1
|
Kappler M, Thielemann L, Glaß M, Caggegi L, Güttler A, Pyko J, Blauschmidt S, Gutschner T, Taubert H, Otto S, Eckert AW, Tavassol F, Bache M, Vordermark D, Kaune T, Rot S. Functional and Biological Characterization of the LGR5Δ5 Splice Variant in HEK293T Cells. Int J Mol Sci 2024; 25:13417. [PMID: 39769183 PMCID: PMC11678308 DOI: 10.3390/ijms252413417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 12/02/2024] [Accepted: 12/10/2024] [Indexed: 01/11/2025] Open
Abstract
The regulator of the canonical Wnt pathway, leucine-rich repeat-containing G protein-coupled receptor 5 (LGR5), is expressed in the stem cell compartment of several tissues and overexpressed in different human carcinomas. The isoform of the stem cell marker LGR5, named LGR5Δ5 and first described by our group, is associated with prognosis and metastasis in oral squamous cell carcinoma (OSCC) and soft tissue sarcoma (STS). In a proof-of-principle analysis, the function of LGR5Δ5 was investigated in HEK293T cells, a model cell line of the Wnt pathway, compared to full-length LGR5 (FL) expression. The CRISPR/CAS knockout of LGR5 and LGR4 (thereby avoiding the side effects of LGR4) resulted in a loss of Wnt activity that cannot be restored by LGR5Δ5 but by LGR5FL rescue. The ability to migrate was not affected by LGR5Δ5, but was reduced by LGR5FL overexpression. The CRISPR/CAS of LGR4 and 5 induced radiosensitization, which was enhanced by the overexpression of LGR5FL or LGR5Δ5. RNA sequencing analysis revealed a significant increase in the ligand R-spondin 1 (RSPO1) level by LGR5Δ5. Furthermore, LGR5Δ5 appears to be involved in the regulation of genes related to the cytoskeleton, extracellular matrix stiffness, and angiogenesis, while LGR5FL is associated with the regulation of collagens and histone proteins.
Collapse
Affiliation(s)
- Matthias Kappler
- Department of Oral and Maxillofacial Plastic Surgery, Faculty of Medicine, Martin Luther University Halle-Wittenberg, 06120 Halle, Germany (S.B.); (F.T.)
| | - Laura Thielemann
- Department of Oral and Maxillofacial Plastic Surgery, Faculty of Medicine, Martin Luther University Halle-Wittenberg, 06120 Halle, Germany (S.B.); (F.T.)
| | - Markus Glaß
- Institute of Molecular Medicine, Section for Molecular Cell Biology, Faculty of Medicine, Martin Luther University Halle-Wittenberg, 06120 Halle, Germany;
| | - Laura Caggegi
- Department of Oral and Maxillofacial Plastic Surgery, Faculty of Medicine, Martin Luther University Halle-Wittenberg, 06120 Halle, Germany (S.B.); (F.T.)
| | - Antje Güttler
- Department of Radiotherapy, Faculty of Medicine, Martin Luther University Halle-Wittenberg, 06120 Halle, Germany; (A.G.); (M.B.); (D.V.)
| | - Jonas Pyko
- Institute of Molecular Medicine, Section for RNA Biology and Pathogenesis, Faculty of Medicine, Martin Luther University Halle-Wittenberg, 06120 Halle, Germany; (J.P.); (T.G.)
| | - Sarah Blauschmidt
- Department of Oral and Maxillofacial Plastic Surgery, Faculty of Medicine, Martin Luther University Halle-Wittenberg, 06120 Halle, Germany (S.B.); (F.T.)
| | - Tony Gutschner
- Institute of Molecular Medicine, Section for RNA Biology and Pathogenesis, Faculty of Medicine, Martin Luther University Halle-Wittenberg, 06120 Halle, Germany; (J.P.); (T.G.)
| | - Helge Taubert
- Department of Urology, University Hospital Erlangen, Friedrich-Alexander-University of Erlangen-Nürnberg, 91054 Erlangen, Germany;
| | - Sven Otto
- Department of Oral and Maxillofacial Surgery and Facial Plastic Surgery, Ludwig Maximilians University, 80337 Munich, Germany;
| | - Alexander W. Eckert
- Department of Cranio Maxillofacial Surgery, Paracelsus Medical University, 90471 Nuremberg, Germany;
| | - Frank Tavassol
- Department of Oral and Maxillofacial Plastic Surgery, Faculty of Medicine, Martin Luther University Halle-Wittenberg, 06120 Halle, Germany (S.B.); (F.T.)
| | - Matthias Bache
- Department of Radiotherapy, Faculty of Medicine, Martin Luther University Halle-Wittenberg, 06120 Halle, Germany; (A.G.); (M.B.); (D.V.)
| | - Dirk Vordermark
- Department of Radiotherapy, Faculty of Medicine, Martin Luther University Halle-Wittenberg, 06120 Halle, Germany; (A.G.); (M.B.); (D.V.)
| | - Tom Kaune
- Department of Oral and Maxillofacial Plastic Surgery, Faculty of Medicine, Martin Luther University Halle-Wittenberg, 06120 Halle, Germany (S.B.); (F.T.)
| | - Swetlana Rot
- Department of Oral and Maxillofacial Plastic Surgery, Faculty of Medicine, Martin Luther University Halle-Wittenberg, 06120 Halle, Germany (S.B.); (F.T.)
| |
Collapse
|
2
|
Carroll SH, Schafer S, Kawasaki K, Tsimbal C, Jule AM, Hallett SA, Li E, Liao EC. Genetic requirement of dact1/2 to regulate noncanonical Wnt signaling and calpain 8 during embryonic convergent extension and craniofacial morphogenesis. eLife 2024; 13:RP91648. [PMID: 39570288 PMCID: PMC11581427 DOI: 10.7554/elife.91648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2024] Open
Abstract
Wnt signaling plays crucial roles in embryonic patterning including the regulation of convergent extension (CE) during gastrulation, the establishment of the dorsal axis, and later, craniofacial morphogenesis. Further, Wnt signaling is a crucial regulator of craniofacial morphogenesis. The adapter proteins Dact1 and Dact2 modulate the Wnt signaling pathway through binding to Disheveled. However, the distinct relative functions of Dact1 and Dact2 during embryogenesis remain unclear. We found that dact1 and dact2 genes have dynamic spatiotemporal expression domains that are reciprocal to one another suggesting distinct functions during zebrafish embryogenesis. Both dact1 and dact2 contribute to axis extension, with compound mutants exhibiting a similar CE defect and craniofacial phenotype to the wnt11f2 mutant. Utilizing single-cell RNAseq and an established noncanonical Wnt pathway mutant with a shortened axis (gpc4), we identified dact1/2-specific roles during early development. Comparative whole transcriptome analysis between wildtype and gpc4 and wildtype and dact1/2 compound mutants revealed a novel role for dact1/2 in regulating the mRNA expression of the classical calpain capn8. Overexpression of capn8 phenocopies dact1/2 craniofacial dysmorphology. These results identify a previously unappreciated role of capn8 and calcium-dependent proteolysis during embryogenesis. Taken together, our findings highlight the distinct and overlapping roles of dact1 and dact2 in embryonic craniofacial development, providing new insights into the multifaceted regulation of Wnt signaling.
Collapse
Affiliation(s)
- Shannon H Carroll
- Center for Craniofacial Innovation, Children’s Hospital of Philadelphia Research, Institute, Children’s Hospital of PhiladelphiaPhiladelphiaUnited States
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Children’s Hospital of PhiladelphiaPhiladelphiaUnited States
- Shriners Hospital for ChildrenTampaUnited States
| | - Sogand Schafer
- Center for Craniofacial Innovation, Children’s Hospital of Philadelphia Research, Institute, Children’s Hospital of PhiladelphiaPhiladelphiaUnited States
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Children’s Hospital of PhiladelphiaPhiladelphiaUnited States
| | - Kenta Kawasaki
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Children’s Hospital of PhiladelphiaPhiladelphiaUnited States
- Shriners Hospital for ChildrenTampaUnited States
| | - Casey Tsimbal
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Children’s Hospital of PhiladelphiaPhiladelphiaUnited States
- Shriners Hospital for ChildrenTampaUnited States
| | - Amelie M Jule
- Department of Biostatistics, Harvard T.H. Chan School of Public HealthBostonUnited States
| | - Shawn A Hallett
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Children’s Hospital of PhiladelphiaPhiladelphiaUnited States
- Shriners Hospital for ChildrenTampaUnited States
| | - Edward Li
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Children’s Hospital of PhiladelphiaPhiladelphiaUnited States
| | - Eric C Liao
- Center for Craniofacial Innovation, Children’s Hospital of Philadelphia Research, Institute, Children’s Hospital of PhiladelphiaPhiladelphiaUnited States
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Children’s Hospital of PhiladelphiaPhiladelphiaUnited States
- Shriners Hospital for ChildrenTampaUnited States
| |
Collapse
|
3
|
Zhu S, Chen W, Masson A, Li YP. Cell signaling and transcriptional regulation of osteoblast lineage commitment, differentiation, bone formation, and homeostasis. Cell Discov 2024; 10:71. [PMID: 38956429 PMCID: PMC11219878 DOI: 10.1038/s41421-024-00689-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 05/04/2024] [Indexed: 07/04/2024] Open
Abstract
The initiation of osteogenesis primarily occurs as mesenchymal stem cells undergo differentiation into osteoblasts. This differentiation process plays a crucial role in bone formation and homeostasis and is regulated by two intricate processes: cell signal transduction and transcriptional gene expression. Various essential cell signaling pathways, including Wnt, BMP, TGF-β, Hedgehog, PTH, FGF, Ephrin, Notch, Hippo, and Piezo1/2, play a critical role in facilitating osteoblast differentiation, bone formation, and bone homeostasis. Key transcriptional factors in this differentiation process include Runx2, Cbfβ, Runx1, Osterix, ATF4, SATB2, and TAZ/YAP. Furthermore, a diverse array of epigenetic factors also plays critical roles in osteoblast differentiation, bone formation, and homeostasis at the transcriptional level. This review provides an overview of the latest developments and current comprehension concerning the pathways of cell signaling, regulation of hormones, and transcriptional regulation of genes involved in the commitment and differentiation of osteoblast lineage, as well as in bone formation and maintenance of homeostasis. The paper also reviews epigenetic regulation of osteoblast differentiation via mechanisms, such as histone and DNA modifications. Additionally, we summarize the latest developments in osteoblast biology spurred by recent advancements in various modern technologies and bioinformatics. By synthesizing these insights into a comprehensive understanding of osteoblast differentiation, this review provides further clarification of the mechanisms underlying osteoblast lineage commitment, differentiation, and bone formation, and highlights potential new therapeutic applications for the treatment of bone diseases.
Collapse
Affiliation(s)
- Siyu Zhu
- Division in Cellular and Molecular Medicine, Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, Tulane University, New Orleans, LA, USA
| | - Wei Chen
- Division in Cellular and Molecular Medicine, Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, Tulane University, New Orleans, LA, USA.
| | - Alasdair Masson
- Division in Cellular and Molecular Medicine, Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, Tulane University, New Orleans, LA, USA
| | - Yi-Ping Li
- Division in Cellular and Molecular Medicine, Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, Tulane University, New Orleans, LA, USA.
| |
Collapse
|
4
|
Huysseune A, Witten PE. Continuous tooth replacement: what can teleost fish teach us? Biol Rev Camb Philos Soc 2024; 99:797-819. [PMID: 38151229 DOI: 10.1111/brv.13045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 12/13/2023] [Accepted: 12/15/2023] [Indexed: 12/29/2023]
Abstract
Most tooth-bearing non-mammalian vertebrates have the capacity to replace their teeth throughout life. This capacity was lost in mammals, which replace their teeth only once at most. Not surprisingly, continuous tooth replacement has attracted much attention. Classical morphological studies (e.g. to analyse patterns of replacement) are now being complemented by molecular studies that investigate the expression of genes involved in tooth formation. This review focuses on ray-finned fish (actinopterygians), which have teeth often distributed throughout the mouth and pharynx, and more specifically on teleost fish, the largest group of extant vertebrates. First we highlight the diversity in tooth distribution and in tooth replacement patterns. Replacement tooth formation can start from a distinct (usually discontinuous and transient) dental lamina, but also in the absence of a successional lamina, e.g. from the surface epithelium of the oropharynx or from the outer dental epithelium of a predecessor tooth. The relationship of a replacement tooth to its predecessor is closely related to whether replacement is the result of a prepattern or occurs on demand. As replacement teeth do not necessarily have the same molecular signature as first-generation teeth, the question of the actual trigger for tooth replacement is discussed. Much emphasis has been laid in the past on the potential role of epithelial stem cells in initiating tooth replacement. The outcome of such studies has been equivocal, possibly related to the taxa investigated, and the permanent or transient nature of the dental lamina. Alternatively, replacement may result from local proliferation of undifferentiated progenitors, stimulated by hitherto unknown, perhaps mesenchymal, factors. So far, the role of the neurovascular link in continuous tooth replacement has been poorly investigated, despite the presence of a rich vascularisation surrounding actinopterygian (as well as chondrichthyan) teeth and despite a complete arrest of tooth replacement after nerve resection. Lastly, tooth replacement is possibly co-opted as a process to expand the number of teeth in a dentition ontogenetically whilst conserving features of the primary dentition. That neither a dental lamina, nor stem cells appear to be required for tooth replacement places teleosts in an advantageous position as models for tooth regeneration in humans, where the dental lamina regresses and epithelial stem cells are considered lost.
Collapse
Affiliation(s)
- Ann Huysseune
- Research Group Evolutionary Developmental Biology, Biology Department, Ghent University, K.L. Ledeganckstraat 35, Ghent, B-9000, Belgium
- Department of Zoology, Faculty of Science, Charles University, Vinicna 7, Prague, 128 44, Czech Republic
| | - P Eckhard Witten
- Research Group Evolutionary Developmental Biology, Biology Department, Ghent University, K.L. Ledeganckstraat 35, Ghent, B-9000, Belgium
| |
Collapse
|
5
|
Stewart MK, Hoehne L, Dudczig S, Mattiske DM, Pask AJ, Jusuf PR. Exposure to an environmentally relevant concentration of 17α-ethinylestradiol disrupts craniofacial development of juvenile zebrafish. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 251:114541. [PMID: 36657377 DOI: 10.1016/j.ecoenv.2023.114541] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 01/03/2023] [Accepted: 01/10/2023] [Indexed: 06/17/2023]
Abstract
Endocrine disrupting chemicals (EDCs) can interact with native hormone receptors to interfere with and disrupt hormone signalling that is necessary for a broad range of developmental pathways. EDCs are pervasive in our environment, in particular in our waterways, making aquatic wildlife especially vulnerable to their effects. Many of these EDCs are able to bind to and activate oestrogen receptors, causing aberrant oestrogen signalling. Craniofacial development is an oestrogen-sensitive process, with oestrogen receptors expressed in chondrocytes during critical periods of development. Previous studies have demonstrated a negative effect of high concentrations of oestrogen on early craniofacial patterning in the aquatic model organism, the zebrafish (Danio rerio). In order to determine the impacts of exposure to an oestrogenic EDC, we exposed zebrafish larvae and juveniles to either a high concentration to replicate previous studies, or a low, environmentally relevant concentration of the oestrogenic contaminant, 17α-ethinylestradiol. The prolonged / chronic exposure regimen was used to replicate that seen by many animals in natural waterways. We observed changes to craniofacial morphology in all treatments, and most strikingly in the larvae-juveniles exposed to a low concentration of EE2. In the present study, we have demonstrated that the developmental stage at which exposure occurs can greatly impact phenotypic outcomes, and these results allow us to understand the widespread impact of oestrogenic endocrine disruptors. Given the conservation of key craniofacial development pathways across vertebrates, our model can further be applied in defining the risks of EDCs on mammalian organisms.
Collapse
Affiliation(s)
- Melanie K Stewart
- School of BioSciences, University of Melbourne, Parkville, VIC 3010, Australia
| | - Luca Hoehne
- School of BioSciences, University of Melbourne, Parkville, VIC 3010, Australia
| | - Stefanie Dudczig
- School of BioSciences, University of Melbourne, Parkville, VIC 3010, Australia
| | - Deidre M Mattiske
- School of BioSciences, University of Melbourne, Parkville, VIC 3010, Australia
| | - Andrew J Pask
- School of BioSciences, University of Melbourne, Parkville, VIC 3010, Australia
| | - Patricia R Jusuf
- School of BioSciences, University of Melbourne, Parkville, VIC 3010, Australia.
| |
Collapse
|
6
|
Probiotics Enhance Bone Growth and Rescue BMP Inhibition: New Transgenic Zebrafish Lines to Study Bone Health. Int J Mol Sci 2022; 23:ijms23094748. [PMID: 35563140 PMCID: PMC9102566 DOI: 10.3390/ijms23094748] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/21/2022] [Accepted: 04/22/2022] [Indexed: 02/07/2023] Open
Abstract
Zebrafish larvae, especially gene-specific mutants and transgenic lines, are increasingly used to study vertebrate skeletal development and human pathologies such as osteoporosis, osteopetrosis and osteoarthritis. Probiotics have been recognized in recent years as a prophylactic treatment for various bone health issues in humans. Here, we present two new zebrafish transgenic lines containing the coding sequences for fluorescent proteins inserted into the endogenous genes for sp7 and col10a1a with larvae displaying fluorescence in developing osteoblasts and the bone extracellular matrix (mineralized or non-mineralized), respectively. Furthermore, we use these transgenic lines to show that exposure to two different probiotics, Bacillus subtilis and Lactococcus lactis, leads to an increase in osteoblast formation and bone matrix growth and mineralization. Gene expression analysis revealed the effect of the probiotics, particularly Bacillus subtilis, in modulating several skeletal development genes, such as runx2, sp7, spp1 and col10a1a, further supporting their ability to improve bone health. Bacillus subtilis was the more potent probiotic able to significantly reverse the inhibition of bone matrix formation when larvae were exposed to a BMP inhibitor (LDN212854).
Collapse
|
7
|
Li K, Fan L, Tian Y, Lou S, Li D, Ma L, Wang L, Pan Y. Application of zebrafish in the study of craniomaxillofacial developmental anomalies. Birth Defects Res 2022; 114:583-595. [PMID: 35437950 DOI: 10.1002/bdr2.2014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 03/18/2022] [Accepted: 04/03/2022] [Indexed: 12/13/2022]
Abstract
Craniomaxillofacial developmental anomalies are one of the most prevalent congenital defects worldwide and could result from any disruption of normal development processes, which is generally influenced by interactions between genes and the environment. Currently, with the advances in genetic screening strategies, an increasing number of novel variants and their roles in orofacial diseases have been explored. Zebrafish is recognized as a powerful animal model, and its homologous genes and similar oral structure and development process provide an ideal platform for studying the contributions of genetic and environmental factors to human craniofacial malformations. Here, we reviewed zebrafish models for the study of craniomaxillofacial developmental anomalies, such as human nonsyndromic cleft lip with or without an affected palate and jaw and tooth developmental anomalies. Due to its potential for gene expression and regulation research, zebrafish may provide new perspectives for understanding craniomaxillofacial diseaseand its treatment.
Collapse
Affiliation(s)
- Kang Li
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.,Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, China
| | - Liwen Fan
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.,Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, China.,Department of Orthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Yu Tian
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.,Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, China.,Department of Orthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Shu Lou
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.,Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, China.,Department of Orthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Dandan Li
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.,Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, China.,Department of Orthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Lan Ma
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.,Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, China.,Department of Orthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Lin Wang
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.,Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, China.,Department of Orthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China.,State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Yongchu Pan
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.,Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, China.,Department of Orthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China.,State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| |
Collapse
|
8
|
Nagano K, Yamana K, Saito H, Kiviranta R, Pedroni AC, Raval D, Niehrs C, Gori F, Baron R. R-spondin 3 deletion induces Erk phosphorylation to enhance Wnt signaling and promote bone formation in the appendicular skeleton. eLife 2022; 11:84171. [PMID: 36321691 PMCID: PMC9681208 DOI: 10.7554/elife.84171] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 10/18/2022] [Indexed: 11/23/2022] Open
Abstract
Activation of Wnt signaling leads to high bone density. The R-spondin family of four secreted glycoproteins (Rspo1-4) amplifies Wnt signaling. In humans, RSPO3 variants are strongly associated with bone density. Here, we investigated the role of Rspo3 in skeletal homeostasis in mice. Using a comprehensive set of mouse genetic and mechanistic studies, we show that in the appendicular skeleton, Rspo3 haplo-insufficiency and Rspo3 targeted deletion in Runx2+ osteoprogenitors lead to an increase in trabecular bone mass, with increased number of osteoblasts and bone formation. In contrast and highlighting the complexity of Wnt signaling in the regulation of skeletal homeostasis, we show that Rspo3 deletion in osteoprogenitors results in the opposite phenotype in the axial skeleton, i.e., low vertebral trabecular bone mass. Mechanistically, Rspo3 deficiency impairs the inhibitory effect of Dkk1 on Wnt signaling activation and bone mass. We demonstrate that Rspo3 deficiency leads to activation of Erk signaling which in turn, stabilizes β-catenin and Wnt signaling activation. Our data demonstrate that Rspo3 haplo-insufficiency/deficiency boosts canonical Wnt signaling by activating Erk signaling, to favor osteoblastogenesis, bone formation, and bone mass.
Collapse
Affiliation(s)
- Kenichi Nagano
- School of Dental Medicine, Harvard UniversityBostonUnited States
| | - Kei Yamana
- School of Dental Medicine, Harvard UniversityBostonUnited States
| | - Hiroaki Saito
- School of Dental Medicine, Harvard UniversityBostonUnited States
| | - Riku Kiviranta
- School of Dental Medicine, Harvard UniversityBostonUnited States
| | | | - Dhairya Raval
- School of Dental Medicine, Harvard UniversityBostonUnited States
| | - Christof Niehrs
- German Cancer Research Center, DKFZ-ZMBH AllianceHeidelbergGermany,Institute of Molecular Biology (IMB)MainzGermany
| | - Francesca Gori
- School of Dental Medicine, Harvard UniversityBostonUnited States
| | - Roland Baron
- School of Dental Medicine, Harvard UniversityBostonUnited States,Department of Medicine, Harvard Medical SchoolBostonUnited States,Endocrine Unit, Massachusetts General HospitalBostonUnited States
| |
Collapse
|
9
|
Dasgupta K, Cesario JM, Ha S, Asam K, Deacon LJ, Song AH, Kim J, Cobb J, Yoon JK, Jeong J. R-Spondin 3 Regulates Mammalian Dental and Craniofacial Development. J Dev Biol 2021; 9:jdb9030031. [PMID: 34449628 PMCID: PMC8395884 DOI: 10.3390/jdb9030031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/06/2021] [Accepted: 08/07/2021] [Indexed: 12/14/2022] Open
Abstract
Development of the teeth requires complex signaling interactions between the mesenchyme and the epithelium mediated by multiple pathways. For example, canonical WNT signaling is essential to many aspects of odontogenesis, and inhibiting this pathway blocks tooth development at an early stage. R-spondins (RSPOs) are secreted proteins, and they mostly augment WNT signaling. Although RSPOs have been shown to play important roles in the development of many organs, their role in tooth development is unclear. A previous study reported that mutating Rspo2 in mice led to supernumerary lower molars, while teeth forming at the normal positions showed no significant anomalies. Because multiple Rspo genes are expressed in the orofacial region, it is possible that the relatively mild phenotype of Rspo2 mutants is due to functional compensation by other RSPO proteins. We found that inactivating Rspo3 in the craniofacial mesenchyme caused the loss of lower incisors, which did not progress beyond the bud stage. A simultaneous deletion of Rspo2 and Rspo3 caused severe disruption of craniofacial development from early stages, which was accompanied with impaired development of all teeth. Together, these results indicate that Rspo3 is an important regulator of mammalian dental and craniofacial development.
Collapse
Affiliation(s)
- Krishnakali Dasgupta
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, NY 10010, USA; (K.D.); (J.M.C.); (S.H.); (K.A.); (L.J.D.); (A.H.S.); (J.K.)
| | - Jeffry M. Cesario
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, NY 10010, USA; (K.D.); (J.M.C.); (S.H.); (K.A.); (L.J.D.); (A.H.S.); (J.K.)
| | - Sara Ha
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, NY 10010, USA; (K.D.); (J.M.C.); (S.H.); (K.A.); (L.J.D.); (A.H.S.); (J.K.)
| | - Kesava Asam
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, NY 10010, USA; (K.D.); (J.M.C.); (S.H.); (K.A.); (L.J.D.); (A.H.S.); (J.K.)
| | - Lindsay J. Deacon
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, NY 10010, USA; (K.D.); (J.M.C.); (S.H.); (K.A.); (L.J.D.); (A.H.S.); (J.K.)
| | - Ana H. Song
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, NY 10010, USA; (K.D.); (J.M.C.); (S.H.); (K.A.); (L.J.D.); (A.H.S.); (J.K.)
| | - Julie Kim
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, NY 10010, USA; (K.D.); (J.M.C.); (S.H.); (K.A.); (L.J.D.); (A.H.S.); (J.K.)
| | - John Cobb
- Department of Biological Sciences, University of Calgary, Calgary, AB T2N 1N4, Canada;
| | - Jeong Kyo Yoon
- Soonchunhyang Institute of Medi-Bio Science, Soonchunhyang University, Cheonan 31151, Korea;
- Department of Integrated Biomedical Science, Soonchunhyang University, Cheonan 31151, Korea
| | - Juhee Jeong
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, NY 10010, USA; (K.D.); (J.M.C.); (S.H.); (K.A.); (L.J.D.); (A.H.S.); (J.K.)
- Correspondence:
| |
Collapse
|