1
|
Peters RL, Klesse S, Van den Bulcke J, Jourdain LMY, von Arx G, Anadon-Rosell A, Krejza J, Kahmen A, Fonti M, Prendin AL, Babst F, De Mil T. Quantitative vessel mapping on increment cores: a critical comparison of image acquisition methods. FRONTIERS IN PLANT SCIENCE 2025; 16:1502237. [PMID: 40012731 PMCID: PMC11863283 DOI: 10.3389/fpls.2025.1502237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 01/08/2025] [Indexed: 02/28/2025]
Abstract
Introduction Quantitative wood anatomy is critical for establishing climate reconstruction proxies, understanding tree hydraulics, and quantifying carbon allocation. Its accuracy depends upon the image acquisition methods, which allows for the identification of the number and dimensions of vessels, fibres, and tracheids within a tree ring. Angiosperm wood is analysed with a variety of different image acquisition methods, including surface pictures, wood anatomical micro-sections, or X-ray computed micro-tomography. Despite known advantages and disadvantages, the quantitative impact of method selection on wood anatomical parameters is not well understood. Methods In this study, we present a systematic uncertainty analysis of the impact of the image acquisition method on commonly used anatomical parameters. We analysed four wood samples, representing a range of wood porosity, using surface pictures, micro-CT scans, and wood anatomical micro-sections. Inter-annual patterns were analysed and compared between methods from the five most frequently used parameters, namely mean lumen area (MLA), vessel density (VD), number of vessels (VN), mean hydraulic diameter (D h), and relative conductive area (RCA). A novel sectorial approach was applied on the wood samples to obtain intra-annual profiles of the lumen area (A l), specific theoretical hydraulic conductivity (K s), and wood density (ρ). Results Our quantitative vessel mapping revealed that values obtained for hydraulic wood anatomical parameters are comparable across different methods, supporting the use of easily applicable surface picture methods for ring-porous and specific diffuse-porous tree species. While intra-annual variability is well captured by the different methods across species, wood density (ρ) is overestimated due to the lack of fibre lumen area detection. Discussion Our study highlights the potential and limitations of different image acquisition methods for extracting wood anatomical parameters. Moreover, we present a standardized workflow for assessing radial tree ring profiles. These findings encourage the compilation of all studies using wood anatomical parameters and further research to refine these methods, ultimately enhancing the accuracy, replication, and spatial representation of wood anatomical studies.
Collapse
Affiliation(s)
- Richard L. Peters
- Tree Growth and Wood Physiology, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
- Department of Environmental Sciences – Botany, University of Basel, Basel, Switzerland
- Forest Is Life, TERRA Teaching and Research Centre, Gembloux Agro Bio-Tech, University of Liège, Gembloux, Belgium
| | - Stefan Klesse
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
- Oeschger Centre for Climate Change Research, University of Bern, Bern, Switzerland
| | - Jan Van den Bulcke
- Laboratory of Wood Technology (UGent-Woodlab), Department of Environment, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
- UGCT - UGent Centre for X-ray Tomography, Ghent University, Ghent, Belgium
| | - Lisa M. Y. Jourdain
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
- Oeschger Centre for Climate Change Research, University of Bern, Bern, Switzerland
| | - Georg von Arx
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
- Oeschger Centre for Climate Change Research, University of Bern, Bern, Switzerland
| | - Alba Anadon-Rosell
- CREAF, Catalonia, Spain
- Institute of Botany and Landscape Ecology, University of Greifswald, Greifswald, Germany
| | - Jan Krejza
- Global Change Research Institute of the Czech Academy of Sciences (CzechGlobe), Brno, Czechia
- Department of Forest Ecology, Faculty of Forestry and Wood Technology, Mendel University in Brno, Brno, Czechia
| | - Ansgar Kahmen
- Department of Environmental Sciences – Botany, University of Basel, Basel, Switzerland
| | - Marina Fonti
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - Angela Luisa Prendin
- Department of Land, Environment, Agriculture and Forestry, University of Padua, Legnaro, PD, Italy
| | - Flurin Babst
- School of Natural Resources and the Environment, The University of Arizona, Tucson, AZ, United States
- Laboratory of Tree-Ring Research, The University of Arizona, Tucson, AZ, United States
| | - Tom De Mil
- Forest Is Life, TERRA Teaching and Research Centre, Gembloux Agro Bio-Tech, University of Liège, Gembloux, Belgium
| |
Collapse
|
2
|
Liu S, Xu G, Chen T, Wu X, Li Y. Quantifying the effects of precipitation exclusion and groundwater drawdown on functional traits of Haloxylon ammodendron - How does this xeric shrub survive the drought? THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166945. [PMID: 37699482 DOI: 10.1016/j.scitotenv.2023.166945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 09/06/2023] [Accepted: 09/07/2023] [Indexed: 09/14/2023]
Abstract
The increasing frequency of drought and decline in groundwater levels are causing ecophysiological changes in woody plants, particularly in desert ecosystems in arid regions. However, the combined effects of meteorological and hydrological droughts on perennial desert plants, especially phreatophytes, remain poorly understood. To address this knowledge gap, we conducted a 5-year precipitation exclusion experiment at two sites with contrasting groundwater depths in the Gurbantunggut Desert located in northwest China. Our study aimed to investigate the impacts of precipitation exclusion and groundwater depth decline on multiple traits of H. ammodendron. We found that long-term precipitation exclusion enhanced midday leaf water potential, stomatal conductance, chlorophyll content, root nonstructural carbohydrates concentration, leaf starch concentration, but decreased water use efficiency. Groundwater drawdown decreased predawn and midday leaf water potentials, maximum net photosynthetic rate, stomatal conductance, Huber value, stem water δ18O, but enhanced water use efficiency and branch nonstructural carbohydrates concentration. A combination of precipitation exclusion and groundwater depth decline reduced Huber value, but did not show exacerbated effects. The findings demonstrate that hydrological drought induced by groundwater depth decline poses a greater threat to the survival of H. ammodendron than future changes in precipitation.
Collapse
Affiliation(s)
- Shensi Liu
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; Fukang Station of Desert Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Fukang 831500, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guiqing Xu
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; Fukang Station of Desert Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Fukang 831500, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Tuqiang Chen
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; Fukang Station of Desert Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Fukang 831500, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xue Wu
- College of Ecology and Environment, Xinjiang University, Urumqi 830046, China
| | - Yan Li
- Fukang Station of Desert Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Fukang 831500, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
3
|
Meyer P, Spînu AP, Mölder A, Bauhus J. Management alters drought-induced mortality patterns in European beech (Fagus sylvatica L.) forests. PLANT BIOLOGY (STUTTGART, GERMANY) 2022; 24:1157-1170. [PMID: 35137514 DOI: 10.1111/plb.13396] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 01/06/2022] [Indexed: 06/14/2023]
Abstract
The high tree mortality during the dry and hot years of 2018-2019 in Europe has triggered concerns on the future of European beech (Fagus sylvatica L.) forests under climate change and raised questions as to whether forest management may increase tree mortality. We compared long-term mortality rates of beech between managed and unmanaged stands including the years 2018-2019 at 11 sites in Hesse, Germany. We hypothesized that mortality would increase with climate water deficits during the growing season, initial stand density, decreasing dominance of trees, and decreasing intensity of tree removals. Initial stand density, tree removals, the climate water balance and the competitive status of trees were used as predictor variables. Mean annual natural mortality rates ranged between 0.5% and 2.1%. Even in the drought years, we observed no signs of striking canopy disintegration. The significantly higher mortality (1.6-2.1%) in unmanaged stands during the drought years 2018 and 2019 was largely confined to suppressed trees. There was no significant increase of mortality in managed stands during the drought years, but a shift in mortality towards larger canopy trees. Our study did not confirm a general influence of management, in the form of tree removals, on mortality rates. Yet, we found that during drought years, management changed the distribution of mortality within the tree community. To analyse the effects of management on mortality rates more comprehensively, a wider gradient in site moisture conditions, including sites drier than in this study, and longer post-drought periods should be employed.
Collapse
Affiliation(s)
- P Meyer
- Department of Forest Nature Conservation, Northwest German Forest Research Institute, Hann. Münden, Germany
| | - A P Spînu
- Chair of Silviculture, Faculty of Environment and Natural Resources, University of Freiburg, Freiburg, Germany
| | - A Mölder
- Department of Forest Nature Conservation, Northwest German Forest Research Institute, Hann. Münden, Germany
| | - J Bauhus
- Chair of Silviculture, Faculty of Environment and Natural Resources, University of Freiburg, Freiburg, Germany
| |
Collapse
|