analysis of Co-Immunoprecipitated Binding Partners of P450 1A2 and P450 3A in Rat Liver Microsomes. Drug Metab Dispos 2023; 51:1196-1206. [PMID: 37349115 PMCID: PMC10449098 DOI: 10.1124/dmd.123.001287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 06/02/2023] [Accepted: 06/07/2023] [Indexed: 06/24/2023] Open
Abstract
Liver cytochrome P450s (CYPs) of the endoplasmic reticulum (ER) are involved in the metabolism of exogenous and endogenous chemicals. The ER is not uniform, but possesses ordered lipid microdomains containing higher levels of saturated fatty acids, sphingomyelin, and cholesterol and disordered regions containing higher levels of polyunsaturated fatty acid chains. The various forms of drug-metabolizing P450s partition to either the ordered or disordered lipid microdomains with different degrees of specificity. P450s readily form complexes with ER-resident proteins, including other forms of P450. This study aims to ascertain whether lipid microdomain localization influences protein-P450 interactions in rat liver microsomes. Thus, liver microsomes were co-immunoprecipitated with CYP1A2-specific and CYP3A-specific antibodies, and the co-immunoprecipitating proteins were identified by liquid chromatography mass spectrometry proteomic analysis. These two P450s preferentially partition to ordered and disordered microdomains, respectively. More than 100 proteins were co-immunoprecipitated with each P450. Segregation of proteins into different microdomains did not preclude their interaction. However, CYP3A interacted broadly with proteins from ordered microdomains, whereas CYP1A2 reacted with a limited subset of these proteins. This is consistent with the concept of lipid raft heterogeneity and may indicate that CYP1A2 is targeted to a specific type of lipid raft. Although many of the interacting proteins for both P450s were other-drug metabolizing enzymes, other interactions were also evident. The consistent CYP3A binding partners were predominantly involved in phase I/II drug metabolism; however, CYP1A2 interacted not only with xenobiotic metabolizing enzymes, but also with enzymes involved in diverse cellular responses such as ER stress and protein folding. SIGNIFICANCE STATEMENT: This work describes the protein interactomes in rat liver microsomes of two important cytochromes P450s (CYP1A2 and CYP3A) in drug metabolism and describes the relationship of the interacting proteins to lipid microdomain distribution.
Collapse
Affiliation(s)
- James R Reed
- Department of Pharmacology and Experimental Therapeutics and The Stanley S. Scott Cancer Center, Louisiana State University Health Science Center, New Orleans, Louisiana
| | - Jessie J Guidry
- Department of Pharmacology and Experimental Therapeutics and The Stanley S. Scott Cancer Center, Louisiana State University Health Science Center, New Orleans, Louisiana
| | - Marilyn Eyer
- Department of Pharmacology and Experimental Therapeutics and The Stanley S. Scott Cancer Center, Louisiana State University Health Science Center, New Orleans, Louisiana
| | - Wayne L Backes
- Department of Pharmacology and Experimental Therapeutics and The Stanley S. Scott Cancer Center, Louisiana State University Health Science Center, New Orleans, Louisiana
| |
Collapse
|
16
|
Philipp TM, Gernoth L, Will A, Schwarz M, Ohse VA, Kipp AP, Steinbrenner H, Klotz LO. Selenium-binding protein 1 (SELENBP1) is a copper-dependent thiol oxidase. Redox Biol 2023; 65:102807. [PMID: 37437449 PMCID: PMC10362175 DOI: 10.1016/j.redox.2023.102807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/17/2023] [Accepted: 07/02/2023] [Indexed: 07/14/2023] Open
Abstract
Selenium-binding protein 1 (SELENBP1) was reported to act as a methanethiol oxidase (MTO) in humans, catalyzing the conversion of methanethiol to hydrogen peroxide, hydrogen sulfide and formaldehyde. Here, we identify copper ions as essential to this novel MTO activity. Site-directed mutagenesis of putative copper-binding sites in human SELENBP1 produced as recombinant protein in E. coli resulted in loss of its enzymatic function. On the other hand, the eponymous binding of selenium (as selenite) was no requirement for MTO activity and only moderately increased SELENBP1-catalyzed oxidation of methanethiol. Furthermore, SEMO-1, the SELENBP1 ortholog recently identified in the nematode C. elegans, also requires copper ions, and MTO activity was enhanced or abrogated, respectively, if worms were grown in the presence of cupric chloride or of a Cu chelator. In addition to methanethiol, we identified novel substrates of SELENBP1 from the group of volatile sulfur compounds, ranging from ethanethiol to 1-pentanethiol as well as 2-propene-1-thiol. Gut microbiome-derived methanethiol as well as food-derived volatile sulfur compounds (VSCs) account for malodors that may contribute to extraoral halitosis in humans, if not metabolized properly. As SELENBP1 is particularly abundant in tissues exposed to VSCs, such as colon, liver, and lung, it appears to contribute to copper-dependent VSC degradation.
Collapse
Affiliation(s)
- Thilo Magnus Philipp
- Institute of Nutritional Sciences, Nutrigenomics Section, Friedrich Schiller University Jena, Jena, Germany
| | - Leon Gernoth
- Institute of Nutritional Sciences, Nutrigenomics Section, Friedrich Schiller University Jena, Jena, Germany
| | - Andreas Will
- Institute of Nutritional Sciences, Nutrigenomics Section, Friedrich Schiller University Jena, Jena, Germany
| | - Maria Schwarz
- Institute of Nutritional Sciences, Department of Nutritional Physiology, Friedrich Schiller University Jena, Jena, Germany
| | - Verena Alexia Ohse
- Institute of Nutritional Sciences, Nutrigenomics Section, Friedrich Schiller University Jena, Jena, Germany
| | - Anna Patricia Kipp
- Institute of Nutritional Sciences, Department of Nutritional Physiology, Friedrich Schiller University Jena, Jena, Germany
| | - Holger Steinbrenner
- Institute of Nutritional Sciences, Nutrigenomics Section, Friedrich Schiller University Jena, Jena, Germany
| | - Lars-Oliver Klotz
- Institute of Nutritional Sciences, Nutrigenomics Section, Friedrich Schiller University Jena, Jena, Germany.
| |
Collapse
|
17
|
Russell DA, Chau MK, Shi Y, Levasseur IN, Maldonato BJ, Totah RA. METTL7A (TMT1A) and METTL7B (TMT1B) Are Responsible for Alkyl S-Thiol Methyl Transferase Activity in Liver. Drug Metab Dispos 2023; 51:1024-1034. [PMID: 37137720 PMCID: PMC10353073 DOI: 10.1124/dmd.123.001268] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 04/19/2023] [Accepted: 04/27/2023] [Indexed: 05/05/2023] Open
Abstract
S-methylation of drugs containing thiol-moieties often alters their activity and results in detoxification. Historically, scientists attributed methylation of exogenous aliphatic and phenolic thiols to a putative S-adenosyl-L-methionine (SAM)-dependent membrane-associated enzyme referred to as thiol methyltransferase (TMT). This putative TMT appeared to have a broad substrate specificity and methylated the thiol metabolite of spironolactone, mertansine, ziprasidone, captopril, and the active metabolites of the thienopyridine prodrugs, clopidogrel, and prasugrel. Despite TMT's role in the S-methylation of clinically relevant drugs, the enzyme(s) responsible for this activity remained unknown. We recently identified methyltransferase-like protein 7B (METTL7B) as an alkyl thiol methyltransferase. METTL7B is an endoplasmic reticulum-associated protein with similar biochemical properties and substrate specificity to the putative TMT. Yet, the historic TMT inhibitor 2,3-dichloro-α-methylbenzylamine (DCMB) did not inhibit METTL7B, indicating that multiple enzymes contribute to TMT activity. Here we report that methyltransferase-like protein 7A (METTL7A), an uncharacterized member of the METTL7 family, is also a SAM-dependent thiol methyltransferase. METTL7A exhibits similar biochemical properties to METTL7B and putative TMT, including inhibition by DCMB (IC50 = 1.17 μM). Applying quantitative proteomics to human liver microsomes and gene modulation experiments in HepG2 and HeLa cells, we determined that TMT activity correlates closely with METTL7A and METTL7B protein levels. Furthermore, purification of a novel His-GST-tagged recombinant protein and subsequent activity experiments prove that METTL7A can selectively methylate exogenous thiol-containing substrates, including 7α-thiospironolactone, dithiothreitol, 4-chlorothiophenol, and mertansine. We conclude that the METTL7 family encodes for two enzymes, METTL7A and METTL7B, which are now renamed thiol methyltransferase 1A (TMT1A) and thiol methyltransferase 1B (TMT1B), respectively, that are responsible for thiol methylation activity in human liver microsomes. SIGNIFICANCE STATEMENT: We identified methyltransferase-like protein 7A (thiol methyltransferase 1A) and methyltransferase-like protein 7B (thiol methyltransferase 1B) as the enzymes responsible for the microsomal alkyl thiol methyltransferase (TMT) activity. These are the first two enzymes directly associated with microsomal TMT activity. S-methylation of commonly prescribed thiol-containing drugs alters their pharmacological activity and/or toxicity, and identifying the enzymes responsible for this activity will improve our understanding of the drug metabolism and pharmacokinetic (DMPK) properties of alkyl- or phenolic thiol-containing therapeutics.
Collapse
Affiliation(s)
- Drake A Russell
- University of Washington, Department of Medicinal Chemistry, Seattle, Washington
| | - Marvin K Chau
- University of Washington, Department of Medicinal Chemistry, Seattle, Washington
| | - Yuanyuan Shi
- University of Washington, Department of Medicinal Chemistry, Seattle, Washington
| | - Ian N Levasseur
- University of Washington, Department of Medicinal Chemistry, Seattle, Washington
| | - Benjamin J Maldonato
- University of Washington, Department of Medicinal Chemistry, Seattle, Washington
| | - Rheem A Totah
- University of Washington, Department of Medicinal Chemistry, Seattle, Washington
| |
Collapse
|
18
|
Li CY, Cao HY, Wang Q, Carrión O, Zhu X, Miao J, Wang P, Chen XL, Todd JD, Zhang YZ. Aerobic methylation of hydrogen sulfide to dimethylsulfide in diverse microorganisms and environments. THE ISME JOURNAL 2023; 17:1184-1193. [PMID: 37179443 PMCID: PMC10356932 DOI: 10.1038/s41396-023-01430-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 04/27/2023] [Accepted: 05/02/2023] [Indexed: 05/15/2023]
Abstract
Dimethylsulfide (DMS) is the major biosulfur source emitted to the atmosphere with key roles in global sulfur cycling and potentially climate regulation. The main precursor of DMS is thought to be dimethylsulfoniopropionate. However, hydrogen sulfide (H2S), a widely distributed and abundant volatile in natural environments, can be methylated to DMS. The microorganisms and the enzymes that convert H2S to DMS, and their importance in global sulfur cycling were unknown. Here we demonstrate that the bacterial MddA enzyme, previously known as a methanethiol S-methyltransferase, could methylate inorganic H2S to DMS. We determine key residues involved in MddA catalysis and propose the mechanism for H2S S-methylation. These results enabled subsequent identification of functional MddA enzymes in abundant haloarchaea and a diverse range of algae, thus expanding the significance of MddA mediated H2S methylation to other domains of life. Furthermore, we provide evidence for H2S S-methylation being a detoxification strategy in microorganisms. The mddA gene was abundant in diverse environments including marine sediments, lake sediments, hydrothermal vents and soils. Thus, the significance of MddA-driven methylation of inorganic H2S to global DMS production and sulfur cycling has likely been considerably underestimated.
Collapse
Affiliation(s)
- Chun-Yang Li
- MOE Key Laboratory of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System & College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Hai-Yan Cao
- MOE Key Laboratory of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System & College of Marine Life Sciences, Ocean University of China, Qingdao, China.
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, China.
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China.
| | - Qing Wang
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, China
| | - Ornella Carrión
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Xiaoyu Zhu
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Jie Miao
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, China
| | - Peng Wang
- MOE Key Laboratory of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System & College of Marine Life Sciences, Ocean University of China, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China
| | - Xiu-Lan Chen
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China
| | - Jonathan D Todd
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Yu-Zhong Zhang
- MOE Key Laboratory of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System & College of Marine Life Sciences, Ocean University of China, Qingdao, China.
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, China.
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China.
| |
Collapse
|
19
|
Denford SE, Wilhelm BT. Defining the elusive oncogenic role of the methyltransferase TMT1B. Front Oncol 2023; 13:1211540. [PMID: 37456227 PMCID: PMC10339810 DOI: 10.3389/fonc.2023.1211540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 06/16/2023] [Indexed: 07/18/2023] Open
Abstract
Methyltransferases are enzymes fundamental to a wide range of normal biological activities that can become dysregulated during oncogenesis. For instance, the recent description of the methyltransferase-like (METTL) family of enzymes, has demonstrated the importance of the N6-adenosine-methyltransferase (m6A) modification in transcripts in the context of malignant transformation. Because of their importance, numerous METTL family members have been biochemically characterized to identify their cellular substrates, however some members such as METTL7B, recently renamed TMT1B and which is the subject of this review, remain enigmatic. First identified in the stacked Golgi, TMT1B is also localized to the endoplasmic reticulum as well as lipid droplets and has been reported as being upregulated in a wide range of cancer types including lung cancer, gliomas, and leukemia. Interestingly, despite evidence that TMT1B might act on protein substrates, it has also been shown to act on small molecule alkyl thiol substrates such as hydrogen sulfide, and its loss has been found to affect cellular proliferation and migration. Here we review the current evidence for TMT1B's activity, localization, and potential biological role in the context of both normal and cancerous cell types.
Collapse
Affiliation(s)
- Sarah E. Denford
- Laboratory for High Throughput Biology, Institute for Research in Immunology and Cancer, Montréal, QC, Canada
| | - Brian T. Wilhelm
- Laboratory for High Throughput Biology, Institute for Research in Immunology and Cancer, Montréal, QC, Canada
- Department of Medicine, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
| |
Collapse
|
20
|
Zeigler MB, Fay EE, Moreni SL, Mao J, Totah RA, Hebert MF. Plasma hydrogen sulfide, nitric oxide, and thiocyanate levels are lower during pregnancy compared to postpartum in a cohort of women from the Pacific northwest of the United States. Life Sci 2023; 322:121625. [PMID: 37001802 PMCID: PMC10133030 DOI: 10.1016/j.lfs.2023.121625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 03/21/2023] [Accepted: 03/22/2023] [Indexed: 04/03/2023]
Abstract
AIMS Pregnancy alters multiple physiological processes including angiogenesis, vasodilation, inflammation, and cellular redox, which are partially modulated by the gasotransmitters hydrogen sulfide (H2S) and nitric oxide (NO). In this study, we sought to determine how plasma levels of H2S, NO, and the H2S-related metabolites thiocyanate (SCN-), and methanethiol (CH3SH) change during pregnancy progression. MATERIALS AND METHODS Plasma was collected from 45 women at three points: 25-28 weeks gestation, 28-32 week gestation, and at ≥3 months postpartum. Plasma levels of H2S, SCN-, and CH3SH were measured following derivatization using monobromobimane followed by LC-MS/MS. Plasma NO was measured indirectly using the Griess reagent. KEY FINDINGS NO and SCN- were significantly lower in women at 25-28 weeks gestation and 28-32 weeks gestation than postpartum while plasma H2S levels were significantly lower at 28-32 weeks gestation than postpartum. No significant differences were observed in CH3SH. SIGNIFICANCE Previous reports demonstrated that the production of H2S and NO are stimulated during pregnancy, but we observed lower levels during pregnancy compared to postpartum. Previous reports on NO have been mixed, but given the related effects of H2S and NO, it is expected that their levels would be higher during pregnancy vs. postpartum. Future studies determining the mechanism for decreased H2S and NO during pregnancy will elucidate the role of these gasotransmitters during normal and pathological progression of pregnancy.
Collapse
Affiliation(s)
- Maxwell B Zeigler
- University of Washington, Department of Medicinal Chemistry, Seattle, WA, USA.
| | - Emily E Fay
- University of Washington, Department of Obstetrics and Gynecology, Seattle, WA, USA
| | - Sue L Moreni
- University of Washington, Department of Obstetrics and Gynecology, Seattle, WA, USA
| | - Jennie Mao
- University of Washington, Department of Obstetrics and Gynecology, Seattle, WA, USA
| | - Rheem A Totah
- University of Washington, Department of Medicinal Chemistry, Seattle, WA, USA
| | - Mary F Hebert
- University of Washington, Department of Obstetrics and Gynecology, Seattle, WA, USA; University of Washington, Department of Pharmacy, Seattle, WA, USA
| |
Collapse
|
21
|
Liao W, Xiao H, He J, Huang L, Liao Y, Qin J, Yang Q, Qu L, Ma F, Li S. Identification and verification of feature biomarkers associated with immune cells in neonatal sepsis. Eur J Med Res 2023; 28:105. [PMID: 36855207 PMCID: PMC9972688 DOI: 10.1186/s40001-023-01061-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 02/12/2023] [Indexed: 03/02/2023] Open
Abstract
BACKGROUND Neonatal sepsis (NS), a life-threatening condition, is characterized by organ dysfunction and is the most common cause of neonatal death. However, the pathogenesis of NS is unclear and the clinical inflammatory markers currently used are not ideal for diagnosis of NS. Thus, exploring the link between immune responses in NS pathogenesis, elucidating the molecular mechanisms involved, and identifying potential therapeutic targets is of great significance in clinical practice. Herein, our study aimed to explore immune-related genes in NS and identify potential diagnostic biomarkers. Datasets for patients with NS and healthy controls were downloaded from the GEO database; GSE69686 and GSE25504 were used as the analysis and validation datasets, respectively. Differentially expressed genes (DEGs) were identified and Gene Set Enrichment Analysis (GSEA) was performed to determine their biological functions. Composition of immune cells was determined and immune-related genes (IRGs) between the two clusters were identified and their metabolic pathways were determined. Key genes with correlation coefficient > 0.5 and p < 0.05 were selected as screening biomarkers. Logistic regression models were constructed based on the selected biomarkers, and the diagnostic models were validated. RESULTS Fifty-two DEGs were identified, and GSEA indicated involvement in acute inflammatory response, bacterial detection, and regulation of macrophage activation. Most infiltrating immune cells, including activated CD8 + T cells, were significantly different in patients with NS compared to the healthy controls. Fifty-four IRGs were identified, and GSEA indicated involvement in immune response and macrophage activation and regulation of T cell activation. Diagnostic models of DEGs containing five genes (PROS1, TDRD9, RETN, LOC728401, and METTL7B) and IRG with one gene (NSUN7) constructed using LASSO algorithm were validated using the GPL6947 and GPL13667 subset datasets, respectively. The IRG model outperformed the DEG model. Additionally, statistical analysis suggested that risk scores may be related to gestational age and birth weight, regardless of sex. CONCLUSIONS We identified six IRGs as potential diagnostic biomarkers for NS and developed diagnostic models for NS. Our findings provide a new perspective for future research on NS pathogenesis.
Collapse
Affiliation(s)
- Weiqiang Liao
- Department of Pediatrics, Dongguan Houjie Hospital, Dongguan, 523945 China
| | - Huimin Xiao
- Department of Pediatrics, Dongguan Houjie Hospital, Dongguan, 523945 China
| | - Jinning He
- Department of Pediatrics, Dongguan Houjie Hospital, Dongguan, 523945 China
| | - Lili Huang
- Department of Pediatrics, Dongguan Houjie Hospital, Dongguan, 523945 China
| | - Yanxia Liao
- Department of Pediatrics, Dongguan Houjie Hospital, Dongguan, 523945 China
| | - Jiaohong Qin
- Department of Pediatrics, Dongguan Houjie Hospital, Dongguan, 523945 China
| | - Qiuping Yang
- grid.488525.6Department of Pediatrics, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510655 China
| | - Liuhong Qu
- Department of Neonatology, The Maternal and Child Health Care Hospital of Huadu, Guangzhou, 510800, China.
| | - Fei Ma
- Department of Neonatology, Maternal and Child Health Research Institute, Zhuhai Women and Children's Hospital, Zhuhai, 519001, China.
| | - Sitao Li
- Department of Pediatrics, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510655, China.
| |
Collapse
|
22
|
Abstract
The methyltransferase-like (METTL) family is a diverse group of methyltransferases that can methylate nucleotides, proteins, and small molecules. Despite this diverse array of substrates, they all share a characteristic seven-beta-strand catalytic domain, and recent evidence suggests many also share an important role in stem cell biology. The most well characterized family members METTL3 and METTL14 dimerize to form an N6-methyladenosine (m6A) RNA methyltransferase with established roles in cancer progression. However, new mouse models indicate that METTL3/METTL14 are also important for embryonic stem cell (ESC) development and postnatal hematopoietic and neural stem cell self-renewal and differentiation. METTL1, METTL5, METTL6, METTL8, and METTL17 also have recently identified roles in ESC pluripotency and differentiation, while METTL11A/11B, METTL4, METTL7A, and METTL22 have been shown to play roles in neural, mesenchymal, bone, and hematopoietic stem cell development, respectively. Additionally, a variety of other METTL family members are translational regulators, a role that could place them as important players in the transition from stem cell quiescence to differentiation. Here we will summarize what is known about the role of METTL proteins in stem cell differentiation and highlight the connection between their growing importance in development and their established roles in oncogenesis.
Collapse
Affiliation(s)
- John G Tooley
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, 955 Main St., Buffalo, NY, 14203, USA
| | - James P Catlin
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, 955 Main St., Buffalo, NY, 14203, USA
| | - Christine E Schaner Tooley
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, 955 Main St., Buffalo, NY, 14203, USA.
| |
Collapse
|
23
|
St Pierre CL, Macias-Velasco JF, Wayhart JP, Yin L, Semenkovich CF, Lawson HA. Genetic, epigenetic, and environmental mechanisms govern allele-specific gene expression. Genome Res 2022; 32:1042-1057. [PMID: 35501130 PMCID: PMC9248887 DOI: 10.1101/gr.276193.121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 04/14/2022] [Indexed: 12/03/2022]
Abstract
Allele-specific expression (ASE) is a phenomenon in which one allele is preferentially expressed over the other. Genetic and epigenetic factors cause ASE by altering the final composition of a gene's product, leading to expression imbalances that can have functional consequences on phenotypes. Environmental signals also impact allele-specific expression, but how they contribute to this cross talk remains understudied. Here, we explored how genotype, parent-of-origin, tissue, sex, and dietary fat simultaneously influence ASE biases. Male and female mice from a F1 reciprocal cross of the LG/J and SM/J strains were fed a high or low fat diet. We harnessed strain-specific variants to distinguish between two ASE classes: parent-of-origin-dependent (unequal expression based on parental origin) and sequence-dependent (unequal expression based on nucleotide identity). We present a comprehensive map of ASE patterns in 2853 genes across three tissues and nine environmental contexts. We found that both ASE classes are highly dependent on tissue and environmental context. They vary across metabolically relevant tissues, between males and females, and in response to dietary fat. We also found 45 genes with inconsistent ASE biases that switched direction across tissues and/or environments. Finally, we integrated ASE and QTL data from published intercrosses of the LG/J and SM/J strains. Our ASE genes are often enriched in QTLs for metabolic and musculoskeletal traits, highlighting how this orthogonal approach can prioritize candidate genes. Together, our results provide novel insights into how genetic, epigenetic, and environmental mechanisms govern allele-specific expression, which is an essential step toward deciphering the genotype-to-phenotype map.
Collapse
Affiliation(s)
| | | | | | - Li Yin
- Washington University in Saint Louis
| | | | | |
Collapse
|
24
|
Lei J, Li G, Yu H, An T. Potent necrosis effect of methanethiol mediated by METTL7B enzyme bioactivation mechanism in 16HBE cell. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 236:113486. [PMID: 35397445 DOI: 10.1016/j.ecoenv.2022.113486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/30/2022] [Accepted: 03/30/2022] [Indexed: 06/14/2023]
Abstract
Methanethiol is a widely existing malodorous pollutant with health effects on the human population. However, the cytotoxicity mechanism of methanethiol in vitro and its metabolic transformation (bioactivation or detoxification) have not been fully elucidated. Herein, the metabolites of methanethiol during cell culture and the cytotoxicity of methanethiol in human bronchial epithelial (16HBE) cells were investigated. Results indicate that methanethiol (10-50 μM) was partially converted into dimethyl sulfide, mainly catalyzed by thiol S-methyltransferase in the 16HBE cells, and then it induced potent cytotoxicity and cell membrane permeability. Moreover, methanethiol induced intracellular reactive oxygen species (ROS) up to 50 μM and further activated the tumor necrosis factor (TNF) signaling pathway, which eventually led to the decline in the mitochondrial membrane potential (MMP) and cell necrosis. However, all these effects were significantly alleviated with gene silencing of the methyltransferase-like protein 7B (METTL7B). These results indicate that methanethiol may induce cell necrosis in human respiratory tract cells mainly mediated by S-methyltransferase with interfering TNF and ROS induction. Non-target metabolomics results suggest that methanethiol potently affects expression of endogenous small molecule metabolites in 16HBE cells. To some extent, this work shows the possible conversion path and potential injury mechanism of human respiratory tract cells exposed to methanethiol.
Collapse
Affiliation(s)
- Jinting Lei
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution control, Guangdong University of Technology, Guangzhou 510006, China
| | - Guiying Li
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development (Department of Education), School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China.
| | - Hang Yu
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development (Department of Education), School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Taicheng An
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development (Department of Education), School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|
25
|
Mantle D, Yang G. Hydrogen sulfide and metal interaction: the pathophysiological implications. Mol Cell Biochem 2022; 477:2235-2248. [PMID: 35461429 DOI: 10.1007/s11010-022-04443-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 04/08/2022] [Indexed: 11/27/2022]
Abstract
Hydrogen sulfide (H2S), previously recognized as a toxic gas, has emerged as an important gaseous signaling molecule along with nitric oxide, carbon monoxide and also hydrogen. H2S can be endogenously produced in the mammalian body at a very low level for various pathophysiological processes. Notably, H2S can interact with several essential metals in the body such as iron, copper, nickel, and zinc to carry out specific functions. The interactions of H2S with metal-binding proteins have been shown to aid in its signal transduction and cellular metabolism. In addition, H2S is capable of providing a cytoprotective role against metal toxicity. As the research in the field of H2S signaling in biology and medicine increases, much progresses have been developed for detecting H2S via interaction with metals. In this review, the interaction of H2S with metals, specifically in regard to metal-driven metabolism of H2S, the protection against metal toxicity by H2S and the detection of H2S using metals will be discussed. Discovering the interactions of this gasotransmitter with metals is important for determining the mechanisms underlying the cellular functions of H2S as well as developing novel therapeutic avenues.
Collapse
Affiliation(s)
- Devin Mantle
- School of Natural Sciences, Laurentian University, 935 Ramsey Lake Road, Sudbury, ON, P3E 2C6, Canada
- Cardiovascular and Metabolic Research Unit, Laurentian University, Sudbury, Canada
| | - Guangdong Yang
- School of Natural Sciences, Laurentian University, 935 Ramsey Lake Road, Sudbury, ON, P3E 2C6, Canada.
- Cardiovascular and Metabolic Research Unit, Laurentian University, Sudbury, Canada.
| |
Collapse
|
26
|
G G, Singh J. Dithiothreitol causes toxicity in C. elegans by modulating the methionine-homocysteine cycle. eLife 2022; 11:76021. [PMID: 35438636 PMCID: PMC9090326 DOI: 10.7554/elife.76021] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 04/17/2022] [Indexed: 11/13/2022] Open
Abstract
The redox reagent dithiothreitol (DTT) causes stress in the endoplasmic reticulum (ER) by disrupting its oxidative protein folding environment, which results in the accumulation and misfolding of the newly synthesized proteins. DTT may potentially impact cellular physiology by ER-independent mechanisms; however, such mechanisms remain poorly characterized. Using the nematode model Caenorhabditis elegans, here we show that DTT toxicity is modulated by the bacterial diet. Specifically, the dietary component vitamin B12 alleviates DTT toxicity in a methionine synthase-dependent manner. Using a forward genetic screen, we discover that loss-of-function of R08E5.3, an S-adenosylmethionine (SAM)-dependent methyltransferase, confers DTT resistance. DTT upregulates R08E5.3 expression and modulates the activity of the methionine–homocysteine cycle. Employing genetic and biochemical studies, we establish that DTT toxicity is a result of the depletion of SAM. Finally, we show that a functional IRE-1/XBP-1 unfolded protein response pathway is required to counteract toxicity at high, but not low, DTT concentrations. Animal and plant cells synthesize a significant fraction of their proteins on a structure known as the endoplasmic reticulum. Researchers often use the molecule dithiothreitol to specifically target this compartment and learn more about its role. The toxin works by disturbing the complex chemical environment present in the reticulum, which is required for the proteins to assemble properly. However, it is important to clarify whether dithiothreitol could also affect other parts of the cell, as this could give rise to misleading results. To explore this possibility, Gokul G and Jogender Singh studied the effects of dithiothreitol on the millimetre-long roundworm Caenorhabditis elegans. Their experiments revealed that vitamin B12 could protect against dithiothreitol toxicity via a complex cascade of molecular events which reduced the levels of an important regulatory molecule known as S-adenosylmethionine. Crucially, the chemical reactions that dithiothreitol targeted took place outside the reticulum, suggesting that the toxin impairs processes in the wider cell. These results suggest that dithiothreitol should be reconsidered for use in endoplasmic reticulum studies. However, they also imply that this toxin could be beneficial in small doses, as a reduced concentration of S-adenosylmethionine increases lifespan and health in a variety of organisms.
Collapse
Affiliation(s)
- Gokul G
- Indian Institute of Science Education and Research, Bhopal, Bhopal, India
| | - Jogender Singh
- Indian Institute of Science Education and Research, Mohali, Mohali, India
| |
Collapse
|
27
|
Cirino G, Szabo C, Papapetropoulos A. Physiological roles of hydrogen sulfide in mammalian cells, tissues and organs. Physiol Rev 2022; 103:31-276. [DOI: 10.1152/physrev.00028.2021] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
H2S belongs to the class of molecules known as gasotransmitters, which also includes nitric oxide (NO) and carbon monoxide (CO). Three enzymes are recognized as endogenous sources of H2S in various cells and tissues: cystathionine g-lyase (CSE), cystathionine β-synthase (CBS) and 3-mercaptopyruvate sulfurtransferase (3-MST). The current article reviews the regulation of these enzymes as well as the pathways of their enzymatic and non-enzymatic degradation and elimination. The multiple interactions of H2S with other labile endogenous molecules (e.g. NO) and reactive oxygen species are also outlined. The various biological targets and signaling pathways are discussed, with special reference to H2S and oxidative posttranscriptional modification of proteins, the effect of H2S on channels and intracellular second messenger pathways, the regulation of gene transcription and translation and the regulation of cellular bioenergetics and metabolism. The pharmacological and molecular tools currently available to study H2S physiology are also reviewed, including their utility and limitations. In subsequent sections, the role of H2S in the regulation of various physiological and cellular functions is reviewed. The physiological role of H2S in various cell types and organ systems are overviewed. Finally, the role of H2S in the regulation of various organ functions is discussed as well as the characteristic bell-shaped biphasic effects of H2S. In addition, key pathophysiological aspects, debated areas, and future research and translational areas are identified A wide array of significant roles of H2S in the physiological regulation of all organ functions emerges from this review.
Collapse
Affiliation(s)
- Giuseppe Cirino
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Naples, Italy
| | - Csaba Szabo
- Chair of Pharmacology, Section of Medicine, University of Fribourg, Switzerland
| | - Andreas Papapetropoulos
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece & Clinical, Experimental Surgery and Translational Research Center, Biomedical Research Foundation of the Academy of Athens, Greece
| |
Collapse
|
28
|
Xu L, Peng B, Wu H, Zheng Y, Yu Q, Fang S. METTL7B contributes to the malignant progression of glioblastoma by inhibiting EGR1 expression. Metab Brain Dis 2022; 37:1133-1143. [PMID: 35254598 DOI: 10.1007/s11011-022-00925-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 01/31/2022] [Indexed: 11/26/2022]
Abstract
Glioblastoma (GBM), a predominant central nervous system (CNS) malignancy, is correlated with high mortality and severe morbidity. Mammalian methyltransferase-like 7B (METTL7B) as a methyltransferase has been identified to participate in cancer progression. However, its function in GBM is elusive. Accordingly, we aimed to explore the effect of METTL7B on GBM. The expression of METTL7B and EGR2 in GBM patients and GBM cells were detected by qPCR, western blots and immunohistochemical staining. Cell viability was assessed by CCK-8 assays. Cell proliferation was determined by EdU, colony formation, and tumor sphere formation assays. METTL7B shRNA was injected into the Balb/c nude mice. The size and weight of isolated tumor was measured. And the expression levels of Ki67, METTL7B and EGR1 were examined by immunohistochemical staining. METTL7B was significantly elevated, while EGR1 was downregulated in clinical GBM tissues. METTL7B upregulation was associated with the low overall survival of GBM patients. Moreover, METTL7B depletion remarkably attenuated GBM cell proliferation. Mechanistically, METTL7B overexpression inhibited EGR1 expression in GBM cells. EGR1 knockdown rescued the inhibitory effect of METTL7B depletion on GBM cell proliferation. Meanwhile, METTL7B depletion arrested more GBM cells at the G0/G1, but fewer cells at the S phase, which EGR1 knockdown reversed these effects. Furthermore, tumorigenicity analysis revealed that METTL7B promotes tumor growth of GBM cells in vivo. METTL7B contributes to the malignant progression of GBM by inhibiting EGR1 expression. METTL7B and EGR1 may be utilized as the treatment targets for GBM therapy.
Collapse
Affiliation(s)
- Li Xu
- Department of Neurosurgery, Central People's Hospital of Zhanjiang, No.236 Yuanzhu Road, Chikan District, Zhanjiang City, Guangdong Province, 524045, People's Republic of China.
| | - Biao Peng
- Deparment of Neurosurgery, the Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou City, Guangdong Province, 510080, People's Republic of China
| | - Haiqiang Wu
- Department of Neurosurgery, Central People's Hospital of Zhanjiang, No.236 Yuanzhu Road, Chikan District, Zhanjiang City, Guangdong Province, 524045, People's Republic of China
| | - Yike Zheng
- Department of Neurosurgery, Central People's Hospital of Zhanjiang, No.236 Yuanzhu Road, Chikan District, Zhanjiang City, Guangdong Province, 524045, People's Republic of China
| | - Qingwen Yu
- Department of Neurosurgery, Central People's Hospital of Zhanjiang, No.236 Yuanzhu Road, Chikan District, Zhanjiang City, Guangdong Province, 524045, People's Republic of China
| | - Shuiqiao Fang
- Department of Neurosurgery, Central People's Hospital of Zhanjiang, No.236 Yuanzhu Road, Chikan District, Zhanjiang City, Guangdong Province, 524045, People's Republic of China
| |
Collapse
|
29
|
Lajin B, Obermayer-Pietsch B, Goessler W. Rapid determination of the hydrogen sulfide-related metabolites trimethylsulfonium, thiosulfate, and cystine in human urine by UHPLC-ESI-MS/MS with fluoroalkylamine and fluorinated acid as ion-pairing reagents. J Chromatogr B Analyt Technol Biomed Life Sci 2022; 1196:123198. [DOI: 10.1016/j.jchromb.2022.123198] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 02/22/2022] [Accepted: 02/24/2022] [Indexed: 01/23/2023]
|
30
|
Cho C, Zeigler M, Mizuno S, Morrison RS, Totah RA, Barker-Haliski M. Reductions in Hydrogen Sulfide and Changes in Mitochondrial Quality Control Proteins Are Evident in the Early Phases of the Corneally Kindled Mouse Model of Epilepsy. Int J Mol Sci 2022; 23:ijms23031434. [PMID: 35163358 PMCID: PMC8835945 DOI: 10.3390/ijms23031434] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/21/2022] [Accepted: 01/24/2022] [Indexed: 12/14/2022] Open
Abstract
Epilepsy is a heterogenous neurological disorder characterized by recurrent unprovoked seizures, mitochondrial stress, and neurodegeneration. Hydrogen sulfide (H2S) is a gasotransmitter that promotes mitochondrial function and biogenesis, elicits neuromodulation and neuroprotection, and may acutely suppress seizures. A major gap in knowledge remains in understanding the role of mitochondrial dysfunction and progressive changes in H2S levels following acute seizures or during epileptogenesis. We thus sought to quantify changes in H2S and its methylated metabolite (MeSH) via LC-MS/MS following acute maximal electroshock and 6 Hz 44 mA seizures in mice, as well as in the early phases of the corneally kindled mouse model of chronic seizures. Plasma H2S was acutely reduced after a maximal electroshock seizure. H2S or MeSH levels and expressions of related genes in whole brain homogenates from corneally kindled mice were not altered. However, plasma H2S levels were significantly lower during kindling, but not after established kindling. Moreover, we demonstrated a time-dependent increase in expression of mitochondrial membrane integrity-related proteins, OPA1, MFN2, Drp1, and Mff during kindling, which did not correlate with changes in gene expression. Taken together, short-term reductions in plasma H2S could be a novel biomarker for seizures. Future studies should further define the role of H2S and mitochondrial stress in epilepsy.
Collapse
Affiliation(s)
- Christi Cho
- Department of Medicinal Chemistry, University of Washington, Seattle, WA 98195, USA; (C.C.); (M.Z.); (R.A.T.)
| | - Maxwell Zeigler
- Department of Medicinal Chemistry, University of Washington, Seattle, WA 98195, USA; (C.C.); (M.Z.); (R.A.T.)
| | - Stephanie Mizuno
- Department of Pharmacy, University of Washington, Seattle, WA 98195, USA;
| | | | - Rheem A. Totah
- Department of Medicinal Chemistry, University of Washington, Seattle, WA 98195, USA; (C.C.); (M.Z.); (R.A.T.)
| | - Melissa Barker-Haliski
- Department of Pharmacy, University of Washington, Seattle, WA 98195, USA;
- Correspondence: ; Tel.: +1-206-685-1783
| |
Collapse
|
31
|
Chen X, Li C, Li Y, Wu S, Liu W, Lin T, Li M, Weng Y, Lin W, Qiu S. Characterization of METTL7B to Evaluate TME and Predict Prognosis by Integrative Analysis of Multi-Omics Data in Glioma. Front Mol Biosci 2021; 8:727481. [PMID: 34604305 PMCID: PMC8484875 DOI: 10.3389/fmolb.2021.727481] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 08/24/2021] [Indexed: 12/12/2022] Open
Abstract
Glioma is the most common and aggressive type of primary brain malignant tumor with limited treatment approaches. Methyltransferase-like 7B (METTL7B) is associated with the pathogenesis of several diseases but is rarely studied in glioma. In this study, 1,493 glioma samples (data from our cohort, TCGA, and CGGA) expressing METTL7B were used to explore its prognostic value and mechanism in the immune microenvironment. Results showed that high expression of METTL7B is associated with poor prognosis and abundant immunosuppressive cells. Further, functional enrichment showed that METTL7B is involved in the negative regulation of immunity and carcinogenic signaling pathways. Moreover, a METTL7B-related prognostic signature constructed based on multi-omics showed a good prediction of the overall survival (OS) time of glioma patients. In conclusion, METTL7B is a potential prognostic biomarker. In addition, the prognostic prediction model constructed in this study can be used in clinical setups for the development of novel effective therapeutic strategies for glioma patients and improving overall survival.
Collapse
Affiliation(s)
- Xiaochuan Chen
- Department of Radiation Oncology, Fujian Medical University Cancer Hospital, Fujian Cancer Hospital, Fuzhou, China
| | - Chao Li
- Department of Oncology, Sanming Second Hospital, Sanming, China
| | - Ying Li
- Department of Radiation Oncology, Fujian Medical University Cancer Hospital, Fujian Cancer Hospital, Fuzhou, China
| | - Shihong Wu
- Department of Radiation Oncology, Fujian Medical University Cancer Hospital, Fujian Cancer Hospital, Fuzhou, China
| | - Wei Liu
- Department of Radiation Oncology, Fujian Medical University Cancer Hospital, Fujian Cancer Hospital, Fuzhou, China
| | - Ting Lin
- Department of Radiation Oncology, Fujian Medical University Cancer Hospital, Fujian Cancer Hospital, Fuzhou, China
| | - Miaomiao Li
- Department of Radiation Oncology, Fujian Medical University Cancer Hospital, Fujian Cancer Hospital, Fuzhou, China
| | - Youliang Weng
- Department of Radiation Oncology, Fujian Medical University Cancer Hospital, Fujian Cancer Hospital, Fuzhou, China
| | - Wanzun Lin
- Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Fudan University Cancer Hospital, Shanghai, China
| | - Sufang Qiu
- Department of Radiation Oncology, Fujian Medical University Cancer Hospital, Fujian Cancer Hospital, Fuzhou, China.,Fujian Provincial Key Laboratory of Translational Cancer Medicine, Fuzhou, China
| |
Collapse
|
32
|
Zhang H, Zhao H, Guo N. Protective effect of hydrogen sulfide on the kidney (Review). Mol Med Rep 2021; 24:696. [PMID: 34368864 PMCID: PMC8365410 DOI: 10.3892/mmr.2021.12335] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Accepted: 06/22/2021] [Indexed: 12/29/2022] Open
Abstract
Hydrogen sulfide (H2S) is a physiologically important gas transmitter that serves various biological functions in the body, in a manner similar to that of carbon monoxide and nitric oxide. Cystathionine-β-synthase, cystathionine-γ-lyase and cysteine transaminase/3-mercaptopyruvate sulphotransferase are important enzymes involved H2S production in vivo, and the mitochondria are the primary sites of metabolism. It has been reported that H2S serves an important physiological role in the kidney. Under disease conditions, such as ischemia-reperfusion injury, drug nephrotoxicity and diabetic nephropathy, H2S serves an important role in both the occurrence and development of the disease. The present review aimed to summarize the production, metabolism and physiological functions of H2S, and the progress in research with regards to its role in renal injury and renal fibrosis in recent years.
Collapse
Affiliation(s)
- Hu Zhang
- Department of Urology, General Hospital of Fuxin Mining Industry Group of Liaoning Health Industry Group, Fuxin, Liaoning 123000, P.R. China
| | - Haitian Zhao
- Department of Urology, The First Clinical Medical School of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Nannan Guo
- Department of Nephrology, General Hospital of Fuxin Mining Industry Group of Liaoning Health Industry Group, Fuxin, Liaoning 123000, P.R. China
| |
Collapse
|
33
|
Campeanu IJ, Jiang Y, Liu L, Pilecki M, Najor A, Cobani E, Manning M, Zhang XM, Yang ZQ. Multi-omics integration of methyltransferase-like protein family reveals clinical outcomes and functional signatures in human cancer. Sci Rep 2021; 11:14784. [PMID: 34285249 PMCID: PMC8292347 DOI: 10.1038/s41598-021-94019-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 06/04/2021] [Indexed: 01/13/2023] Open
Abstract
Human methyltransferase-like (METTL) proteins transfer methyl groups to nucleic acids, proteins, lipids, and other small molecules, subsequently playing important roles in various cellular processes. In this study, we performed integrated genomic, transcriptomic, proteomic, and clinicopathological analyses of 34 METTLs in a large cohort of primary tumor and cell line data. We identified a subset of METTL genes, notably METTL1, METTL7B, and NTMT1, with high frequencies of genomic amplification and/or up-regulation at both the mRNA and protein levels in a spectrum of human cancers. Higher METTL1 expression was associated with high-grade tumors and poor disease prognosis. Loss-of-function analysis in tumor cell lines indicated the biological importance of METTL1, an m7G methyltransferase, in cancer cell growth and survival. Furthermore, functional annotation and pathway analysis of METTL1-associated proteins revealed that, in addition to the METTL1 cofactor WDR4, RNA regulators and DNA packaging complexes may be functionally interconnected with METTL1 in human cancer. Finally, we generated a crystal structure model of the METTL1–WDR4 heterodimeric complex that might aid in understanding the key functional residues. Our results provide new information for further functional study of some METTL alterations in human cancer and might lead to the development of small inhibitors that target cancer-promoting METTLs.
Collapse
Affiliation(s)
- Ion John Campeanu
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Yuanyuan Jiang
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Lanxin Liu
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Maksymilian Pilecki
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Alvina Najor
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Era Cobani
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Morenci Manning
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Xiaohong Mary Zhang
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA.,Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, 4100 John R Street, HWCRC 815, Detroit, MI, 48201, USA
| | - Zeng-Quan Yang
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA. .,Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, 4100 John R Street, HWCRC 815, Detroit, MI, 48201, USA.
| |
Collapse
|