1
|
Teulé-Trull M, Demiquels-Punzano E, Pérez RA, Aparicio C, Durán-Sindreu F, Sánchez-López E, González-Sánchez JA, Delgado LM. Revision of ex vivo endodontic biofilm model using computer aided design. J Dent 2024; 149:105270. [PMID: 39084546 DOI: 10.1016/j.jdent.2024.105270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/16/2024] [Accepted: 07/26/2024] [Indexed: 08/02/2024] Open
Abstract
OBJECTIVE Most endodontic diseases are bacterium-mediated inflammatory or necrotic process induced by contaminated dental pulp. Although great advances are being performed to obtain more efficient antibacterial strategies for persistent infections, most studies lack of representative models to test their antibacterial effects and their outcomes cannot be promptly translated to clinical practice. Therefore, this study aimed to refine an ex vivo endodontic biofilm model combining human tooth, computer guided design and 3D printing to obtain a more reproducible and predictable model. METHODS Monoradicular teeth were cut using three different methods: hand-held (HCC), mechanical precision (MPC) and computer aid guided cutting (CGC). Then, blocks were reassembled. The different model preparations were assessed in terms of dimensional tolerance, surface analysis, liquid tightness and Enterococcus faecalis biofilm development for 21 days, which was studied by metabolic assays and confocal microscopy. Then, the proposed model was validated using different commercial disinfecting treatments. RESULTS CGC exhibited significantly lower deviation and surface without defects compared to HHC and MPC, leading to superior liquid tightness. Similarly, mature biofilms with high metabolic activity and vitality were observed in all conditions, CGC showing the lowest variation. Regarding the model validation, all antibacterial treatments resulted in the complete eradication of bacteria in the standard 2D model, whereas commercial treatments exhibited varying levels of efficacy in the proposed ex vivo model, from moderately reduction of metabolic activity to complete elimination of biofilm. CONCLUSIONS The novel guided approach represents a more reliable, standardized, and reproducible model for the evaluation of endodontic disinfecting therapies. CLINICAL SIGNIFICANCE During antibacterial treatment development, challenging 3D models using teeth substrates to test antibacterial treatments novel guided approach represents a more reliable, standardized, and reproducible model for the evaluation of endodontic disinfecting therapies.
Collapse
Affiliation(s)
- Miriam Teulé-Trull
- Department of Endodontics, Faculty of Dentistry, Universitat Internacional de Catalunya, 08017, Barcelona, Spain
| | - Elena Demiquels-Punzano
- Bioengineering Institute of Technology (BIT), Universitat Internacional de Catalunya, 08017, Barcelona, Spain; Basic Sciences Department, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, 08017, Barcelona, Spain
| | - Román A Pérez
- Bioengineering Institute of Technology (BIT), Universitat Internacional de Catalunya, 08017, Barcelona, Spain; Basic Sciences Department, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, 08017, Barcelona, Spain
| | - Conrado Aparicio
- Basic and Translational Research Division, Faculty of Dentistry, Universitat Internacional de Catalunya, 08017, Barcelona, Spain; Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), 08028, Barcelona, Spain
| | - Fernando Durán-Sindreu
- Department of Endodontics, Faculty of Dentistry, Universitat Internacional de Catalunya, 08017, Barcelona, Spain
| | - Elena Sánchez-López
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, University of Barcelona, 08028 Barcelona, Spain; Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, 08028 Barcelona, Spain
| | | | - Luis M Delgado
- Bioengineering Institute of Technology (BIT), Universitat Internacional de Catalunya, 08017, Barcelona, Spain; Basic Sciences Department, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, 08017, Barcelona, Spain.
| |
Collapse
|
2
|
Pham LHP, Ly KL, Colon-Ascanio M, Ou J, Wang H, Lee SW, Wang Y, Choy JS, Phillips KS, Luo X. Dissolvable alginate hydrogel-based biofilm microreactors for antibiotic susceptibility assays. Biofilm 2023; 5:100103. [PMID: 36691521 PMCID: PMC9860113 DOI: 10.1016/j.bioflm.2022.100103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 12/28/2022] [Accepted: 12/28/2022] [Indexed: 01/11/2023] Open
Abstract
Biofilms are found in many infections in the forms of surface-adhering aggregates on medical devices, small clumps in tissues, or even in synovial fluid. Although antibiotic resistance genes are studied and monitored in the clinic, the structural and phenotypic changes that take place in biofilms can also lead to significant changes in how bacteria respond to antibiotics. Therefore, it is important to better understand the relationship between biofilm phenotypes and resistance and develop approaches that are compatible with clinical testing. Current methods for studying antimicrobial susceptibility are mostly planktonic or planar biofilm reactors. In this work, we develop a new type of biofilm reactor-three-dimensional (3D) microreactors-to recreate biofilms in a microenvironment that better mimics those in vivo where bacteria tend to form surface-independent biofilms in living tissues. The microreactors are formed on microplates, treated with antibiotics of 1000 times of the corresponding minimal inhibitory concentrations (1000 × MIC), and monitored spectroscopically with a microplate reader in a high-throughput manner. The hydrogels are dissolvable on demand without the need for manual scraping, thus enabling measurements of phenotypic changes. Bacteria inside the biofilm microreactors are found to survive exposure to 1000 × MIC of antibiotics, and subsequent comparison with plating results reveals no antibiotic resistance-associated phenotypes. The presented microreactor offers an attractive platform to study the tolerance and antibiotic resistance of surface-independent biofilms such as those found in tissues.
Collapse
Affiliation(s)
- Le Hoang Phu Pham
- Department of Mechanical Engineering, The Catholic University of America, Washington, DC, 20064, USA
| | - Khanh Loan Ly
- Department of Biomedical Engineering, The Catholic University of America, Washington, DC, 20064, USA
| | - Mariliz Colon-Ascanio
- Department of Biology, The Catholic University of America, Washington, DC, 20064, USA
| | - Jin Ou
- Department of Biology, The Catholic University of America, Washington, DC, 20064, USA
| | - Hao Wang
- Division of Biology, Chemistry, and Materials Science, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, U.S. Food and Drug Administration, White Oak, MD, 20993, USA
| | - Sang Won Lee
- Division of Biology, Chemistry, and Materials Science, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, U.S. Food and Drug Administration, White Oak, MD, 20993, USA
| | - Yi Wang
- Division of Biology, Chemistry, and Materials Science, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, U.S. Food and Drug Administration, White Oak, MD, 20993, USA
| | - John S. Choy
- Department of Biology, The Catholic University of America, Washington, DC, 20064, USA
| | - Kenneth Scott Phillips
- Division of Biology, Chemistry, and Materials Science, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, U.S. Food and Drug Administration, White Oak, MD, 20993, USA
| | - Xiaolong Luo
- Department of Mechanical Engineering, The Catholic University of America, Washington, DC, 20064, USA
| |
Collapse
|
3
|
Portugal-Cohen M, Cohen D, Kohen R, Oron M. Exploitation of alternative skin models from academia to industry: proposed functional categories to answer needs and regulation demands. Front Physiol 2023; 14:1215266. [PMID: 37334052 PMCID: PMC10272927 DOI: 10.3389/fphys.2023.1215266] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 05/17/2023] [Indexed: 06/20/2023] Open
Affiliation(s)
| | - Dror Cohen
- DermAb.io, Haifa, Israel
- The Myers Skin Research Laboratory, Faculty of Medicine, School of Pharmacy, Institute for Drug Research, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ron Kohen
- The Myers Skin Research Laboratory, Faculty of Medicine, School of Pharmacy, Institute for Drug Research, The Hebrew University of Jerusalem, Jerusalem, Israel
| | | |
Collapse
|
4
|
Tibbits G, Mohamed A, Gelston S, Flurin L, Raval YS, Greenwood-Quaintance KE, Patel R, Beyenal H. Activity of a hypochlorous acid-producing electrochemical bandage as assessed with a porcine explant biofilm model. Biotechnol Bioeng 2023; 120:250-259. [PMID: 36168277 PMCID: PMC10091757 DOI: 10.1002/bit.28248] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 09/18/2022] [Accepted: 09/25/2022] [Indexed: 11/10/2022]
Abstract
The activity of a hypochlorous acid-producing electrochemical bandage (e-bandage) in preventing methicillin-resistant Staphylococcus aureus infection (MRSA) infection and removing biofilms formed by MRSA was assessed using a porcine explant biofilm model. e-Bandages inhibited S. aureus infection (p = 0.029) after 12 h (h) of exposure and reduced 3-day biofilm viable cell counts after 6, 12, and 24 h exposures (p = 0.029). Needle-type microelectrodes were used to assess HOCl concentrations in explant tissue as a result of e-bandage treatment; toxicity associated with e-bandage treatment was evaluated. HOCl concentrations in infected and uninfected explant tissue varied between 30 and 80 µM, decreasing with increasing distance from the e-bandage. Eukaryotic cell viability was reduced by an average of 71% and 65% in fresh and day 3-old explants, respectively, when compared to explants exposed to nonpolarized e-bandages. HOCl e-bandages are a promising technology that can be further developed as an antibiotic-free treatment for wound biofilm infections.
Collapse
Affiliation(s)
- Gretchen Tibbits
- The Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, Washington, USA
| | - Abdelrhman Mohamed
- The Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, Washington, USA
| | - Suzanne Gelston
- The Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, Washington, USA
| | - Laure Flurin
- Divison of Clinical Microbiology, Mayo Clinic, Rochester, Minnesota, USA
| | - Yash S Raval
- Divison of Clinical Microbiology, Mayo Clinic, Rochester, Minnesota, USA
| | | | - Robin Patel
- Divison of Clinical Microbiology, Mayo Clinic, Rochester, Minnesota, USA.,Division of Public Health, Infectious Diseases and Occupational Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Haluk Beyenal
- The Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, Washington, USA
| |
Collapse
|
5
|
A Bioluminescence-Based Ex Vivo Burn Wound Model for Real-Time Assessment of Novel Phage-Inspired Enzybiotics. Pharmaceutics 2022; 14:pharmaceutics14122553. [PMID: 36559047 PMCID: PMC9781546 DOI: 10.3390/pharmaceutics14122553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/18/2022] [Accepted: 11/18/2022] [Indexed: 11/23/2022] Open
Abstract
The silent pandemic of antibiotic resistance is thriving, prompting the urgent need for the development of new antibacterial drugs. However, within the preclinical pipeline, in vitro screening conditions can differ significantly from the final in vivo settings. To bridge the gap between in vitro and in vivo assays, we developed a pig-skin-based bioluminescent ex vivo burn wound infection model, enabling real-time assessment of antibacterials in a longitudinal, non-destructive manner. We provide a proof-of-concept for A. baumannii NCTC13423, a multidrug-resistant clinical isolate, which was equipped with the luxCDABE operon as a reporter using a Tn7-based tagging system. This bioluminescence model provided a linear correlation between the number of bacteria and a broad dynamic range (104 to 109 CFU). This longitudinal model was subsequently validated using a fast-acting enzybiotic, 1D10. Since this model combines a realistic, clinically relevant yet strictly controlled environment with real-time measurement of bacterial burden, we put forward this ex vivo model as a valuable tool to assess the preclinical potential of novel phage-inspired enzybiotics.
Collapse
|
6
|
Örgel M, Aschoff HH, Sedlacek L, Graulich T, Krettek C, Roth S, Ranker A. Twenty-four months of bacterial colonialization and infection rates in patients with transcutaneous osseointegrated prosthetic systems after lower limb amputation-A prospective analysis. Front Microbiol 2022; 13:1002211. [PMID: 36386723 PMCID: PMC9659948 DOI: 10.3389/fmicb.2022.1002211] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 09/07/2022] [Indexed: 09/23/2024] Open
Abstract
BACKGROUND Transcutaneous osseointegrated prosthesis systems (TOPS) are alternative rehabilitation methods to socket prosthetics, after limb amputation. TOPS compromise a two-step surgery: starting with the implantation of the stem which is then followed by the creation of the transcutaneous stoma through which the exoprosthesis can be connected. Immediately after surgery, this opening is permanently exposed to pathogens. This study aimed to investigate the dynamics of bacterial colonization of the stoma to analyze whether obligate bacterial colonization leads to a risk of periprosthetic infections after TOPS treatment. METHODS This prospective study analyzed data from 66 patients (aged 26-75 years) after TOPS treatment between 2017 and 2019. Microbiological swabs from the stoma were analyzed on the first postoperative day and 3, 6, 12, and 24 months after stoma creation. Infection rates, laboratory values (CRP, leukocyte count, hemoglobin), and body temperature were recorded at these points in time. Statistical analysis was performed using SPSS 28. RESULTS The results show the formation of a stable environment dominated by Gram-positive bacteria in the stoma of TOPS patients over 24 months. Staphylococcus aureus, Staphylococcus spp., and Streptococcus spp. were the most common species found. With regard to the cohort up to the 3 months follow-up, 7.9% (five patients) developed infections surrounding the TOPS procedure. In relation to the whole cohort with loss to follow-up of 80.3% at the 24 months follow-up the infection rates increased up to 38.3%. CONCLUSION The soft tissue inside and around the transcutaneous stoma is colonialized by multiple taxa and changes over time. A stable Gram-positive dominated bacterial taxa could be a protective factor for ascending periprosthetic infections and could possibly explain the relatively low infection rate in this study as well as in literature.
Collapse
Affiliation(s)
- Marcus Örgel
- Trauma Department, Hannover Medical School (MHH), Hannover, Germany
| | | | - Ludwig Sedlacek
- Institute for Medical Microbiology and Hospital Epidemiology, Hannover Medical School (MHH), Hannover, Germany
| | - Tilman Graulich
- Trauma Department, Hannover Medical School (MHH), Hannover, Germany
| | | | - Sabine Roth
- Trauma Department, Hannover Medical School (MHH), Hannover, Germany
| | - Alexander Ranker
- Department of Rehabilitation Medicine, Hannover Medical School (MHH), Hannover, Germany
| |
Collapse
|
7
|
Kolodkin-Gal I, Cohen-Cymberknoh M, Zamir G, Tsesis I, Rosen E. Targeting Persistent Biofilm Infections: Reconsidering the Topography of the Infection Site during Model Selection. Microorganisms 2022; 10:microorganisms10061164. [PMID: 35744683 PMCID: PMC9231179 DOI: 10.3390/microorganisms10061164] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/01/2022] [Accepted: 06/02/2022] [Indexed: 12/17/2022] Open
Abstract
The physiology of an organism in the environment reflects its interactions with the diverse physical, chemical, and biological properties of the surface. These principles come into consideration during model selection to study biofilm–host interactions. Biofilms are communities formed by beneficial and pathogenic bacteria, where cells are held together by a structured extracellular matrix. When biofilms are associated with a host, chemical gradients and their origins become highly relevant. Conventional biofilm laboratory models such as multiwall biofilm models and agar plate models poorly mimic these gradients. In contrast, ex vivo models possess the partial capacity to mimic the conditions of tissue-associated biofilm and a biofilm associated with a mineralized surface enriched in inorganic components, such as the human dentin. This review will highlight the progress achieved using these settings for two models of persistent infections: the infection of the lung tissue by Pseudomonas aeruginosa and the infection of the root canal by Enterococcus faecalis. For both models, we conclude that the limitations of the conventional in vitro systems necessitate a complimentary experimentation with clinically relevant ex vivo models during therapeutics development.
Collapse
Affiliation(s)
- Ilana Kolodkin-Gal
- Department of Plant Pathology and Microbiology, The Hebrew University of Jerusalem, Rehovot 7610001, Israel
- Correspondence: (I.K.-G.); (I.T.); (E.R.)
| | - Malena Cohen-Cymberknoh
- Pediatric Pulmonary Unit and Cystic Fibrosis Center, Hadassah Medical Center and Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 9112001, Israel;
| | - Gideon Zamir
- Department of Experimental Surgery, Hadassah Hebrew University Medical School, Jerusalem 9112001, Israel;
| | - Igor Tsesis
- Department of Endodontics, Goldschleger School of Dental Medicine, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
- Correspondence: (I.K.-G.); (I.T.); (E.R.)
| | - Eyal Rosen
- Department of Endodontics, Goldschleger School of Dental Medicine, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
- Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv 6997801, Israel
- Correspondence: (I.K.-G.); (I.T.); (E.R.)
| |
Collapse
|
8
|
Rohner NA, Learn GD, Wiggins MJ, Woofter RT, von Recum HA. Characterization of Inflammatory and Fibrotic Encapsulation Responses of Implanted Materials with Bacterial Infection. ACS Biomater Sci Eng 2021; 7:4474-4482. [PMID: 34464101 DOI: 10.1021/acsbiomaterials.1c00505] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Medical device infections are costly, while preclinical assessment of antimicrobial properties for new materials is time intensive and imperfect at capturing the interrelated aspects of infection response and wound resolution. Herein, we developed an in vivo model for quantification of inflammatory and biocompatibility responses in the presence of a sustained implant-associated infection. The antimicrobial effectiveness of commercially available polymer materials was compared to that of thermoplastic polyurethane (TPU) materials modified with putative antimicrobial strategies as example test materials. Materials were incubated with bioluminescent Escherichia coli prior to implantation in a dorsal subcutaneous pocket in rats with an additional intraluminal bolus of bacteria. Infection kinetics were monitored with bioluminescence, and inflammatory infiltrate and fibrous capsule thickness were determined from stained histological sections. Our model resulted in a persistent infection, sensitive to antimicrobial effects, as the materials modified with a putative antimicrobial surface were able to significantly reduce the level of infection in animals at day 4 postimplantation with efficacy similar to that of commercially available antimicrobial drug-eluting polymers (positive controls). At day 30 postimplantation, the antimicrobial surface modified TPU tubing was found to promote complete elimination of intraluminal bacteria in the absence of antibiotics. Differences were also measurable in acute inflammation, as Wright-Giemsa staining demonstrated reduced inflammatory cell infiltration at day 4 postimplantation for antimicrobial TPU materials. Additionally, antimicrobial materials exhibited reduced fibrous capsule thickness coinciding with infection resolution, as compared to unmodified TPU controls. The developed model can be utilized for testing antimicrobial polymers in the context of a prolonged infection while also revealing concurrent differences in the infiltrating immune cell profiles and fibrous capsule thickness, thus improving the relevance of preclinical medical device material testing.
Collapse
Affiliation(s)
- Nathan A Rohner
- Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106, United States
| | - Greg D Learn
- Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106, United States
| | - Michael J Wiggins
- Lubrizol Advanced Materials Inc., Brecksville, Ohio 44141, United States
| | - Ricky T Woofter
- Lubrizol Advanced Materials Inc., Brecksville, Ohio 44141, United States
| | - Horst A von Recum
- Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106, United States
| |
Collapse
|
9
|
Rancan F, Jurisch J, Günday C, Türeli E, Blume-Peytavi U, Vogt A, Schaudinn C, Günday-Türeli N. Screening of Surfactants for Improved Delivery of Antimicrobials and Poly-Lactic- co-Glycolic Acid Particles in Wound Tissue. Pharmaceutics 2021; 13:1093. [PMID: 34371785 PMCID: PMC8308990 DOI: 10.3390/pharmaceutics13071093] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 07/07/2021] [Accepted: 07/14/2021] [Indexed: 01/14/2023] Open
Abstract
Topical wound management is often a challenge due to the poor penetration of antimicrobials in wound tissue and across the biofilm matrix where bacteria are embedded. Surfactants have been used for decades to improve the stability of formulations, increase drug solubility, and enhance penetration. In this study, we screened different detergents with respect to their cytotoxicity and their ability to improve the penetration of poly-lactic-co-glycolic acid (PLGA) particles in wound tissue. Among the tested surfactants, Kolliphor SLS and Tween 80 increased the penetration of PLGA particles and had a limited cytotoxicity. Then, these surfactants were used to formulate PLGA particles loaded with the poorly water-soluble antibiotic ciprofloxacin. The antimicrobial efficacy of the formulations was tested in a wound infection model based on human ex vivo skin. We found that even though PLGA particles had the same antimicrobial efficiency than the particle-free drug formulation, thanks to their solubilizing and anti-biofilm properties, the surfactants remarkably improved the antimicrobial activity of ciprofloxacin with respect to the drug formulation in water. We conclude that the use of Tween 80 in antimicrobial formulations might be a safe and efficient option to improve the topical antimicrobial management of chronic wound infections.
Collapse
Affiliation(s)
- Fiorenza Rancan
- Research Center for Hair and Skin Science, Department of Dermatology and Allergy, Charité–Universitätsmedizin Berlin 10117, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany; (J.J.); (U.B.-P.); (A.V.)
| | - Jana Jurisch
- Research Center for Hair and Skin Science, Department of Dermatology and Allergy, Charité–Universitätsmedizin Berlin 10117, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany; (J.J.); (U.B.-P.); (A.V.)
| | - Cemre Günday
- MyBiotech, 66802 Überherrn, Germany; (C.G.); (E.T.); (N.G.-T.)
| | - Emre Türeli
- MyBiotech, 66802 Überherrn, Germany; (C.G.); (E.T.); (N.G.-T.)
| | - Ulrike Blume-Peytavi
- Research Center for Hair and Skin Science, Department of Dermatology and Allergy, Charité–Universitätsmedizin Berlin 10117, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany; (J.J.); (U.B.-P.); (A.V.)
| | - Annika Vogt
- Research Center for Hair and Skin Science, Department of Dermatology and Allergy, Charité–Universitätsmedizin Berlin 10117, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany; (J.J.); (U.B.-P.); (A.V.)
| | - Christoph Schaudinn
- Advanced Light and Electron Microscopy (Zentrum für Biologische Gefahren und Spezielle Pathogene 4), Robert Koch Institute, 13353 Berlin, Germany;
| | | |
Collapse
|