1
|
He R, She Z, Zhang Y, Yao S, Wei J, Du M, An S. PKC phospho-activated PFK1 is required for PBAN regulated sex pheromone biosynthesis in Helicoverpa armigera. JOURNAL OF INSECT PHYSIOLOGY 2024:104739. [PMID: 39674363 DOI: 10.1016/j.jinsphys.2024.104739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 11/16/2024] [Accepted: 12/04/2024] [Indexed: 12/16/2024]
Abstract
The enzyme 6-phosphofructokinase-1 (PFK1) acts as the primary rate-limiting enzyme in glycolysis, catalyzing the conversion of fructose-6-phosphate to fructose-1,6-bisphosphate. This glycolytic process provides essential substrates for the synthesis of sex pheromones. However, the specific function of PFK1 in sex pheromone biosynthesis remains unidentified. This study aimed to investigate the detailed mechanism by which PFK1 influences pheromone biosynthesis activating neuropeptide (PBAN)-regulated sex pheromone biosynthesis in Hecoverpa armigera. Findings revealed the presence of two PFK genes in pheromone glands (PGs). Further investigation demonstrated that RNAi-mediated knockdown of PFK1 significantly reduced sex pheromone production, mating success and the female ability to attract males, whereas PFK2 did not influence sex pheromone biosynthesis. Importantly, PFK1 was activated by PBAN in both isolated PGs and Sf9 cells. However, PBAN-induced activation of PFK1 could be attenuated by chelerythrine chloride (CC), a specific inhibitor of protein kinase C (PKC). Furthermore, the phosphorylation levels of PFK1 significantly increased in response to PBAN challenge, while CC treatment significantly mitigated this phosphorylation. PFK1 activity was found to depend on phosphorylation at the S135 and S676 sites in response to PBAN stimulation. Mutants at these sites abolished PFK1 phosphorylation and its activity. Overall, our findings unveil a critical mechanism by which the PBAN signaling recruits PKC to phosphorylate PFK1 at S135 and S676 sites, thereby activating PFK1. This activation ensures the normal progression of the glycolysis pathway, ultimately facilitating sex pheromone biosynthesis.
Collapse
Affiliation(s)
- Ruolan He
- State Key Laboratory of Wheat and Maize Crop Science/Henan International Laboratory for Green Pest Control/College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Zelong She
- State Key Laboratory of Wheat and Maize Crop Science/Henan International Laboratory for Green Pest Control/College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Yao Zhang
- State Key Laboratory of Wheat and Maize Crop Science/Henan International Laboratory for Green Pest Control/College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Shuangyan Yao
- State Key Laboratory of Wheat and Maize Crop Science/Henan International Laboratory for Green Pest Control/College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Jizhen Wei
- State Key Laboratory of Wheat and Maize Crop Science/Henan International Laboratory for Green Pest Control/College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Mengfang Du
- State Key Laboratory of Wheat and Maize Crop Science/Henan International Laboratory for Green Pest Control/College of Plant Protection, Henan Agricultural University, Zhengzhou, China.
| | - Shiheng An
- State Key Laboratory of Wheat and Maize Crop Science/Henan International Laboratory for Green Pest Control/College of Plant Protection, Henan Agricultural University, Zhengzhou, China.
| |
Collapse
|
2
|
Lyu Z, Chen J, Lyu J, Guo P, Liu J, Liu J, Zhang W. Spraying double-stranded RNA targets UDP-N-acetylglucosamine pyrophosphorylase in the control of Nilaparvata lugens. Int J Biol Macromol 2024; 271:132455. [PMID: 38795878 DOI: 10.1016/j.ijbiomac.2024.132455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 05/04/2024] [Accepted: 05/14/2024] [Indexed: 05/28/2024]
Abstract
The rice pest Nilaparvata lugens (the brown planthopper, BPH) has developed different levels of resistance to at least 11 chemical pesticides. RNAi technology has contributed to the development of environmentally friendly RNA biopesticides designed to reduce chemical use. Consequently, more precise targets need to be identified and characterized, and efficient dsRNA delivery methods are necessary for effective field pest control. In this study, a low off-target risk dsNlUAP fragment (166 bp) was designed in silico to minimize the potential adverse effects on non-target organisms. Knockdown of NlUAP via microinjection significantly decreased the content of UDP-N-acetylglucosamine and chitin, causing chitinous structural disorder and abnormal phenotypes in wing and body wall, reduced fertility, and resulted in pest mortality up to 100 %. Furthermore, dsNlUAP was loaded with ROPE@C, a chitosan-modified nanomaterial for spray application, which significantly downregulated the expression of NlUAP, led to 48.9 % pest mortality, and was confirmed to have no adverse effects on Cyrtorhinus lividipennis, an important natural enemy of BPH. These findings will contribute to the development of safer biopesticides for the control of N. lugens.
Collapse
Affiliation(s)
- Zihao Lyu
- State Key Laboratory of Biocontrol, School of Agriculture, Sun Yat-sen University, Guangzhou, China
| | - Jingxiang Chen
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Jun Lyu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Pingping Guo
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Jiahui Liu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Jinhui Liu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Wenqing Zhang
- State Key Laboratory of Biocontrol, School of Agriculture, Sun Yat-sen University, Guangzhou, China; State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
3
|
Tang B, Hu S, Luo Y, Shi D, Liu X, Zhong F, Jiang X, Hu G, Li C, Duan H, Wu Y. Impact of Three Thiazolidinone Compounds with Piperine Skeletons on Trehalase Activity and Development of Spodoptera frugiperda Larvae. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:8423-8433. [PMID: 38565327 DOI: 10.1021/acs.jafc.3c08898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Trehalases (TREs) are pivotal enzymes involved in insect development and reproduction, making them prime targets for pest control. We investigated the inhibitory effect of three thiazolidinones with piperine skeletons (6a, 7b, and 7e) on TRE activity and assessed their impact on the growth and development of the fall armyworm (FAW), Spodoptera frugiperda. The compounds were injected into FAW larvae, while the control group was treated with 2% DMSO solvent. All three compounds effectively inhibited TRE activity, resulting in a significant extension of the pupal development stage. Moreover, the treated larvae exhibited significantly decreased survival rates and a higher incidence of abnormal phenotypes related to growth and development compared to the control group. These results suggest that these TRE inhibitors affect the molting of larvae by regulating the chitin metabolism pathway, ultimately reducing their survival rates. Consequently, these compounds hold potential as environmentally friendly insecticides.
Collapse
Affiliation(s)
- Bin Tang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Shangrong Hu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Yujia Luo
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Dongmei Shi
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Xiangyu Liu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
- Key Laboratory of Surveillance and Management of Invasive Alien Species, Guizhou Education Department, Department of Biology and Engineering of Environment, Guiyang University, Guiyang 550005, China
| | - Fan Zhong
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Xinyi Jiang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Gao Hu
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Can Li
- Key Laboratory of Surveillance and Management of Invasive Alien Species, Guizhou Education Department, Department of Biology and Engineering of Environment, Guiyang University, Guiyang 550005, China
| | - Hongxia Duan
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Yan Wu
- Key Laboratory of Surveillance and Management of Invasive Alien Species, Guizhou Education Department, Department of Biology and Engineering of Environment, Guiyang University, Guiyang 550005, China
| |
Collapse
|
4
|
Barbole RS, Sharma S, Patil Y, Giri AP, Joshi RS. Chitinase inhibition induces transcriptional dysregulation altering ecdysteroid-mediated control of Spodoptera frugiperda development. iScience 2024; 27:109280. [PMID: 38444606 PMCID: PMC10914475 DOI: 10.1016/j.isci.2024.109280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 01/30/2024] [Accepted: 02/16/2024] [Indexed: 03/07/2024] Open
Abstract
Chitinases and ecdysteroid hormones are vital for insect development. Crosstalk between chitin and ecdysteroid metabolism regulation is enigmatic. Here, we examined chitinase inhibition effect on Spodoptera frugiperda ecdysteroid metabolism. In vitro studies suggested that berberine inhibits S. frugiperda chitinase 5 (SfCht5). The Berberine feeding resulted in defective S. frugiperda development. Berberine-fed insects showed higher SfCht5 and Chitinase 7 expression and cumulative chitinase activity. Chitinase inhibition led to overexpression of chitinases, ecdysteroid biosynthesis, and responsive genes. SfCht5 silencing and overexpression resulted in ecdysone receptor deregulation. Transcription factors, like Broad Complex Z4, regulate the ecdysteroid metabolism and showed high expression upon berberine ingestion. Broad Complex Z4 binding in 5' UTR of Ecdysone receptor, SfCht5, Chitinase 7, Phantom, Neverland, and other ecdysteroid biosynthesis genes might lead to their upregulation in berberine-fed insects. As a result, berberine-fed insects showed ecdysone overaccumulation. These findings underscore chitinase activity's impact on ecdysone biosynthesis and its transcriptional crosstalk.
Collapse
Affiliation(s)
- Ranjit S. Barbole
- Biochemical Sciences Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, Maharashtra, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Shivani Sharma
- Biochemical Sciences Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, Maharashtra, India
| | - Yogita Patil
- Biochemical Sciences Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, Maharashtra, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Ashok P. Giri
- Biochemical Sciences Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, Maharashtra, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Rakesh S. Joshi
- Biochemical Sciences Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, Maharashtra, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| |
Collapse
|
5
|
Wang Z, Long G, Zhu H, Jin D, Yang H, Zhou C. Silencing of Glutamine: Fructose-6-Phosphate Aminotransferase Impairs Growth and Development in Sogatella furcifera (Hemiptera: Delphacidae). Biomolecules 2023; 13:1433. [PMID: 37892115 PMCID: PMC10604220 DOI: 10.3390/biom13101433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/10/2023] [Accepted: 09/20/2023] [Indexed: 10/29/2023] Open
Abstract
Glutamine: fructose-6-phosphate aminotransferase (GFAT), the fourth enzyme in the chitin synthesis pathway, exerts wide-ranging effects on the growth and development of organisms. However, the role of GFAT in Sogatella furcifera remains unknown. In this study, the functional significance of the GFAT gene of S. furcifera was analyzed using a reverse transcription-polymerase chain reaction and RNA interference (RNAi) analyses. The complementary DNA sequence of SfGFAT was 3162 bp in length and contained a 2067 bp open reading frame encoding 688 amino acid residues. Structural domain analysis indicated that the SfGFAT protein consisted of one glutamine aminotransferase class 2 domain and two sugar isomerase domains. Expression profile analysis revealed that SfGFAT was expressed throughout the egg, nymph, and adult phases and was strongly expressed on the first day of each nymph stage and in the integuments of five tissues. RNAi results revealed that SfGFAT gene silencing significantly inhibited the mRNA expression of the target gene and resulted in severe mortality among S. furcifera. In summary, these findings demonstrate that SfGFAT plays a critical role in the development of S. furcifera. Moreover, these results may aid in the development of methods to control the spread of S. furcifera.
Collapse
Affiliation(s)
- Zhao Wang
- College of Environment and Life Sciences, Kaili University, Kaili 556011, China; (Z.W.); (H.Z.)
| | - Guiyun Long
- School of Ethnic-Minority Medicine, Guizhou Minzu University, Guiyang 550025, China;
| | - Huan Zhu
- College of Environment and Life Sciences, Kaili University, Kaili 556011, China; (Z.W.); (H.Z.)
| | - Daochao Jin
- Provincial Key Laboratory for Agricultural Pest Management of Mountainous Regions and Scientific Observation and Experimental Station of Crop Pests in Guiyang, Ministry of Agriculture and Rural Affairs of the People’s Republic of China, Institute of Entomology, Guizhou University, Guiyang 550025, China
| | - Hong Yang
- Provincial Key Laboratory for Agricultural Pest Management of Mountainous Regions and Scientific Observation and Experimental Station of Crop Pests in Guiyang, Ministry of Agriculture and Rural Affairs of the People’s Republic of China, Institute of Entomology, Guizhou University, Guiyang 550025, China
| | - Cao Zhou
- College of Life Sciences, Chongqing Normal University, Chongqing 401331, China;
| |
Collapse
|
6
|
Zhang C, Ding Y, Zhou M, Tang Y, Chen R, Chen Y, Wen Y, Wang S. RNAi-mediated CHS-2 silencing affects the synthesis of chitin and the formation of the peritrophic membrane in the midgut of Aedes albopictus larvae. Parasit Vectors 2023; 16:259. [PMID: 37533099 PMCID: PMC10394979 DOI: 10.1186/s13071-023-05865-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 07/04/2023] [Indexed: 08/04/2023] Open
Abstract
BACKGROUND Mosquitoes are an important vector of viral transmission, and due to the complexity of the pathogens they transmit, vector control may be the most effective strategy to control mosquito-borne diseases. Chitin is required for insect growth and development and is absent in higher animals and plants, so regulating the chitin synthesis pathway can serve as a potentially effective means to control vector insects. Most of the current research on the chitin synthase (CHS) gene is focused on chitin synthase-1 (CHS-1), while relatively little is known about chitin synthase-2 (CHS-2). RESULTS The CHS-2 gene of Ae. albopictus is highly conserved and closely related to that of Aedes aegypti. The expression of CHS-2 in the third-instar larvae and pupal stage of Ae. albopictus was relatively high, and CHS-2 expression in adult mosquitoes reached the highest value 24 h after blood-feeding. In the fourth-instar larvae of Ae. albopictus, CHS-2 expression was significantly higher in the midgut than in the epidermis. Silencing CHS-2 in Ae. albopictus larvae had no effect on larval survival and emergence. The expression of four genes related to chitin synthesis enzymes was significantly upregulated, the expression level of three genes was unchanged, and only the expression level of GFAT was significantly downregulated. The expression of chitin metabolism-related genes was also upregulated after silencing. The level of chitin in the midgut of Ae. albopictus larvae was significantly decreased, while the chitinase activity was unchanged. The epithelium of the midgut showed vacuolization, cell invagination and partial cell rupture, and the structure of the peritrophic membrane was destroyed or even absent. METHODS The expression of CHS-2 in different developmental stages and tissues of Aedes albopictus was detected by real-time fluorescence quantitative PCR (qPCR). After silencing CHS-2 of the fourth-instar larvae of Ae. albopictus by RNA interference (RNAi), the expression levels of genes related to chitin metabolism, chitin content and chitinase activity in the larvae were detected. The structure of peritrophic membrane in the midgut of the fourth-instar larvae after silencing was observed by paraffin section and hematoxylin-eosin (HE) staining. CONCLUSION CHS-2 can affect midgut chitin synthesis and breakdown by regulating chitin metabolic pathway-related genes and is involved in the formation of the midgut peritrophic membrane in Ae. albopictus, playing an important role in growth and development. It may be a potential target for enhancing other control methods.
Collapse
Affiliation(s)
- Chen Zhang
- Hangzhou Normal University, Hangzhou, China
| | | | - Min Zhou
- Hangzhou Normal University, Hangzhou, China
| | - Ya Tang
- Hangzhou Normal University, Hangzhou, China
| | - Rufei Chen
- Hangzhou Normal University, Hangzhou, China
| | | | - Yating Wen
- Hangzhou Normal University, Hangzhou, China
| | - Shigui Wang
- Hangzhou Normal University, Hangzhou, China.
| |
Collapse
|
7
|
Si HR, Sun SS, Liu YK, Qiu LY, Tang B, Liu F, Fu Q, Xu CD, Wan PJ. Roles of GFAT and PFK genes in energy metabolism of brown planthopper, Nilaparvata lugens. Front Physiol 2023; 14:1213654. [PMID: 37415905 PMCID: PMC10320585 DOI: 10.3389/fphys.2023.1213654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 06/13/2023] [Indexed: 07/08/2023] Open
Abstract
Glutamine:fructose-6-phosphate aminotransferases (GFATs) and phosphofructokinase (PFKs) are the principal rate-limiting enzymes involved in hexosamine biosynthesis pathway (HBP) and glycolysis pathway, respectively. In this study, the NlGFAT and NlPFK were knocked down through RNA interference (RNAi) in Nilaparvata lugens, the notorious brown planthopper (BPH), and the changes in energy metabolism were determined. Knockdown of either NlGFAT or NlPFK substantially reduced gene expression related to trehalose, glucose, and glycogen metabolism pathways. Moreover, trehalose content rose significantly at 72 h after dsGFAT injection, and glycogen content increased significantly at 48 h after injection. Glucose content remained unchanged throughout the experiment. Conversely, dsPFK injection did not significantly alter trehalose, but caused an extreme increase in glucose and glycogen content at 72 h after injection. The Knockdown of NlGFAT or NlPFK significantly downregulated the genes in the glycolytic pathway, as well as caused a considerable and significant decrease in pyruvate kinase (PK) activity after 48 h and 72 h of inhibition. After dsGFAT injection, most of genes in TCA cycle pathway were upregulated, but after dsNlPFK injection, they were downregulated. Correspondingly, ATP content substantially increased at 48 h after NlGFAT knockdown but decreased to an extreme extent by 72 h. In contrast, ATP content decreased significantly after NlPFK was knocked down and returned. The results have suggested the knockdown of either NlGFAT or NlPFK resulted in metabolism disorders in BPHs, highlighting the difference in the impact of those two enzyme genes on energy metabolism. Given their influence on BPHs energy metabolism, developing enzyme inhibitors or activators may provide a biological control for BPHs.
Collapse
Affiliation(s)
- Hui-Ru Si
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, Zhejiang, China
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Si-Si Sun
- Guizhou Institute of Mountainous Environment and Climate, Guiyang, China
| | - Yong-Kang Liu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Ling-Yu Qiu
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, Zhejiang, China
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Bin Tang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Fang Liu
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, Zhejiang, China
| | - Qiang Fu
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, Zhejiang, China
| | - Cai-Di Xu
- Jing Hengyi School of Education, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Pin-Jun Wan
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, Zhejiang, China
| |
Collapse
|
8
|
Wang J, Xiang Y, Fan M, Fang S, Hua Q. The Ubiquitin-Proteasome System in Tumor Metabolism. Cancers (Basel) 2023; 15:cancers15082385. [PMID: 37190313 DOI: 10.3390/cancers15082385] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/16/2023] [Accepted: 04/17/2023] [Indexed: 05/17/2023] Open
Abstract
Metabolic reprogramming, which is considered a hallmark of cancer, can maintain the homeostasis of the tumor environment and promote the proliferation, survival, and metastasis of cancer cells. For instance, increased glucose uptake and high glucose consumption, known as the "Warburg effect," play an essential part in tumor metabolic reprogramming. In addition, fatty acids are harnessed to satisfy the increased requirement for the phospholipid components of biological membranes and energy. Moreover, the anabolism/catabolism of amino acids, such as glutamine, cystine, and serine, provides nitrogen donors for biosynthesis processes, development of the tumor inflammatory environment, and signal transduction. The ubiquitin-proteasome system (UPS) has been widely reported to be involved in various cellular biological activities. A potential role of UPS in the metabolic regulation of tumor cells has also been reported, but the specific regulatory mechanism has not been elucidated. Here, we review the role of ubiquitination and deubiquitination modification on major metabolic enzymes and important signaling pathways in tumor metabolism to inspire new strategies for the clinical treatment of cancer.
Collapse
Affiliation(s)
- Jie Wang
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Yuandi Xiang
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Mengqi Fan
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Shizhen Fang
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Qingquan Hua
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| |
Collapse
|
9
|
Wang Z, Long GY, Jin DC, Yang H, Zhou C, Yang XB. Knockdown of Two Trehalase Genes by RNA Interference Is Lethal to the White-Backed Planthopper Sogatella furcifera (Horváth) (Hemiptera:Delphacidae). Biomolecules 2022; 12:biom12111699. [PMID: 36421713 PMCID: PMC9687761 DOI: 10.3390/biom12111699] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/12/2022] [Accepted: 11/15/2022] [Indexed: 11/18/2022] Open
Abstract
Trehalase (Tre) is a crucial enzyme involved in trehalose metabolism, and it plays pivotal roles in insect development and metamorphosis. However, the biological function of Tre genes in Sogatella furcifera remains unclear. In the present study, two Tre genes—SfTre1 and SfTre2—were cloned and identified based on the S. furcifera transcriptome data. Bioinformatic analysis revealed that the full-length complementary DNA of SfTre1 and SfTre2 genes were 3700 and 2757 bp long, with 1728- and 1902-bp open reading frame encoding 575 and 633 amino acid residues, respectively. Expression analysis indicated that SfTre1 and SfTre2 were expressed at all developmental stages, with the highest expression in day two adults. Furthermore, the highest expression levels of SfTre1 and SfTre2 were observed in the ovary; enriched expression was also noted in head tissues. The knockdown of SfTre1 and SfTre2 via injecting double-stranded RNAs decreased the transcription levels of the corresponding mRNAs and led to various malformed phenotypes and high lethality rates. The results of our present study indicate that SfTre1 and SfTre2 play crucial roles in S. furcifera growth and development, which can provide referable information for Tre genes as a potential target for planthopper control.
Collapse
Affiliation(s)
- Zhao Wang
- College of Environment and Life Sciences, Kaili University, Kaili 556011, China
- Provincial Key Laboratory for Agricultural Pest Management of Mountainous Regions, and Scientific Observing and Experimental Station of Crop Pests in Guiyang, Ministry of Agriculture and Rural Affairs of the People’s Republic of China, Institute of Entomology, Guizhou University, Guiyang 550025, China
| | - Gui-Yun Long
- Provincial Key Laboratory for Agricultural Pest Management of Mountainous Regions, and Scientific Observing and Experimental Station of Crop Pests in Guiyang, Ministry of Agriculture and Rural Affairs of the People’s Republic of China, Institute of Entomology, Guizhou University, Guiyang 550025, China
- School of Ethnic Medicine, Guizhou Minzu University, Guiyang 550025, China
| | - Dao-Chao Jin
- Provincial Key Laboratory for Agricultural Pest Management of Mountainous Regions, and Scientific Observing and Experimental Station of Crop Pests in Guiyang, Ministry of Agriculture and Rural Affairs of the People’s Republic of China, Institute of Entomology, Guizhou University, Guiyang 550025, China
- Correspondence: (D.-C.J.); (H.Y.); Tel.: +86-139-8403-0739 (D.-C.J.); +86-139-8547-0482 (H.Y.)
| | - Hong Yang
- Provincial Key Laboratory for Agricultural Pest Management of Mountainous Regions, and Scientific Observing and Experimental Station of Crop Pests in Guiyang, Ministry of Agriculture and Rural Affairs of the People’s Republic of China, Institute of Entomology, Guizhou University, Guiyang 550025, China
- Correspondence: (D.-C.J.); (H.Y.); Tel.: +86-139-8403-0739 (D.-C.J.); +86-139-8547-0482 (H.Y.)
| | - Cao Zhou
- Provincial Key Laboratory for Agricultural Pest Management of Mountainous Regions, and Scientific Observing and Experimental Station of Crop Pests in Guiyang, Ministry of Agriculture and Rural Affairs of the People’s Republic of China, Institute of Entomology, Guizhou University, Guiyang 550025, China
- College of Life Sciences, Chongqing Normal University, Chongqing 401331, China
| | - Xi-Bin Yang
- Provincial Key Laboratory for Agricultural Pest Management of Mountainous Regions, and Scientific Observing and Experimental Station of Crop Pests in Guiyang, Ministry of Agriculture and Rural Affairs of the People’s Republic of China, Institute of Entomology, Guizhou University, Guiyang 550025, China
| |
Collapse
|
10
|
Zhou M, Shen Q, Wang S, Li G, Wu Y, Xu C, Tang B, Li C. Regulatory function of the trehalose-6-phosphate synthase gene TPS3 on chitin metabolism in brown planthopper, Nilaparvata lugens. INSECT MOLECULAR BIOLOGY 2022; 31:241-250. [PMID: 34923699 DOI: 10.1111/imb.12754] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 12/10/2021] [Accepted: 12/16/2021] [Indexed: 06/14/2023]
Abstract
Brown planthopper (Nilaparvata lugens) is one of the important pests that damage rice. Trehalose-6-phosphate synthase (TPS) is a key enzyme responsible for catalysing the biosynthesis of trehalose, which is the energy substance of insects. In this study, combined with the reported N. lugens TPS1, TPS2 and newly discovered TPS3, we studied the regulation of TPS in chitin metabolism by RNA interference. Firstly, we found that the relative expression levels of TRE1-1, TRE1-2 and TRE2 increased significantly after 48 h of dsTPS3 injection, and the activity of TRE1 enhanced significantly. Secondly, abnormal and lethal phenotypes were observed after dsTPS3 and dsTPSs injection. The relative expression levels of PGM2, G6PI2, Cht1-4, Cht6-10 and IDGF decreased significantly after 48 h of dsTPS3 injection. At 72 h after injection of dsTPS3, the relative expression levels of CHS1, Cht2, Cht4, Cht7 and Cht8 reduced significantly, but the expression levels of G6PI1, Cht5 and ENGase increased significantly. The relative expression levels of GFAT, UAP, PGM2, G6PI2, CHS1, CHS1a, CHS1b, Cht2, Cht4, Cht8, Cht9 and Cht10 decreased significantly after 48 h of dsTPSs injection. However, at 72 h after the injection of dsTPSs, the expression levels of GNPNA, UAP, PGM1, G6PI1, HK, CHS1, CHS1a, CHS1b, Cht3, Cht5, Cht7 and ENGase increased significantly. Finally, the chitin content decreased in dsTPS1, dsTPS2 and dsTPSs treatments. In conclusion, the inhibition of TPS expression affected the metabolism of trehalose and chitin in N. lugens. The related research results provide a theoretical basis for pest control.
Collapse
Affiliation(s)
- Min Zhou
- Guizhou Provincial Key Laboratory for Rare Animal and Economic Insect of the Mountainous Region, College of Biology and Environmental Engineering, Guiyang University, Guiyang, China
| | - Qida Shen
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Shasha Wang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Guoyong Li
- Guizhou Provincial Key Laboratory for Rare Animal and Economic Insect of the Mountainous Region, College of Biology and Environmental Engineering, Guiyang University, Guiyang, China
| | - Yan Wu
- Guizhou Provincial Key Laboratory for Rare Animal and Economic Insect of the Mountainous Region, College of Biology and Environmental Engineering, Guiyang University, Guiyang, China
| | - Caidi Xu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Bin Tang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Can Li
- Guizhou Provincial Key Laboratory for Rare Animal and Economic Insect of the Mountainous Region, College of Biology and Environmental Engineering, Guiyang University, Guiyang, China
| |
Collapse
|
11
|
Shu B, Yang X, Dai J, Yu H, Yu J, Li X, Cao L, Lin J. Effects of camptothecin on histological structures and gene expression profiles of fat bodies in Spodoptera frugiperda. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 228:112968. [PMID: 34763196 DOI: 10.1016/j.ecoenv.2021.112968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 10/31/2021] [Accepted: 11/02/2021] [Indexed: 06/13/2023]
Abstract
Spodoptera frugiperda is a serious threat to global food production. Our previous study demonstrated that Camptothecin (CPT), a bioactive secondary metabolite from Camptotheca acuminata (Decne: Nyssaceae), exhibits adverse impact on the larval midgut of S. frugiperda and inhibits insect growth. However, effects of CPT on fat bodies of S. frugiperda larvae have not been examined yet. In the present study, we found that histological structures of fat bodies of S. frugiperda larvae were damaged in insects treated with CPT. Comparative transcriptomic analyses among different fat body samples from controls and insects treated with 1.0 and 5.0 μg/g CPT were performed. A total of 4212 and 5044 differentially expressed genes (DEGs) were identified in the samples treated with 1.0 and 5.0 μg/g CPT, respectively. Our data indicated that the pathways of detoxification, immune response, fatty acids, chitin, and hormone biosynthesis in fat bodies were affected by CPT treatments based on DEGs. These results provided a comprehensive view of the damage and gene expression changes in fat bodies of S. frugiperda after CPT exposure, which shall be useful to reveal the mechanism of CPT toxicity against S. frugiperda in future.
Collapse
Affiliation(s)
- Benshui Shu
- Guangzhou City Key Laboratory of Subtropical Fruit Trees Outbreak Control, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Xianmei Yang
- Guangzhou City Key Laboratory of Subtropical Fruit Trees Outbreak Control, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Jinghua Dai
- Guangzhou City Key Laboratory of Subtropical Fruit Trees Outbreak Control, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Haikuo Yu
- Guangzhou City Key Laboratory of Subtropical Fruit Trees Outbreak Control, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Jingcheng Yu
- Guangzhou City Key Laboratory of Subtropical Fruit Trees Outbreak Control, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Xiangli Li
- Guangzhou City Key Laboratory of Subtropical Fruit Trees Outbreak Control, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Liang Cao
- Guangzhou City Key Laboratory of Subtropical Fruit Trees Outbreak Control, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Jintian Lin
- Guangzhou City Key Laboratory of Subtropical Fruit Trees Outbreak Control, Zhongkai University of Agriculture and Engineering, Guangzhou, China.
| |
Collapse
|
12
|
Hou J, Aydemir BE, Dumanli AG. Understanding the structural diversity of chitins as a versatile biomaterial. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2021; 379:20200331. [PMID: 34334022 PMCID: PMC8326827 DOI: 10.1098/rsta.2020.0331] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 06/08/2021] [Indexed: 05/05/2023]
Abstract
Chitin is one of the most abundant biopolymers, and it has adopted many different structural conformations using a combination of different natural processes like biopolymerization, crystallization and non-equilibrium self-assembly. This leads to a number of striking physical effects like complex light scattering and polarization as well as unique mechanical properties. In doing so, chitin uses a fine balance between the highly ordered chain conformations in the nanofibrils and random disordered structures. In this opinion piece, we discuss the structural hierarchy of chitin, its crystalline states and the natural biosynthesis processes to create such specific structures and diversity. Among the examples we explored, the unified question arises from the generation of completely different bioarchitectures like the Christmas tree-like nanostructures, gyroids or helicoidal geometries using similar dynamic non-equilibrium growth processes. Understanding the in vivo development of such structures from gene expressions, enzymatic activities as well as the chemical matrix employed in different stages of the biosynthesis will allow us to shift the material design paradigms. Certainly, the complexity of the biology requires a collaborative and multi-disciplinary research effort. For the future's advanced technologies, using chitin will ultimately drive many innovations and alternatives using biomimicry in materials science. This article is part of the theme issue 'Bio-derived and bioinspired sustainable advanced materials for emerging technologies (part 1)'.
Collapse
Affiliation(s)
- Jiaxin Hou
- Department of Materials, University of Manchester, Oxford Road, Manchester M13 9PL, UK
- Henry Royce Institute, University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | - Berk Emre Aydemir
- Department of Materials, University of Manchester, Oxford Road, Manchester M13 9PL, UK
- Henry Royce Institute, University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | - Ahu Gümrah Dumanli
- Department of Materials, University of Manchester, Oxford Road, Manchester M13 9PL, UK
- Henry Royce Institute, University of Manchester, Oxford Road, Manchester M13 9PL, UK
| |
Collapse
|