1
|
Facciorusso S, Guanziroli E, Brambilla C, Spina S, Giraud M, Molinari Tosatti L, Santamato A, Molteni F, Scano A. Muscle synergies in upper limb stroke rehabilitation: a scoping review. Eur J Phys Rehabil Med 2024; 60:767-792. [PMID: 39248705 PMCID: PMC11558461 DOI: 10.23736/s1973-9087.24.08438-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 06/04/2024] [Accepted: 08/01/2024] [Indexed: 09/10/2024]
Abstract
INTRODUCTION Upper limb impairment is a common consequence of stroke, significantly affecting the quality of life and independence of survivors. This scoping review assesses the emerging field of muscle synergy analysis in enhancing upper limb rehabilitation, focusing on the comparison of various methodologies and their outcomes. It aims to standardize these approaches to improve the effectiveness of rehabilitation interventions and drive future research in the domain. EVIDENCE ACQUISITION Studies included in this scoping review focused on the analysis of muscle synergies during longitudinal rehabilitation of stroke survivors' upper limbs. A systematic literature search was conducted using PubMed, Scopus, and Web of Science databases, until September 2023, and was guided by the PRISMA for scoping review framework. EVIDENCE SYNTHESIS Fourteen studies involving a total of 247 stroke patients were reviewed, featuring varied patient populations and rehabilitative interventions. Protocols differed among studies, with some utilizing robotic assistance and others relying on traditional therapy methods. Muscle synergy extraction was predominantly conducted using Non-Negative Matrix Factorization from electromyography data, focusing on key upper limb muscles essential for shoulder, elbow, and wrist rehabilitation. A notable observation across the studies was the heterogeneity in findings, particularly in the changes observed in the number, weightings, and temporal coefficients of muscle synergies. The studies indicated varied and complex relationships between muscle synergy variations and clinical outcomes. This diversity underscored the complexity involved in interpreting muscle coordination in the stroke population. The variability in results was also influenced by differing methodologies in muscle synergy analysis, highlighting a need for more standardized approaches to improve future research comparability and consistency. CONCLUSIONS The synthesis of evidence presented in this scoping review highlights the promising role of muscle synergy analysis as an indicator of motor control recovery in stroke rehabilitation. By offering a comprehensive overview of the current state of research and advocating for harmonized methodological practices in future longitudinal studies, this scoping review aspires to advance the field of upper limb rehabilitation, ensuring that post-stroke interventions are both scientifically grounded and optimally beneficial for patients.
Collapse
Affiliation(s)
- Salvatore Facciorusso
- Department of Medical and Surgical Specialties and Dentistry, Luigi Vanvitelli University of Campania, Naples, Italy -
- Spasticity and Movement Disorders "ReSTaRt", Section of Physical Medicine and Rehabilitation, Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy -
| | - Eleonora Guanziroli
- Villa Beretta Rehabilitation Center, Valduce Hospital Como, Costa Masnaga, Lecco, Italy
| | - Cristina Brambilla
- Institute of Systems and Technologies for Industrial Intelligent Technologies and Advanced Manufacturing, Italian Council of National Research, Milan, Italy
| | - Stefania Spina
- Spasticity and Movement Disorders "ReSTaRt", Section of Physical Medicine and Rehabilitation, Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Manuela Giraud
- Villa Beretta Rehabilitation Center, Valduce Hospital Como, Costa Masnaga, Lecco, Italy
| | - Lorenzo Molinari Tosatti
- Institute of Systems and Technologies for Industrial Intelligent Technologies and Advanced Manufacturing, Italian Council of National Research, Milan, Italy
| | - Andrea Santamato
- Spasticity and Movement Disorders "ReSTaRt", Section of Physical Medicine and Rehabilitation, Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Franco Molteni
- Villa Beretta Rehabilitation Center, Valduce Hospital Como, Costa Masnaga, Lecco, Italy
| | - Alessandro Scano
- Institute of Systems and Technologies for Industrial Intelligent Technologies and Advanced Manufacturing, Italian Council of National Research, Milan, Italy
| |
Collapse
|
2
|
Jakubowitz E, Schmidt L, Obermeier A, Spindeldreier S, Windhagen H, Hurschler C. Investigation of adaptive muscle synergy modulated motor responses to grasping perturbations. Sci Rep 2024; 14:18493. [PMID: 39122740 PMCID: PMC11315883 DOI: 10.1038/s41598-024-68386-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 07/23/2024] [Indexed: 08/12/2024] Open
Abstract
This study investigated how muscle synergies adapt in response to unexpected changes in object weight during lifting tasks. The aim was to discover which motor control strategies individuals use to maintain their grasping performance. Muscle synergies were extracted from the muscle activity of fifteen healthy participants who lifted objects of identical appearance but varying weights in a randomized order, which introduced artificial perturbations. Reaching and manipulation phases of object lifting were analyzed using constrained non-negative matrix factorization and k-means clustering. Participants exhibited a perturbation-independent and thus consistent recruitment of spatial synergy components, while significant adaptations in muscle synergy activation occurred in response to unexpected perturbations. Perturbations caused by unexpectedly heavy objects led to delayed and gradual increases in muscle synergy activation until the force required to lift the object was reached. In contrast, perturbations caused by lighter objects led to reductions in excess muscle synergy activation occurring later. Sensorimotor control maintains the modularity of muscle synergies. Even when external mechanical perturbations occur, the grasping performance is preserved, and control is adapted solely through muscle synergy activation. These results suggest that using pure spatial synergy components as control signals for myoelectric arm prostheses may prevent them from malfunctioning due to external perturbations.
Collapse
Affiliation(s)
- Eike Jakubowitz
- Laboratory for Biomechanics and Biomaterials, Department of Orthopaedic Surgery, Hannover Medical School, Anna-Von-Borries-Strasse 1-7, 30625, Hannover, Germany.
| | - Leonard Schmidt
- Laboratory for Biomechanics and Biomaterials, Department of Orthopaedic Surgery, Hannover Medical School, Anna-Von-Borries-Strasse 1-7, 30625, Hannover, Germany
| | - Alina Obermeier
- Laboratory for Biomechanics and Biomaterials, Department of Orthopaedic Surgery, Hannover Medical School, Anna-Von-Borries-Strasse 1-7, 30625, Hannover, Germany
| | - Svenja Spindeldreier
- Institute of Mechatronic Systems, Leibniz University Hannover, An Der Universität 1, 30823, Garbsen, Germany
| | - Henning Windhagen
- Laboratory for Biomechanics and Biomaterials, Department of Orthopaedic Surgery, Hannover Medical School, Anna-Von-Borries-Strasse 1-7, 30625, Hannover, Germany
- Department of Orthopaedic Surgery, Hannover Medical School, Anna-Von-Borries-Strasse 1-7, 30625, Hannover, Germany
| | - Christof Hurschler
- Laboratory for Biomechanics and Biomaterials, Department of Orthopaedic Surgery, Hannover Medical School, Anna-Von-Borries-Strasse 1-7, 30625, Hannover, Germany
| |
Collapse
|
3
|
Seitz S, Schuster-Amft C, Wandel J, Bonati LH, Parmar K, Gerth HU, Behrendt F. Effect of concurrent action observation, peripheral nerve stimulation and motor imagery on dexterity in patients after stroke: a pilot study. Sci Rep 2024; 14:14858. [PMID: 38937566 PMCID: PMC11211322 DOI: 10.1038/s41598-024-65911-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 06/25/2024] [Indexed: 06/29/2024] Open
Abstract
Research to improve and expand treatment options for motor impairment after stroke remains an important issue in rehabilitation as the reduced ability to move affected limbs is still a limiting factor in the selection of training content for stroke patients. The combination of action observation and peripheral nerve stimulation is a promising method for inducing increased excitability and plasticity in the primary motor cortex of healthy subjects. In addition, as reported in the literature, the use of action observation and motor imagery in conjunction has an advantage over the use of one or the other alone in terms of the activation of motor-related brain regions. The aim of the pilot study was thus to combine these findings into a multimodal approach and to evaluate the potential impact of the concurrent application of the three methods on dexterity in stroke patients. The paradigm developed accordingly was tested with 10 subacute patients, in whom hand dexterity, thumb-index pinch force and thumb tapping speed were measured for a baseline assessment and directly before and after the single intervention. During the 10-min session, patients were instructed to watch a repetitive thumb-index finger tapping movement displayed on a monitor and to imagine the sensations that would arise from physically performing the same motion. They were also repeatedly electrically stimulated at the wrist on the motorically more affected body side and asked to place their hand behind the monitor for the duration of the session to support integration of the displayed hand into their own body schema. The data provide a first indication of a possible immediate effect of a single application of this procedure on the dexterity in patients after stroke.
Collapse
Affiliation(s)
- Sarina Seitz
- Research Department, Reha Rheinfelden, Rheinfelden, Switzerland
- Institute of Physiotherapy, Zurich University of Applied Sciences, Winterthur, Switzerland
| | - Corina Schuster-Amft
- Research Department, Reha Rheinfelden, Rheinfelden, Switzerland
- Department of Sport, Exercise and Health, University of Basel, Basel, Switzerland
- School of Engineering and Computer Science, Bern University of Applied Sciences, Biel, Switzerland
| | - Jasmin Wandel
- Institute for Optimization and Data Analysis, Bern University of Applied Sciences, Biel, Switzerland
| | - Leo H Bonati
- Research Department, Reha Rheinfelden, Rheinfelden, Switzerland
- Department of Neurology, University Hospital Basel, Basel, Switzerland
- Department of Clinical Research, University of Basel, Basel, Switzerland
| | - Katrin Parmar
- Research Department, Reha Rheinfelden, Rheinfelden, Switzerland
- Department of Neurology, University Hospital Basel, Basel, Switzerland
| | - Hans Ulrich Gerth
- Research Department, Reha Rheinfelden, Rheinfelden, Switzerland
- Department of Medicine, University Hospital Münster, Münster, Germany
| | - Frank Behrendt
- Research Department, Reha Rheinfelden, Rheinfelden, Switzerland.
- School of Engineering and Computer Science, Bern University of Applied Sciences, Biel, Switzerland.
| |
Collapse
|
4
|
Scano A, Lanzani V, Brambilla C, d’Avella A. Transferring Sensor-Based Assessments to Clinical Practice: The Case of Muscle Synergies. SENSORS (BASEL, SWITZERLAND) 2024; 24:3934. [PMID: 38931719 PMCID: PMC11207859 DOI: 10.3390/s24123934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/10/2024] [Accepted: 06/15/2024] [Indexed: 06/28/2024]
Abstract
Sensor-based assessments in medical practice and rehabilitation include the measurement of physiological signals such as EEG, EMG, ECG, heart rate, and NIRS, and the recording of movement kinematics and interaction forces. Such measurements are commonly employed in clinics with the aim of assessing patients' pathologies, but so far some of them have found full exploitation mainly for research purposes. In fact, even though the data they allow to gather may shed light on physiopathology and mechanisms underlying motor recovery in rehabilitation, their practical use in the clinical environment is mainly devoted to research studies, with a very reduced impact on clinical practice. This is especially the case for muscle synergies, a well-known method for the evaluation of motor control in neuroscience based on multichannel EMG recordings. In this paper, considering neuromotor rehabilitation as one of the most important scenarios for exploiting novel methods to assess motor control, the main challenges and future perspectives for the standard clinical adoption of muscle synergy analysis are reported and critically discussed.
Collapse
Affiliation(s)
- Alessandro Scano
- Institute of Intelligent Industrial Systems and Technologies for Advanced Manufacturing (STIIMA), Italian Council of National Research (CNR), 20133 Milan, Italy; (V.L.); (C.B.)
| | - Valentina Lanzani
- Institute of Intelligent Industrial Systems and Technologies for Advanced Manufacturing (STIIMA), Italian Council of National Research (CNR), 20133 Milan, Italy; (V.L.); (C.B.)
| | - Cristina Brambilla
- Institute of Intelligent Industrial Systems and Technologies for Advanced Manufacturing (STIIMA), Italian Council of National Research (CNR), 20133 Milan, Italy; (V.L.); (C.B.)
| | - Andrea d’Avella
- Laboratory of Neuromotor Physiology, IRCCS Fondazione Santa Lucia, Via Ardeatina 306-354, 00179 Rome, Italy;
- Department of Biology, University of Rome Tor Vergata, Via della Ricerca Scientifica, 00133 Rome, Italy
| |
Collapse
|
5
|
Russo M, Scano A, Brambilla C, d'Avella A. SynergyAnalyzer: A Matlab toolbox implementing mixed-matrix factorization to identify kinematic-muscular synergies. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2024; 251:108217. [PMID: 38744059 DOI: 10.1016/j.cmpb.2024.108217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 04/24/2024] [Accepted: 05/06/2024] [Indexed: 05/16/2024]
Abstract
BACKGROUND AND OBJECTIVE A new direction in the study of motor control was opened about two decades ago with the introduction of a model for the generation of motor commands as combination of muscle synergies. Muscle synergies provide a simple yet quantitative framework for analyzing the hierarchical and modular architecture of the human motor system. However, to gain insights on the functional role of muscle synergies, they should be related to the task space. The recently introduced mixed-matrix factorization (MMF) algorithm extends the standard approach for synergy extraction based on non-negative matrix factorization (NMF) allowing to factorize data constituted by a mixture of non-negative variables (e.g. EMGs) and unconstrained variables (e.g. kinematics, naturally including both positive and negative values). The kinematic-muscular synergies identified by MMF provide a direct link between muscle synergies and the task space. In this contribution, we support the adoption of MMF through a Matlab toolbox for the extraction of kinematic-muscular synergies and a set of practical guidelines to allow biomedical researchers and clinicians to exploit the potential of this novel approach. METHODS MMF is implemented in the SynergyAnalyzer toolbox using an object-oriented approach. In addition to the MMF algorithm, the toolbox includes standard methods for synergy extraction (NMF and PCA), as well as methods for pre-processing EMG and kinematic data, and for plotting data and synergies. RESULTS As an example of MMF application, kinematic-muscular synergies were extracted from EMG and kinematic data collected during reaching movements towards 8 targets on the sagittal plane. Instructions and command lines to achieve such results are illustrated in detail. The toolbox has been released as an open-source software on GitHub under the GNU General Public License. CONCLUSIONS Thanks to its ease of use and adaptability to a variety of datasets, SynergyAnalyzer will facilitate the adoption of MMF to extract kinematic-muscular synergies from mixed EMG and kinematic data, a useful approach in biomedical research to better understand and characterize the functional role of muscle synergies.
Collapse
Affiliation(s)
- Marta Russo
- Laboratory of Neuromotor Physiology, IRCCS Fondazione Santa Lucia, Rome, Italy; Deparment of Neurology, Fondazione Policlinico Tor Vergata, Rome, Italy
| | - Alessandro Scano
- Institute of Intelligent Industrial Systems and Technologies for Advanced Manufacturing (STIIMA), Italian Council of National Research (CNR), Via A.Corti 12, Milan, Italy.
| | - Cristina Brambilla
- Institute of Intelligent Industrial Systems and Technologies for Advanced Manufacturing (STIIMA), Italian Council of National Research (CNR), Via A.Corti 12, Milan, Italy
| | - Andrea d'Avella
- Laboratory of Neuromotor Physiology, IRCCS Fondazione Santa Lucia, Rome, Italy; Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy
| |
Collapse
|
6
|
Sheng Y, Wang J, Tan G, Chang H, Xie Q, Liu H. Muscle Synergy Plasticity in Motor Function Recovery After Stroke. IEEE Trans Neural Syst Rehabil Eng 2024; 32:1657-1667. [PMID: 38619941 DOI: 10.1109/tnsre.2024.3389022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
In certain neurological disorders such as stroke, the impairment of upper limb function significantly impacts daily life quality and necessitates enhanced neurological control. This poses a formidable challenge in the realm of rehabilitation due to its intricate nature. Moreover, the plasticity of muscle synergy proves advantageous in assessing the enhancement of motor function among stroke patients pre and post rehabilitation training intervention, owing to the modular control strategy of central nervous system. It also facilitates the investigation of long-term alterations in remodeling of muscle functional performance among patients undergoing clinical rehabilitation, aiming to establish correlations between changes in muscle synergies and stroke characteristics such as type, stage, and sites. In this study, a three-week rehabilitation monitoring experiment was conducted to assess the motor function of stroke patients at different stages of rehabilitation based on muscle synergy performance. Additionally, we aimed to investigate the correlation between clinical scale scores, rehabilitation stages, and synergy performance in order to provide a more comprehensive understanding of stroke patient recovery. The results of 7 healthy controls and 16 stroke patients showed that high-functioning patients were superior to low-functioning patients in terms of motor function plasticity towards healthy individuals. Moreover, there was a high positive correlation between muscle synergies and clinical scale scores in high-functioning patients, and the significance gradually emerged with treatment, highlighting the potential of muscle synergy plasticity as a valuable tool for monitoring rehabilitation progress. The potential of this study was also demonstrated for elucidating the physiological mechanisms underlying motor function reconstruction within the central nervous system, which is expected to promote the further application of muscle synergy in clinical assessment.
Collapse
|
7
|
Liu Q, Liu Z, Cheng H, Xu Y, Wang F, Liu L, Hu X. The impact of reminiscent music therapy and robot-assisted rehabilitation on older stroke patients: a protocol for a randomized controlled trial. Front Neurol 2024; 15:1345629. [PMID: 38651105 PMCID: PMC11033498 DOI: 10.3389/fneur.2024.1345629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 03/26/2024] [Indexed: 04/25/2024] Open
Abstract
Background Stroke is the main disease that causes the burden of neurological disease, leading to upper limb dysfunction and affecting their self-care abilities. Robot-assisted rehabilitation therapy has been gradually used in the rehabilitation of upper limb function after stroke. However, it would be beneficial to explore auxiliary interventions such as reminiscent music therapy, a combination of music and reminiscent, to relieve negative emotions and post-stroke fatigue and improve rehabilitation outcomes. This protocol aims to evaluate the effectiveness of reminiscent music therapy combined with robot-assisted rehabilitation in older stroke patients. Methods This trial is a single-blind, three-arm randomized controlled trial. Older stroke patients with upper limb dysfunction will be recruited. Participants will be randomly assigned to receive usual rehabilitation treatment and care, usual rehabilitation treatment and care plus robot-assisted rehabilitation and reminiscent music therapy, or usual rehabilitation treatment and care plus robot-assisted rehabilitation. Robot-assisted rehabilitation will be conducted by rehabilitation doctors five times per week for 3 weeks. In experimental group 1, a reminiscent song list will be played for patients. The primary outcome is activities of daily living. All outcomes will be evaluated at baseline and in the week immediately post-intervention. Discussion We are conducting the first randomized controlled trial on the effects of reminiscent music therapy combined with robot-assisted rehabilitation in older stroke patients. It is expected that this study, if proven effective in improving the activities of daily living in older stroke patients with upper limb dysfunction, will provide evidence-based rehabilitation strategies for medical staff.Clinical Trial Registration: ChiCTR2200063738.
Collapse
Affiliation(s)
- Qian Liu
- Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, West China Hospital, and West China School of Nursing, Sichuan University, Chengdu, China
| | - Zuoyan Liu
- Department of Rehabilitation Medicine Center, West China Hospital, Sichuan University, Chengdu, China
- West China School of Nursing, Sichuan University, Chengdu, China
| | - Hong Cheng
- School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu, China
| | - Yang Xu
- Department of Rehabilitation Medicine Center, West China Hospital, Sichuan University, Chengdu, China
| | - Fang Wang
- Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, West China Hospital, and West China School of Nursing, Sichuan University, Chengdu, China
| | - Li Liu
- Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, West China Hospital, and West China School of Nursing, Sichuan University, Chengdu, China
| | - Xiuying Hu
- Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, West China Hospital, and West China School of Nursing, Sichuan University, Chengdu, China
| |
Collapse
|
8
|
Hong R, Li B, Bao Y, Liu L, Jin L. Therapeutic robots for post-stroke rehabilitation. MEDICAL REVIEW (2021) 2024; 4:55-67. [PMID: 38515779 PMCID: PMC10954296 DOI: 10.1515/mr-2023-0054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 01/25/2024] [Indexed: 03/23/2024]
Abstract
Stroke is a prevalent, severe, and disabling health-care issue on a global scale, inevitably leading to motor and cognitive deficits. It has become one of the most significant challenges in China, resulting in substantial social and economic burdens. In addition to the medication and surgical interventions during the acute phase, rehabilitation treatment plays a crucial role in stroke care. Robotic technology takes distinct advantages over traditional physical therapy, occupational therapy, and speech therapy, and is increasingly gaining popularity in post-stroke rehabilitation. The use of rehabilitation robots not only alleviates the workload of healthcare professionals but also enhances the prognosis for specific stroke patients. This review presents a concise overview of the application of therapeutic robots in post-stroke rehabilitation, with particular emphasis on the recovery of motor and cognitive function.
Collapse
Affiliation(s)
- Ronghua Hong
- Department of Neurology and Neurological Rehabilitation, Shanghai Disabled Persons’ Federation Key Laboratory of Intelligent Rehabilitation Assistive Devices and Technologies, Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, Tongji University, Shanghai, China
- Neurotoxin Research Center, Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Department of Neurology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Bingyu Li
- Department of Neurology and Neurological Rehabilitation, Shanghai Disabled Persons’ Federation Key Laboratory of Intelligent Rehabilitation Assistive Devices and Technologies, Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, Tongji University, Shanghai, China
| | - Yunjun Bao
- Department of Neurology and Neurological Rehabilitation, Shanghai Disabled Persons’ Federation Key Laboratory of Intelligent Rehabilitation Assistive Devices and Technologies, Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, Tongji University, Shanghai, China
| | - Lingyu Liu
- Department of Neurology and Neurological Rehabilitation, Shanghai Disabled Persons’ Federation Key Laboratory of Intelligent Rehabilitation Assistive Devices and Technologies, Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, Tongji University, Shanghai, China
| | - Lingjing Jin
- Department of Neurology and Neurological Rehabilitation, Shanghai Disabled Persons’ Federation Key Laboratory of Intelligent Rehabilitation Assistive Devices and Technologies, Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, Tongji University, Shanghai, China
- Neurotoxin Research Center, Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Department of Neurology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
- Collaborative Innovation Center for Brain Science, Tongji University, Shanghai, China
| |
Collapse
|
9
|
Chen Y, Yang C, Côté JN. Few sex-specific effects of fatigue on muscle synergies in a repetitive pointing task. J Biomech 2024; 163:111905. [PMID: 38183760 DOI: 10.1016/j.jbiomech.2023.111905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 10/30/2023] [Accepted: 12/13/2023] [Indexed: 01/08/2024]
Abstract
Previous studies have identified some sex differences in how individual muscles change their activation during repetitive multi-joint arm motion-induced fatigue. However, little is known about how indicators of multi-muscle coordination change with fatigue in males and females. Fifty-six (29 females) asymptomatic young adults performed a repetitive, forward-backward pointing task until scoring 8/10 on a Borg CR10 scale while surface electromyographic activity of upper trapezius, anterior deltoid, biceps brachii, and triceps brachii was recorded. Activation coefficient, synergy structure, and relative weight of each muscle within synergies were calculated using the non-negative matrix factorization method. Two muscle synergies were extracted from the fatiguing task. The synergy structures were mostly preserved after fatigue, while the activation coefficients were altered. A significant Sex × Fatigue interaction effect showed more use of the anterior deltoid in males especially before fatigue in synergy 1 during shoulder stabilization (p = 0.04). As for synergy 2, it was characterized by variations in the relative weight of biceps, which was higher by 16 % in females compared to males (p = 0.04), and increased with fatigue (p = 0.03) during the elbow flexion acceleration phase and the deceleration phase of the backward pointing movement. Findings suggest that both sexes adapted to fatigue similarly, using fixed synergy structures, with alterations in synergy activation patterns and relative weights of individual muscles. Results support previous findings of an important role for the biceps and anterior deltoid in explaining sex differences in patterns of repetitive motion-induced upper limb fatigue.
Collapse
Affiliation(s)
- Yiyang Chen
- Department of Kinesiology and Physical Education, McGill University, 475 Pine Avenue West, Montreal, QC H2W 1S4, Canada; CRIR Research Centre, Jewish Rehabilitation Hospital, 3205 Alton-Goldbloom Place, Laval, QC H7V 1R2, Canada.
| | - Chen Yang
- Department of Kinesiology and Physical Education, McGill University, 475 Pine Avenue West, Montreal, QC H2W 1S4, Canada; CRIR Research Centre, Jewish Rehabilitation Hospital, 3205 Alton-Goldbloom Place, Laval, QC H7V 1R2, Canada; Max Nader Lab for Rehabilitation Technologies and Outcomes Research, Shirley Ryan AbilityLab, Chicago, IL 60611, United States
| | - Julie N Côté
- Department of Kinesiology and Physical Education, McGill University, 475 Pine Avenue West, Montreal, QC H2W 1S4, Canada; CRIR Research Centre, Jewish Rehabilitation Hospital, 3205 Alton-Goldbloom Place, Laval, QC H7V 1R2, Canada
| |
Collapse
|
10
|
Bandini V, Carpinella I, Marzegan A, Jonsdottir J, Frigo CA, Avanzino L, Pelosin E, Ferrarin M, Lencioni T. Surface-Electromyography-Based Co-Contraction Index for Monitoring Upper Limb Improvements in Post-Stroke Rehabilitation: A Pilot Randomized Controlled Trial Secondary Analysis. SENSORS (BASEL, SWITZERLAND) 2023; 23:7320. [PMID: 37687775 PMCID: PMC10490112 DOI: 10.3390/s23177320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 07/28/2023] [Accepted: 08/04/2023] [Indexed: 09/10/2023]
Abstract
Persons post-stroke experience excessive muscle co-contraction, and consequently the arm functions are compromised during the activities of daily living. Therefore, identifying instrumental outcome measures able to detect the motor strategy adopted after a stroke is a primary clinical goal. Accordingly, this study aims at verifying whether the surface electromyography (sEMG)-based co-contraction index (CCI) could be a new clinically feasible approach for assessing and monitoring patients' motor performance. Thirty-four persons post-stroke underwent clinical assessment and upper extremity kinematic analysis, including sEMG recordings. The participants were randomized into two treatment groups (robot and usual care groups). Ten healthy subjects provided a normative reference (NR). Frost's CCI was used to quantify the muscle co-contraction of three different agonist/antagonist muscle pairs during an object-placing task. Persons post-stroke showed excessive muscle co-contraction (mean (95% CI): anterior/posterior deltoid CCI: 0.38 (0.34-0.41) p = 0.03; triceps/biceps CCI: 0.46 (0.41-0.50) p = 0.01) compared to NR (anterior/posterior deltoid CCI: 0.29 (0.21-0.36); triceps/biceps CCI: 0.34 (0.30-0.39)). After robot therapy, persons post-stroke exhibited a greater improvement (i.e., reduced CCI) in proximal motor control (anterior/posterior deltoid change score of CCI: -0.02 (-0.07-0.02) p = 0.05) compared to usual care therapy (0.04 (0.00-0.09)). Finally, the findings of the present study indicate that the sEMG-based CCI could be a valuable tool in clinical practice.
Collapse
Affiliation(s)
- Virginia Bandini
- IRCCS Fondazione Don Carlo Gnocchi Onlus, Via Capecelatro 66, 20148 Milan, Italy; (V.B.); (I.C.); (A.M.); (J.J.); (T.L.)
| | - Ilaria Carpinella
- IRCCS Fondazione Don Carlo Gnocchi Onlus, Via Capecelatro 66, 20148 Milan, Italy; (V.B.); (I.C.); (A.M.); (J.J.); (T.L.)
| | - Alberto Marzegan
- IRCCS Fondazione Don Carlo Gnocchi Onlus, Via Capecelatro 66, 20148 Milan, Italy; (V.B.); (I.C.); (A.M.); (J.J.); (T.L.)
| | - Johanna Jonsdottir
- IRCCS Fondazione Don Carlo Gnocchi Onlus, Via Capecelatro 66, 20148 Milan, Italy; (V.B.); (I.C.); (A.M.); (J.J.); (T.L.)
| | - Carlo Albino Frigo
- Department of Electronics, Information and Bioengineering (DEIB), Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milan, Italy;
| | - Laura Avanzino
- Department of Experimental Medicine, Section of Human Physiology, University of Genoa, 16132 Genoa, Italy;
- IRCCS Ospedale Policlinico San Martino, IRCCS, 16132 Genoa, Italy;
| | - Elisa Pelosin
- IRCCS Ospedale Policlinico San Martino, IRCCS, 16132 Genoa, Italy;
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics and Maternal Child Health, University of Genoa, 16132 Genova, Italy
| | - Maurizio Ferrarin
- IRCCS Fondazione Don Carlo Gnocchi Onlus, Via Capecelatro 66, 20148 Milan, Italy; (V.B.); (I.C.); (A.M.); (J.J.); (T.L.)
| | - Tiziana Lencioni
- IRCCS Fondazione Don Carlo Gnocchi Onlus, Via Capecelatro 66, 20148 Milan, Italy; (V.B.); (I.C.); (A.M.); (J.J.); (T.L.)
| |
Collapse
|
11
|
Zhao K, Zhang Z, Wen H, Liu B, Li J, Andrea d’Avella, Scano A. Muscle synergies for evaluating upper limb in clinical applications: A systematic review. Heliyon 2023; 9:e16202. [PMID: 37215841 PMCID: PMC10199229 DOI: 10.1016/j.heliyon.2023.e16202] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 04/11/2023] [Accepted: 05/09/2023] [Indexed: 09/28/2023] Open
Abstract
INTRODUCTION Muscle synergies have been proposed as a strategy employed by the central nervous system to control movements. Muscle synergy analysis is a well-established framework to examine the pathophysiological basis of neurological diseases and has been applied for analysis and assessment in clinical applications in the last decades, even if it has not yet been widely used in clinical diagnosis, rehabilitative treatment and interventions. Even if inconsistencies in the outputs among studies and lack of a normative pipeline including signal processing and synergy analysis limit the progress, common findings and results are identifiable as a basis for future research. Therefore, a literature review that summarizes methods and main findings of previous works on upper limb muscle synergies in clinical environment is needed to i) summarize the main findings so far, ii) highlight the barriers limiting their use in clinical applications, and iii) suggest future research directions needed for facilitating translation of experimental research to clinical scenarios. METHODS Articles in which muscle synergies were used to analyze and assess upper limb function in neurological impairments were reviewed. The literature research was conducted in Scopus, PubMed, and Web of Science. Experimental protocols (e.g., the aim of the study, number and type of participants, number and type of muscles, and tasks), methods (e.g., muscle synergy models and synergy extraction methods, signal processing methods), and the main findings of eligible studies were reported and discussed. RESULTS 383 articles were screened and 51 were selected, which involved a total of 13 diseases and 748 patients and 1155 participants. Each study investigated on average 15 ± 10 patients. Four to forty-one muscles were included in the muscle synergy analysis. Point-to-point reaching was the most used task. The preprocessing of EMG signals and algorithms for synergy extraction varied among studies, and non-negative matrix factorization was the most used method. Five EMG normalization methods and five methods for identifying the optimal number of synergies were used in the selected papers. Most of the studies report that analyses on synergy number, structure, and activations provide novel insights on the physiopathology of motor control that cannot be gained with standard clinical assessments, and suggest that muscle synergies may be useful to personalize therapies and to develop new therapeutic strategies. However, in the selected studies synergies were used only for assessment; different testing procedures were used and, in general, study-specific modifications of muscle synergies were observed; single session or longitudinal studies mainly aimed at assessing stroke (71% of the studies), even though other pathologies were also investigated. Synergy modifications were either study-specific or were not observed, with few analyses available for temporal coefficients. Thus, several barriers prevent wider adoption of muscle synergy analysis including a lack of standardized experimental protocols, signal processing procedures, and synergy extraction methods. A compromise in the design of the studies must be found to combine the systematicity of motor control studies and the feasibility of clinical studies. There are however several potential developments that might promote the use of muscle synergy analysis in clinical practice, including refined assessments based on synergistic approaches not allowed by other methods and the availability of novel models. Finally, neural substrates of muscle synergies are discussed, and possible future research directions are proposed. CONCLUSIONS This review provides new perspectives about the challenges and open issues that need to be addressed in future work to achieve a better understanding of motor impairments and rehabilitative therapy using muscle synergies. These include the application of the methods on wider scales, standardization of procedures, inclusion of synergies in the clinical decisional process, assessment of temporal coefficients and temporal-based models, extensive work on the algorithms and understanding of the physio-pathological mechanisms of pathology, as well as the application and adaptation of synergy-based approaches to various rehabilitative scenarios for increasing the available evidence.
Collapse
Affiliation(s)
- Kunkun Zhao
- School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, China
| | - Zhisheng Zhang
- School of Mechanical Engineering, Southeast University, Nanjing, China
| | - Haiying Wen
- School of Mechanical Engineering, Southeast University, Nanjing, China
| | - Bin Liu
- School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, China
| | - Jianqing Li
- School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, China
| | - Andrea d’Avella
- Laboratory of Neuromotor Physiology, IRCCS Fondazione Santa Lucia, Rome, Italy
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Italy
| | - Alessandro Scano
- Institute of Intelligent Industrial Technologies and Systems for Advanced Manufacturing (STIIMA), National Research Council of Italy (CNR), Milan, Italy
| |
Collapse
|
12
|
Germanotta M, Cortellini L, Insalaco S, Aprile I. Effects of Upper Limb Robot-Assisted Rehabilitation Compared with Conventional Therapy in Patients with Stroke: Preliminary Results on a Daily Task Assessed Using Motion Analysis. SENSORS (BASEL, SWITZERLAND) 2023; 23:3089. [PMID: 36991799 PMCID: PMC10057550 DOI: 10.3390/s23063089] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/27/2023] [Accepted: 03/08/2023] [Indexed: 06/19/2023]
Abstract
Robotic rehabilitation of the upper limb has demonstrated promising results in terms of the improvement of arm function in post-stroke patients. The current literature suggests that robot-assisted therapy (RAT) is comparable to traditional approaches when clinical scales are used as outcome measures. Instead, the effects of RAT on the capacity to execute a daily life task with the affected upper limb are unknown, as measured using kinematic indices. Through kinematic analysis of a drinking task, we examined the improvement in upper limb performance between patients following a robotic or conventional 30-session rehabilitation intervention. In particular, we analyzed data from nineteen patients with subacute stroke (less than six months following stroke), nine of whom treated with a set of four robotic and sensor-based devices and ten with a traditional approach. According to our findings, the patients increased their movement efficiency and smoothness regardless of the rehabilitative approach. After the treatment (either robotic or conventional), no differences were found in terms of movement accuracy, planning, speed, or spatial posture. This research seems to demonstrate that the two investigated approaches have a comparable impact and may give insight into the design of rehabilitation therapy.
Collapse
|
13
|
Longatelli V, Torricelli D, Tornero J, Pedrocchi A, Molteni F, Pons JL, Gandolla M. A unified scheme for the benchmarking of upper limb functions in neurological disorders. J Neuroeng Rehabil 2022; 19:102. [PMID: 36167552 PMCID: PMC9513990 DOI: 10.1186/s12984-022-01082-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 09/08/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND In neurorehabilitation, we are witnessing a growing awareness of the importance of standardized quantitative assessment of limb functions. Detailed assessments of the sensorimotor deficits following neurological disorders are crucial. So far, this assessment has relied mainly on clinical scales, which showed several drawbacks. Different technologies could provide more objective and repeatable measurements. However, the current literature lacks practical guidelines for this purpose. Nowadays, the integration of available metrics, protocols, and algorithms into one harmonized benchmarking ecosystem for clinical and research practice is necessary. METHODS This work presents a benchmarking framework for upper limb capacity. The scheme resulted from a multidisciplinary and iterative discussion among several partners with previous experience in benchmarking methodology, robotics, and clinical neurorehabilitation. We merged previous knowledge in benchmarking methodologies for human locomotion and direct clinical and engineering experience in upper limb rehabilitation. The scheme was designed to enable an instrumented evaluation of arm capacity and to assess the effectiveness of rehabilitative interventions with high reproducibility and resolution. It includes four elements: (1) a taxonomy for motor skills and abilities, (2) a list of performance indicators, (3) a list of required sensor modalities, and (4) a set of reproducible experimental protocols. RESULTS We proposed six motor primitives as building blocks of most upper-limb daily-life activities and combined them into a set of functional motor skills. We identified the main aspects to be considered during clinical evaluation, and grouped them into ten motor abilities categories. For each ability, we proposed a set of performance indicators to quantify the proposed ability on a quantitative and high-resolution scale. Finally, we defined the procedures to be followed to perform the benchmarking assessment in a reproducible and reliable way, including the definition of the kinematic models and the target muscles. CONCLUSIONS This work represents the first unified scheme for the benchmarking of upper limb capacity. To reach a consensus, this scheme should be validated with real experiments across clinical conditions and motor skills. This validation phase is expected to create a shared database of human performance, necessary to have realistic comparisons of treatments and drive the development of new personalized technologies.
Collapse
Affiliation(s)
- Valeria Longatelli
- Neuroengineering and Medical Robotics Laboratory and WE-COBOT Laboratory, Department of Electronics, Information, and Bioengineering, Politecnico di Milano, Milan, Italy.
| | - Diego Torricelli
- Neural Rehabilitation Group, Cajal Institute, Spanish National Research Council (CSIC), Madrid, Spain
| | - Jesús Tornero
- Advanced Neurorehabilitation Unit, Hospital Los Madroños, Madrid, Spain
| | - Alessandra Pedrocchi
- Neuroengineering and Medical Robotics Laboratory and WE-COBOT Laboratory, Department of Electronics, Information, and Bioengineering, Politecnico di Milano, Milan, Italy
| | - Franco Molteni
- Villa Beretta Rehabilitation Center, Valduce Hospital, Costa Masnaga, Italy
| | | | - Marta Gandolla
- WE-COBOT Laboratory, Department of Mechanical Engineering, Politecnico di Milano, Milan, Italy
| |
Collapse
|
14
|
Cancrini A, Baitelli P, Lavit Nicora M, Malosio M, Pedrocchi A, Scano A. The effects of robotic assistance on upper limb spatial muscle synergies in healthy people during planar upper-limb training. PLoS One 2022; 17:e0272813. [PMID: 35939495 PMCID: PMC9359610 DOI: 10.1371/journal.pone.0272813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 07/26/2022] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Robotic rehabilitation is a commonly adopted technique used to restore motor functionality of neurological patients. However, despite promising results were achieved, the effects of human-robot interaction on human motor control and the recovery mechanisms induced with robot assistance can be further investigated even on healthy subjects before translating to clinical practice. In this study, we adopt a standard paradigm for upper-limb rehabilitation (a planar device with assistive control) with linear and challenging curvilinear trajectories to investigate the effect of the assistance in human-robot interaction in healthy people. METHODS Ten healthy subjects were instructed to perform a large set of radial and curvilinear movements in two interaction modes: 1) free movement (subjects hold the robot handle with no assistance) and 2) assisted movement (with a force tunnel assistance paradigm). Kinematics and EMGs from representative upper-limb muscles were recorded to extract phasic muscle synergies. The free and assisted interaction modes were compared assessing the level of assistance, error, and muscle synergy comparison between the two interaction modes. RESULTS It was found that in free movement error magnitude is higher than with assistance, proving that task complexity required assistance also on healthy controls. Moreover, curvilinear tasks require more assistance than standard radial paths and error is higher. Interestingly, while assistance improved task performance, we found only a slight modification of phasic synergies when comparing assisted and free movement. CONCLUSIONS We found that on healthy people, the effect of assistance was significant on task performance, but limited on muscle synergies. The findings of this study can find applications for assessing human-robot interaction and to design training to maximize motor recovery.
Collapse
Affiliation(s)
- Adriana Cancrini
- Department of Electronics, Information and Bioengineering, Neuroengineering and Medical Robotics Laboratory, Politecnico di Milano, Milan, Italy
- Department of Neuromotor Physiology, Laboratory of Visuomotor Control and Gravitational Physiology, Fondazione Santa Lucia, IRCCS, Rome, Italy
| | - Paolo Baitelli
- Department of Electronics, Information and Bioengineering, Neuroengineering and Medical Robotics Laboratory, Politecnico di Milano, Milan, Italy
| | - Matteo Lavit Nicora
- UOS STIIMA Lecco - Human-Centered, Smart & Safe, Living Environment, Italian National Research Council (CNR), Lecco, Italy
- Industrial Engineering Department, University of Bologna, Bologna, Italy
| | - Matteo Malosio
- UOS STIIMA Lecco - Human-Centered, Smart & Safe, Living Environment, Italian National Research Council (CNR), Lecco, Italy
| | - Alessandra Pedrocchi
- Department of Electronics, Information and Bioengineering, Neuroengineering and Medical Robotics Laboratory, Politecnico di Milano, Milan, Italy
| | - Alessandro Scano
- UOS STIIMA Lecco - Human-Centered, Smart & Safe, Living Environment, Italian National Research Council (CNR), Lecco, Italy
| |
Collapse
|
15
|
Scano A, Guanziroli E, Mira RM, Brambilla C, Molinari Tosatti L, Molteni F. Biomechanical assessment of the ipsilesional upper limb in post-stroke patients during multi-joint reaching tasks: A quantitative study. FRONTIERS IN REHABILITATION SCIENCES 2022; 3:943397. [PMID: 36189026 PMCID: PMC9397945 DOI: 10.3389/fresc.2022.943397] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 07/06/2022] [Indexed: 11/13/2022]
Abstract
In hemiplegic patients with stroke, investigating the ipsilesional limb may shed light on the upper limb motor control, impairments and mechanisms of functional recovery. Usually investigation of motor impairment and rehabilitative interventions in patients are performed only based on the contralesional limb. Previous studies found that also the ipsilesional limb presents motor deficits, mostly evaluated with clinical scales which could lack of sensibility. To quantitatively evaluate the performance of the ipsilesional limb in patient with stroke, we conducted an observational study in which 49 hemiplegic patients were enrolled, divided in subgroups based on the severity of impairment of the contralesional limb, and assessed with a kinematic, dynamic and motor control evaluation protocol on their ipsilesional upper limb during reaching movements. Measurements were repeated in the acute and subacute phases and compared to healthy controls. Our results showed that the ipsilesional limb presented lower kinematic and dynamic performances with respect to the healthy controls. Patients performed the movements slower and with a reduced range of motion, indicating a difficulty in controlling the motion of the arm. The energy and the power outputs were lower in both shoulder and elbow joint with a high significance level, confirming the limitation found in kinematics. Moreover, we showed that motor deficits were higher in the acute phase with respect to the subacute one and we found higher significant differences in the group with a more severe contralesional limb impairment. Ipsilesional upper limb biomechanics adds significant and more sensible measures for assessments based on multi-joints dynamics, providing a better insight on the upper limb motor control after stroke. These results could have clinical implications while evaluating and treating ipsilesional and contralesional upper limb impairments and dysfunctions in patients with stroke.
Collapse
Affiliation(s)
- Alessandro Scano
- Institute of Intelligent Industrial Technologies and Systems for Advanced Manufacturing (STIIMA), Italian National Research Council (CNR), Milan-Lecco, Italy
- *Correspondence: Alessandro Scano
| | | | - Robert M. Mira
- Institute of Intelligent Industrial Technologies and Systems for Advanced Manufacturing (STIIMA), Italian National Research Council (CNR), Milan-Lecco, Italy
| | - Cristina Brambilla
- Institute of Intelligent Industrial Technologies and Systems for Advanced Manufacturing (STIIMA), Italian National Research Council (CNR), Milan-Lecco, Italy
| | - Lorenzo Molinari Tosatti
- Institute of Intelligent Industrial Technologies and Systems for Advanced Manufacturing (STIIMA), Italian National Research Council (CNR), Milan-Lecco, Italy
| | - Franco Molteni
- Villa Beretta Rehabilitation Center, Costa Masnaga, Italy
| |
Collapse
|
16
|
Maistrello L, Rimini D, Cheung VCK, Pregnolato G, Turolla A. Muscle Synergies and Clinical Outcome Measures Describe Different Factors of Upper Limb Motor Function in Stroke Survivors Undergoing Rehabilitation in a Virtual Reality Environment. SENSORS 2021; 21:s21238002. [PMID: 34884003 PMCID: PMC8659727 DOI: 10.3390/s21238002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 11/24/2021] [Accepted: 11/26/2021] [Indexed: 11/16/2022]
Abstract
Recent studies have investigated muscle synergies as biomarkers for stroke, but it remains controversial if muscle synergies and clinical observation convey the same information on motor impairment. We aim to identify whether muscle synergies and clinical scales convey the same information or not. Post-stroke patients were administered an upper limb treatment. Before (T0) and after (T1) treatment, we assessed motor performance with clinical scales and motor output with EMG-derived muscle synergies. We implemented an exploratory factor analysis (EFA) and a confirmatory factor analysis (CFA) to identify the underlying relationships among all variables, at T0 and T1, and a general linear regression model to infer any relationships between the similarity between the affected and unaffected synergies (Median-sp) and clinical outcomes at T0. Clinical variables improved with rehabilitation whereas muscle-synergy parameters did not show any significant change. EFA and CFA showed that clinical variables and muscle-synergy parameters (except Median-sp) were grouped into different factors. Regression model showed that Median-sp could be well predicted by clinical scales. The information underlying clinical scales and muscle synergies are therefore different. However, clinical scales well predicted the similarity between the affected and unaffected synergies. Our results may have implications on personalizing rehabilitation protocols.
Collapse
Affiliation(s)
- Lorenza Maistrello
- Laboratory of Rehabilitation Technologies, IRCCS San Camillo Hospital, 30126 Venice, Italy; (L.M.); (G.P.); (A.T.)
| | - Daniele Rimini
- Medical Physics Department—Clinical Engineering, Salford Care Organisation, Salford M6 8HD, UK
- Correspondence: ; Tel.: +44-61620 (ext. 64859)
| | - Vincent C. K. Cheung
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China;
| | - Giorgia Pregnolato
- Laboratory of Rehabilitation Technologies, IRCCS San Camillo Hospital, 30126 Venice, Italy; (L.M.); (G.P.); (A.T.)
| | - Andrea Turolla
- Laboratory of Rehabilitation Technologies, IRCCS San Camillo Hospital, 30126 Venice, Italy; (L.M.); (G.P.); (A.T.)
| |
Collapse
|
17
|
Garro F, Chiappalone M, Buccelli S, De Michieli L, Semprini M. Neuromechanical Biomarkers for Robotic Neurorehabilitation. Front Neurorobot 2021; 15:742163. [PMID: 34776920 PMCID: PMC8579108 DOI: 10.3389/fnbot.2021.742163] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 09/22/2021] [Indexed: 02/06/2023] Open
Abstract
One of the current challenges for translational rehabilitation research is to develop the strategies to deliver accurate evaluation, prediction, patient selection, and decision-making in the clinical practice. In this regard, the robot-assisted interventions have gained popularity as they can provide the objective and quantifiable assessment of the motor performance by taking the kinematics parameters into the account. Neurophysiological parameters have also been proposed for this purpose due to the novel advances in the non-invasive signal processing techniques. In addition, other parameters linked to the motor learning and brain plasticity occurring during the rehabilitation have been explored, looking for a more holistic rehabilitation approach. However, the majority of the research done in this area is still exploratory. These parameters have shown the capability to become the “biomarkers” that are defined as the quantifiable indicators of the physiological/pathological processes and the responses to the therapeutical interventions. In this view, they could be finally used for enhancing the robot-assisted treatments. While the research on the biomarkers has been growing in the last years, there is a current need for a better comprehension and quantification of the neuromechanical processes involved in the rehabilitation. In particular, there is a lack of operationalization of the potential neuromechanical biomarkers into the clinical algorithms. In this scenario, a new framework called the “Rehabilomics” has been proposed to account for the rehabilitation research that exploits the biomarkers in its design. This study provides an overview of the state-of-the-art of the biomarkers related to the robotic neurorehabilitation, focusing on the translational studies, and underlying the need to create the comprehensive approaches that have the potential to take the research on the biomarkers into the clinical practice. We then summarize some promising biomarkers that are being under investigation in the current literature and provide some examples of their current and/or potential applications in the neurorehabilitation. Finally, we outline the main challenges and future directions in the field, briefly discussing their potential evolution and prospective.
Collapse
Affiliation(s)
- Florencia Garro
- Rehab Technologies, Istituto Italiano di Tecnologia, Genoa, Italy.,Department of Informatics, Bioengineering, Robotics and Systems Engineering, University of Genoa, Genoa, Italy
| | - Michela Chiappalone
- Rehab Technologies, Istituto Italiano di Tecnologia, Genoa, Italy.,Department of Informatics, Bioengineering, Robotics and Systems Engineering, University of Genoa, Genoa, Italy
| | - Stefano Buccelli
- Rehab Technologies, Istituto Italiano di Tecnologia, Genoa, Italy
| | | | | |
Collapse
|
18
|
Prediction of Long-Term Elbow Flexion Force Intervals Based on the Informer Model and Electromyography. ELECTRONICS 2021. [DOI: 10.3390/electronics10161946] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Accurate and long-term prediction of elbow flexion force can be used to recognize the intended movement and help wearable power-assisted robots to improve control performance. Our study aimed to find a proper relationship between electromyography and flexion force. However, the existing methods must incorporate biomechanical models to produce accurate and timely predictions of flexion force. Elbow flexion force is largely determined by the contractile properties of muscles, and the relationship between flexion force and the motor function of muscles has to be thoroughly analyzed. Therefore, based on the investigation on the contributions of different muscles to the flexion force, original electromyography signals were decomposed into non-linear and non-stationary parts. We selected the mean absolute value (MAV) of the non-linear part and the variance of the non-stationary part as inputs for an Informer prediction model that does not require detailed a priori knowledge of biomechanical models and is optimized for processing time sequences. Finally, a long-term flexion force probability interval is proposed. The proposed framework performs well in predicting long-term flexion force and outperforms other state-of-the-art models when compared to experimental results.
Collapse
|
19
|
Effects of Hemispheric Stroke Localization on the Reorganization of Arm Movements within Different Mechanical Environments. Life (Basel) 2021; 11:life11050383. [PMID: 33922668 PMCID: PMC8145329 DOI: 10.3390/life11050383] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/19/2021] [Accepted: 04/21/2021] [Indexed: 01/24/2023] Open
Abstract
This study investigated how stroke’s hemispheric localization affects motor performance, spinal maps and muscle synergies while performing planar reaching with and without assistive or resistive forces. A lesion of the right hemisphere affected performance, reducing average speed and smoothness and augmenting lateral deviation in both arms. Instead, a lesion of the left hemisphere affected the aiming error, impairing the feedforward control of the ipsilesional arm. The structure of the muscle synergies had alterations dependent on the lesion side in both arms. The applied force fields reduced the differences in performance and in muscle activations between arms and among populations. These results support the hypotheses of hemispheric specialization in movement control and identify potential significant biomarkers for the design of more effective and personalized rehabilitation protocols.
Collapse
|