1
|
Onuma T, Sasaki K. Caste-specific development of the dopaminergic system in bumble bees (Bombus ignitus). JOURNAL OF INSECT PHYSIOLOGY 2024; 156:104665. [PMID: 38906458 DOI: 10.1016/j.jinsphys.2024.104665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/31/2024] [Accepted: 06/17/2024] [Indexed: 06/23/2024]
Abstract
The dopaminergic system is involved in caste-specific behaviors in eusocial bumble bees. However, little is known about how the caste differences in dopaminergic system are formed during pupal stages in the brains of bumble bees. Thus, we investigated the levels of dopamine-related substances and expression of genes encoding enzymes involved in dopamine synthesis and metabolism, dopamine receptors, and a dopamine transporter in the brain of female Bombus ignitus. The levels of dopamine and dopamine-related substances in the brain were significantly higher in gynes than in workers from the late pupal stage to emergence, but the dynamics were similar between the castes. The relative expression levels of genes encoding enzymes involved in dopamine synthesis (BigTh and BigDdc) and dopamine metabolism (BigNat) increased significantly from pupal stage to emergence, but there were no differences in the relative expression levels of these genes between castes. A similar pattern was seen in the relative expression levels of four dopamine receptor genes (BigDop1, BigDop2, BigDop3, and BigDopEcR) and a dopamine transporter gene (BigDat). Compared with the honey bee Apis mellifera, the caste-specific dopaminergic system in the bumble bee is less differentiated, which might reflect the degree of behavioral specialization in these two species.
Collapse
Affiliation(s)
- Takafumi Onuma
- Graduate School of Agriculture, Tamagawa University, Machida, Tokyo, Japan
| | - Ken Sasaki
- Graduate School of Agriculture, Tamagawa University, Machida, Tokyo, Japan.
| |
Collapse
|
2
|
Chen J, Mu X, Liu H, Yong Q, Ouyang X, Liu Y, Zheng L, Chen H, Zhai Y, Ma J, Meng L, Liu S, Zheng H. Rotenone impairs brain glial energetics and locomotor behavior in bumblebees. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 907:167870. [PMID: 37865240 DOI: 10.1016/j.scitotenv.2023.167870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/07/2023] [Accepted: 10/13/2023] [Indexed: 10/23/2023]
Abstract
Bumblebees are essential pollinators of both wildflowers and crops and face multiple anthropogenic stressors, particularly the utilization of pesticides. Rotenone is an extensively applied neurotoxic pesticide that possesses insecticidal activities against a wide range of pests. However, whether environmentally realistic exposure levels of rotenone can damage neurons in bumblebee brains is still uncertain. Using single-cell RNA-seq, we revealed that rotenone induced cell-specific responses in bumblebee brains, emphasizing the disruption of energy metabolism and mitochondrial dysfunction in glial cells. Correspondingly, the gene regulatory network associated with neurotransmission was also suppressed. Notably, rotenone could specially reduce the number of dopaminergic neurons, impairing bumblebee's ability to fly and crawl. We also found impaired intestinal motility in rotenone-treated bumblebees. Finally, we demonstrated that many differentially expressed genes in our snRNA-seq data overlapped with rotenone-induced Parkinson's disease risk genes, especially in glial cells. Although rotenone is widely used owing to its hypotoxicity, we found that environmentally realistic exposure levels of rotenone induced disturbed glial energetics and locomotor dysfunction in bumblebees, which may lead to an indirect decline in this essential pollinator.
Collapse
Affiliation(s)
- Jieteng Chen
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan 250100, China; College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Xiaohuan Mu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Huiling Liu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Qiyao Yong
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Xiaoman Ouyang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Yan Liu
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Li Zheng
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Hao Chen
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Yifan Zhai
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Jie Ma
- BGI-Qingdao, Qingdao 266555, China
| | | | | | - Hao Zheng
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan 250100, China.
| |
Collapse
|
3
|
Toga K, Bono H. Meta-Analysis of Public RNA Sequencing Data Revealed Potential Key Genes Associated with Reproductive Division of Labor in Social Hymenoptera and Termites. Int J Mol Sci 2023; 24:ijms24098353. [PMID: 37176060 PMCID: PMC10179490 DOI: 10.3390/ijms24098353] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 05/04/2023] [Indexed: 05/15/2023] Open
Abstract
Eusociality in insects has evolved independently many times. One of the most notable characteristics of eusociality is the reproductive division of labor. In social insects, the reproductive division of labor is accomplished by queens and workers. Transcriptome analyses of queens and workers have been conducted for various eusocial species. However, the genes that regulate the reproductive division of labor across all or multiple eusocial species have not yet been fully elucidated. Therefore, we conducted a meta-analysis using publicly available RNA-sequencing data from four major groups of social insects. In this meta-analysis, we collected 258 pairs (queen vs. worker) of RNA-sequencing data from 34 eusocial species. The meta-analysis identified a total of 20 genes that were differentially expressed in queens or workers. Out of these, 12 genes have not previously been reported to be involved in the reproductive division of labor. Functional annotation of these 20 genes in other organisms revealed that they could be regulators of behaviors and physiological states related to the reproductive division of labor. These 20 genes, revealed using massive datasets of numerous eusocial insects, may be key regulators of the reproductive division of labor.
Collapse
Affiliation(s)
- Kouhei Toga
- Laboratory of BioDX, PtBio Co-Creation Research Center, Genome Editing Innovation Center, Hiroshima University, 3-10-23 Kagamiyama, Higashi-Hiroshima City 739-0046, Hiroshima, Japan
- Laboratory of Genome Informatics, Graduate School of Integrated Sciences for Life, Hiroshima University, 3-10-23 Kagamiyama, Higashi-Hiroshima City 739-0046, Hiroshima, Japan
| | - Hidemasa Bono
- Laboratory of BioDX, PtBio Co-Creation Research Center, Genome Editing Innovation Center, Hiroshima University, 3-10-23 Kagamiyama, Higashi-Hiroshima City 739-0046, Hiroshima, Japan
- Laboratory of Genome Informatics, Graduate School of Integrated Sciences for Life, Hiroshima University, 3-10-23 Kagamiyama, Higashi-Hiroshima City 739-0046, Hiroshima, Japan
| |
Collapse
|
4
|
Barbero F, Mannino G, Casacci LP. The Role of Biogenic Amines in Social Insects: With a Special Focus on Ants. INSECTS 2023; 14:386. [PMID: 37103201 PMCID: PMC10142254 DOI: 10.3390/insects14040386] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 04/12/2023] [Accepted: 04/13/2023] [Indexed: 06/19/2023]
Abstract
Eusociality represents the higher degree of interaction in insects. This complex social structure is maintained through a multimodal communication system that allows colony members to be flexible in their responses, fulfilling the overall society's needs. The colony plasticity is supposedly achieved by combining multiple biochemical pathways through the neuromodulation of molecules such as biogenic amines, but the mechanisms through which these regulatory compounds act are far from being fully disentangled. Here, we review the potential function of major bioamines (dopamine, tyramine, serotine, and octopamine) on the behavioral modulation of principal groups of eusocial Hymenoptera, with a special focus on ants. Because functional roles are species- and context-dependent, identifying a direct causal relationship between a biogenic amine variation and behavioral changes is extremely challenging. We also used a quantitative and qualitative synthesis approach to summarize research trends and interests in the literature related to biogenic amines of social insects. Shedding light on the aminergic regulation of behavioral responses will pave the way for an entirely new approach to understanding the evolution of sociality in insects.
Collapse
Affiliation(s)
- Francesca Barbero
- Department of Life Sciences and Systems Biology, University of Turin, Via Accademia Albertina 13, 10123 Turin, Italy;
| | - Giuseppe Mannino
- Department of Life Sciences and Systems Biology, University of Turin, Via Gioacchino Quarello 15/A, 10135 Turin, Italy;
| | - Luca Pietro Casacci
- Department of Life Sciences and Systems Biology, University of Turin, Via Accademia Albertina 13, 10123 Turin, Italy;
| |
Collapse
|
5
|
Abdelmawla A, Yang C, Li X, Li M, Li CL, Liu YB, He XJ, Zeng ZJ. Feeding Asian honeybee queens with European honeybee royal jelly alters body color and expression of related coding and non-coding RNAs. Front Physiol 2023; 14:1073625. [PMID: 36776963 PMCID: PMC9908965 DOI: 10.3389/fphys.2023.1073625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 01/16/2023] [Indexed: 01/27/2023] Open
Abstract
Background and aims: The Asian honeybee (Apis cerana) and the European honeybee (Apis mellifera) are reproductively isolated. Previous studies reported that exchanging the larval food between the two species, known as nutritional crossbreeding, resulted in obvious changes in morphology, physiology and behavior. This study explored the molecular mechanisms underlying the honeybee nutritional crossbreeding. Methods: This study used full nutritional crossbreeding technology to rear A. cerana queens by feeding them with an A. mellifera royal jelly-based diet in an incubator. The body color and the expression of certain genes, microRNA, lncRNA, and circRNA among nutritional crossbred A. cerana queens (NQ), and control A. cerana queens (CQ) were compared. The biological functions of two target genes, TPH1 and KMO, were verified using RNA interference. Results: Our results showed that the NQ's body color turned yellow compared to the black control queens. Whole transcriptome sequencing results showed that a total of 1484, 311, 92, and 169 DEGs, DElncRNAs, DEmiRNAs, and DEcircRNAs, respectively, were identified in NQ and CQ, in which seven DEGs were enriched for three key pathways (tryptophan, tyrosine, and dopamine) involved in melanin synthesis. Interestingly, eight DElncRNAs and three DEmiRNAs were enriched into the key pathways regulating the above key DEGs. No circRNAs were enriched into these key pathways. Knocking down two key genes (KMO and TPH1) resulted in altered body color, suggesting that feeding NQ's an RNAi-based diet significantly downregulated the expression of TPH1 and KMO in 4-day-old larvae, which confirmed the function of key DEGs in the regulation of honeybee body color. Conclusion: These findings reveal that the larval diets from A. mellifera could change the body color of A. cerana, perhaps by altering the expression of non-coding RNAs and related key genes. This study serves as a model of epigenetic regulation in insect body color induced by environmental factors.
Collapse
Affiliation(s)
- Amal Abdelmawla
- Honeybee Research Institute, Jiangxi Agricultural University, Nanchang, China,Faculty of Agriculture, Fayoum University, Fayoum, Egypt
| | - Chen Yang
- Honeybee Research Institute, Jiangxi Agricultural University, Nanchang, China
| | - Xin Li
- Honeybee Research Institute, Jiangxi Agricultural University, Nanchang, China
| | - Mang Li
- Honeybee Research Institute, Jiangxi Agricultural University, Nanchang, China
| | - Chang Long Li
- Honeybee Research Institute, Jiangxi Agricultural University, Nanchang, China
| | - Yi Bo Liu
- Honeybee Research Institute, Jiangxi Agricultural University, Nanchang, China
| | - Xu Jiang He
- Honeybee Research Institute, Jiangxi Agricultural University, Nanchang, China,Jiangxi Key Laboratory of Honeybee Biology and Bee Keeping, Nanchang, Jiangxi, China,*Correspondence: Xu Jiang He, ; Zhi Jiang Zeng,
| | - Zhi Jiang Zeng
- Honeybee Research Institute, Jiangxi Agricultural University, Nanchang, China,Jiangxi Key Laboratory of Honeybee Biology and Bee Keeping, Nanchang, Jiangxi, China,*Correspondence: Xu Jiang He, ; Zhi Jiang Zeng,
| |
Collapse
|
6
|
Sasaki K, Yoshimura H, Nishimura M. Caste-specific storage of dopamine-related substances in the brains of four Polistes paper wasp species. PLoS One 2023; 18:e0280881. [PMID: 36701284 PMCID: PMC9879392 DOI: 10.1371/journal.pone.0280881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 01/10/2023] [Indexed: 01/27/2023] Open
Abstract
How the role of dopamine differs according to the evolution of eusociality and how it is required in the flexible society of Polistes paper wasps need further clarification. In the present study, we compared the storage and usage of dopamine-related substances in brains between the castes of paper wasps. The head widths, lipid stores in the abdomen, and levels of biogenic amines in the brains were measured in newly emerged females before male emergence (workers) and after male emergence (gynes) in four Polistes species. The head widths and the lipid stores were significantly larger in gynes than workers in P. snelleni, P. rothneyi, and P. jokahamae, whereas they did not differ between castes in P. chinensis. The levels of dopamine precursors in the brains were significantly higher in gynes than workers in P. snelleni, P. chinensis, and P. rothneyi, whereas those of dopamine and its metabolites did not differ between castes in these species. In P. jokahamae, the levels of dopamine precursors and dopamine in the brains did not differ between castes, but those of a dopamine metabolite were significantly higher in gynes than workers. Thus, the caste differences in the levels of dopamine-related substances did not always match body sizes and nutritional reserves. Foundresses in P. rothneyi had significantly lower levels of dopamine precursors and higher levels of dopamine and its metabolite than newly emerged gynes. These results suggested that in several Polistes species, dopamine precursors were stored in the brain without dopamine biosynthesis at emergence, and then converted into dopamine in foundresses during colony founding. These neuroendocrinal states in Polistes species largely differed from those in eusocial bees.
Collapse
Affiliation(s)
- Ken Sasaki
- Graduate School of Agriculture, Tamagawa University, Machida, Tokyo, Japan
- Honeybee Science Research Center, Tamagawa University, Machida, Tokyo, Japan
- * E-mail:
| | - Hideto Yoshimura
- Division of Agro-Environment Research, Tohoku Agricultural Research Center, NARO, Morioka, Iwate, Japan
| | - Masakazu Nishimura
- Honeybee Science Research Center, Tamagawa University, Machida, Tokyo, Japan
| |
Collapse
|
7
|
Watanabe T, Sasaki K. Behavioral roles of biogenic amines in bumble bee males. Sci Rep 2022; 12:20946. [PMID: 36470960 PMCID: PMC9722695 DOI: 10.1038/s41598-022-25656-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 12/02/2022] [Indexed: 12/11/2022] Open
Abstract
To compare the behavioral roles of biogenic amines in the males of primitive and advanced eusocial bees, we determined the levels of dopamine- and octopamine-related substances in the brain, and the behavioral effects of these monoamines by drug injection in the primitive eusocial bumble bee, Bombus ignitus. The levels of dopamine and its precursors in the brain peaked at the late pupal stage, but the dopamine peak extended to adult emergence. The tyramine and octopamine levels increased from the mid-pupal to adult stages. The locomotor and flight activities, and light preference increased with age. Injection of octopamine and its receptor antagonist had significant effects on the locomotor and flight activities, whereas dopamine injection did not, indicating that these activities can be regulated by the octopaminergic system. We also determined the dynamics of dopamine-related substances in honey bee (Apis mellifera) drones. The changes in the dopamine level in the brains of honey bee drones exhibited two peaks from the pupal to adult stages, whereas the bumble bee males had only one peak. These are consistent with the behavioral functions of dopamine in honey bee drones and ineffectiveness of dopamine injection at the adult stage in bumble bee males.
Collapse
Affiliation(s)
- Tomohiro Watanabe
- grid.412905.b0000 0000 9745 9416Graduate School of Agriculture, Tamagawa University, Machida, Tokyo, 194-8610 Japan
| | - Ken Sasaki
- grid.412905.b0000 0000 9745 9416Graduate School of Agriculture, Tamagawa University, Machida, Tokyo, 194-8610 Japan
| |
Collapse
|
8
|
Chen S, Nanda S, Guo M, Kong L, Yang C, Liu Z, Gao R, Qiu B, Zhang Y, Zhou X, Pan H. Tyrosine hydroxylase involved in cuticle tanning and reproduction in the 28-spotted potato ladybeetle, Henosepilachna vigintioctopunctata. PEST MANAGEMENT SCIENCE 2022; 78:3859-3870. [PMID: 35524967 DOI: 10.1002/ps.6980] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 04/14/2022] [Accepted: 05/07/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Tyrosine hydroxylase (TH), a melanin synthesis pathway enzyme hydroxylating tyrosine into 3,4-dihydroxyphenylalanine, is involved in the pigmentation and sclerotization of insect cuticles. However, the role of TH in 28-spotted potato ladybeetle (Henosepilachna vigintioctopunctata), an emerging pest of the solanaceous crops has been explored to a limited extent. In this study, we integrated dietary RNA interference (RNAi) and hematoxylin and eosin (H&E) staining with various bioassays to analyze the role of tyrosine hydroxylase (HvTH) throughout the developmental processes of Henosepilachna vigintioctopunctata. RESULTS The results revealed that ingestion of dsHvTH led to cuticle tanning impairment, arrested larval feeding in the first and second instars of Henosepilachna vigintioctopunctata, and subsequently resulted in 100% mortality. The H&E staining assays revealed that dsHvTH prevented new abdominal cuticle formation. A pharmacological study using 3-iodo-tyrosine (3-IT), a HvTH inhibitor, disrupted larval-larval-pupal cuticle tanning during the third-fourth instar larval development and eventually failed to pupate. Similarly, dsHvTH fed to fourth instars hindered larval-pupal-adult cuticle tanning, and the eclose adults were 100% malformed. Ingestion of dsHvTH or 3-IT significantly down-regulated HvTH, HvDDC, Hvebony, and Hvlaccase2 expression and reduced dopamine levels. Finally, HvTH silencing in adult females substantially reduced the offspring hatching rates. CONCLUSIONS The collective results of the study suggested that HvTH plays conserved roles in larval-pupal-adult cuticle melanization and sclerotization while exhibiting a novel function in Henosepilachna vigintioctopunctata reproduction. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Shimin Chen
- Key Laboratory of Bio-Pesticide Innovation and Application of Guangdong Province, South China Agricultural University, Guangzhou, China
| | - Satyabrata Nanda
- MS Swaminathan School of Agriculture, Centurion University of Technology and Management, Paralakhemundi, India
| | - Mujuan Guo
- Key Laboratory of Bio-Pesticide Innovation and Application of Guangdong Province, South China Agricultural University, Guangzhou, China
| | - Lan Kong
- Department of Computer Science, Eastern Kentucky University, Richmond, KY, USA
| | - Chunxiao Yang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, China
| | - Zhuoqi Liu
- Key Laboratory of Bio-Pesticide Innovation and Application of Guangdong Province, South China Agricultural University, Guangzhou, China
| | - Ran Gao
- Key Laboratory of Bio-Pesticide Innovation and Application of Guangdong Province, South China Agricultural University, Guangzhou, China
| | - Baoli Qiu
- Key Laboratory of Bio-Pesticide Innovation and Application of Guangdong Province, South China Agricultural University, Guangzhou, China
| | - Youjun Zhang
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xuguo Zhou
- Department of Entomology, University of Kentucky, Lexington, KY, USA
| | - Huipeng Pan
- Key Laboratory of Bio-Pesticide Innovation and Application of Guangdong Province, South China Agricultural University, Guangzhou, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, China
| |
Collapse
|
9
|
Sex-Specific Regulatory Systems for Dopamine Production in the Honey Bee. INSECTS 2022; 13:insects13020128. [PMID: 35206702 PMCID: PMC8878259 DOI: 10.3390/insects13020128] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 01/20/2022] [Accepted: 01/24/2022] [Indexed: 11/26/2022]
Abstract
Simple Summary In this review, we describe sex-specific differences in the regulatory systems for dopamine production in the brains of social insects, focusing on the honey bee. Dopamine has a crucial role in the promotion of reproduction in both sexes of the honey bee and is a key substance for understanding the mechanisms underlying the reproductive division of labor in females. Studies associated with dopamine regulation have been performed mainly in females, with less of a focus on its regulation in males. In social insects, males are specialized for reproduction and do not exhibit division of labor; however, they have evolved to adapt their social system and have acquired/discarded physiological and behavioral characteristics. Therefore, studies exploring the dopaminergic system in males can contribute to our understanding of social adaptation in males. We integrate findings related to dopamine in both honey bee sexes and provide insights into the physiology involved in dopaminergic systems in social insects. Abstract Dopamine has multiple functions in the modulation of social behavior and promotion of reproduction in eusocial Hymenoptera. In the honey bee, there are sex-specific differences in the regulation of dopamine production in the brain. These different dopaminergic systems might contribute to the maintenance of sex-specific behaviors and physiology. However, it is still not fully understood how the dopaminergic system in the brain is regulated by endocrinal factors and social stimuli in the colony. In this review, we focus on the regulation of dopamine production in queens, workers, and males in the honey bee. Dopamine production can be controlled by queen substance, juvenile hormone, and exogenous tyrosine from food. Queens can control dopamine production in workers via queen substance, whereas workers can manipulate the supply of tyrosine, a precursor of dopamine, to queens and males. The regulation of dopamine production through social interaction might affect the reproductive states of colony members and maintain sex-specific behaviors in unpredictable environments.
Collapse
|
10
|
Sasaki K, Okada Y, Shimoji H, Aonuma H, Miura T, Tsuji K. Social Evolution With Decoupling of Multiple Roles of Biogenic Amines Into Different Phenotypes in Hymenoptera. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.659160] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Convergent evolution of eusociality with the division of reproduction and its plastic transition in Hymenoptera has long attracted the attention of researchers. To explain the evolutionary scenario of the reproductive division of labor, several hypotheses had been proposed. Among these, we focus on the most basic concepts, i.e., the ovarian ground plan hypothesis (OGPH) and the split-function hypothesis (SFH). The OGPH assumes the physiological decoupling of ovarian cycles and behavior into reproductive and non-reproductive individuals, whereas the SFH assumes that the ancestral reproductive function of juvenile hormone (JH) became split into a dual function. Here, we review recent progress in the understanding of the neurohormonal regulation of reproduction and social behavior in eusocial hymenopterans, with an emphasis on biogenic amines. Biogenic amines are key substances involved in the switching of reproductive physiology and modulation of social behaviors. Dopamine has a pivotal role in the formation of reproductive skew irrespective of the social system, whereas octopamine and serotonin contribute largely to non-reproductive social behaviors. These decoupling roles of biogenic amines are seen in the life cycle of a single female in a solitary species, supporting OGPH. JH promotes reproduction with dopamine function in primitively eusocial species, whereas it regulates non-reproductive social behaviors with octopamine function in advanced eusocial species. The signal transduction networks between JH and the biogenic amines have been rewired in advanced eusocial species, which could regulate reproduction in response to various social stimuli independently of JH action.
Collapse
|