1
|
Wang S, Fan W, Ji W, Wang K, Gull S, Li J, Chen L, Ji T, Liu J. Physiological effects of field concentrations and sublethal concentrations of sulfoxaflor on Apis mellifera. PEST MANAGEMENT SCIENCE 2024; 80:5941-5953. [PMID: 39189548 DOI: 10.1002/ps.8326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 05/13/2024] [Accepted: 07/09/2024] [Indexed: 08/28/2024]
Abstract
BACKGROUND Bees (Apis mellifera), as important pollinators of agricultural crops, are at risk when pesticides are used. Sulfoxaflor is a new insecticide which acts on the nicotinic acetylcholine receptor (nAChR) in a similar way to neonicotinoids. The goal of this study is to evaluate the toxicity of sulfoxaflor and its effect on the A. mellifera exposure. RESULTS Initially, developmental indicators such as larval survival, pupation, and eclosion were inhibited by 5.0 mg/L (field concentration) sulfoxaflor. In the pupal stage, fat content was significantly increased, while the glycogen content decreased. In addition, A. mellifera heads were treated with 2.0 mg/L (sublethal concentration) of sulfoxaflor and analyzed by RNA sequencing. The transcriptome results indicated that 2.0 mg/L amounts of sulfoxaflor have adverse effects on the immune, digestive, and nervous systems. Sulfoxaflor down-regulated the expression of many genes involved in immunity, detoxification, the myosin cytoskeleton, sensory neurons, and odor-binding proteins. CONCLUSION Field concentration and sublethal concentration were used for the combined analysis of honeybees. The effect of sublethal concentration of sulfoxaflor on honeybees was studied for the first time from the perspective of transcriptome sequencing of honeybee head. A preliminary study was carried out on the stress of sulfoxaflor at sublethal concentration on honeybee workers, which has certain research significance and can provide theoretical basis for the use of sulfoxaflor in the field environment. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Shuang Wang
- College of Plant Protection, Yangzhou University, Yangzhou, China
| | - Wenyan Fan
- College of Plant Protection, Yangzhou University, Yangzhou, China
| | - Wenna Ji
- College of Plant Protection, Yangzhou University, Yangzhou, China
| | - Kang Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Sadia Gull
- College of Plant Protection, Yangzhou University, Yangzhou, China
| | - Jitong Li
- College of Plant Protection, Yangzhou University, Yangzhou, China
| | - Lin Chen
- College of Plant Protection, Yangzhou University, Yangzhou, China
| | - Ting Ji
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Jinglan Liu
- College of Plant Protection, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and AgriProduct Safety of the Ministry of Education, Yangzhou University, Yangzhou, China
| |
Collapse
|
2
|
Azpiazu C, Sgolastra F, Ippolito A, Albacete S, Brandt A, Colli M, Grossar D, Jeker L, Malagnini V, Sancho G, Splitt A, Straub L, Strobl V, Boranski M, Jachuła J, Martins C, Medrzycki P, Simon-Delso N, Tosi S, Bosch J. Chronic oral toxicity protocol for adult solitary bees (Osmia bicornis L.): Reduced survival under long-term exposure to a "bee-safe" insecticide. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 363:125129. [PMID: 39414062 DOI: 10.1016/j.envpol.2024.125129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 10/11/2024] [Accepted: 10/14/2024] [Indexed: 10/18/2024]
Abstract
Pollinators are essential for crop productivity. Yet, in agricultural areas, they may be threatened by pesticide exposure. Current pesticide risk assessments predominantly focus on honey bees, with a lack of standardized protocols for solitary bees. This study addresses this gap by developing a long-term oral exposure protocol tailored for O. bicornis. We conducted initial trials to determine optimal container sizes and feeding methods, ensuring high survival rates and accurate syrup consumption measurements. A validation test involving five laboratories was then conducted with the insecticide Flupyradifurone (FPF). Control mortality thresholds were set at ≤ 15% at 10 days. Three laboratories achieved ≤10%, demonstrating the protocol's effectiveness in maintaining healthy test populations. The seasonal timing of experiments influenced control mortality, underscoring the importance of aligning tests with the natural flight period of the population used. Our findings revealed dose-dependent effects of FPF on syrup consumption, showing stimulatory effects at lower concentrations and inhibitory effects at higher ones. The 10-day median lethal daily dose (LDD50) of FPF for O. bicornis (531.92 ng/bee/day) was 3.4-fold lower than that reported for Apis mellifera (1830 ng/bee/day), indicating Osmia's higher susceptibility. Unlike other insecticides, FPF did not exhibit time-reinforced toxicity. This study introduces a robust protocol for chronic pesticide exposure in solitary bees, addressing a critical gap in current risk assessment. Based on its low risk to honey bees and bumblebees, FPF is approved for application during flowering. However, our results suggest that it may threaten Osmia populations under realistic field conditions. Our findings underscore the need for comparative toxicity studies to ensure comprehensive protection of all pollinators and the importance of accounting for long term exposure scenarios in risk assessment. By enhancing our understanding of chronic pesticide effects in solitary bees, our study should contribute to the development of more effective conservation strategies and sustainable agricultural practices.
Collapse
Affiliation(s)
- Celeste Azpiazu
- Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain; Universidad Politécnica de Madrid, 28040 Madrid, Spain.
| | - Fabio Sgolastra
- Dipartimento di Scienze e Tecnologie Agro-Alimentari, Alma Mater Studiorum Università di Bologna, 40127 Bologna, Italy
| | - Alessio Ippolito
- European Food Safety Authority, Environment, Plants & Ecotoxicology Unit, 43126 Parma, Italy
| | - Sergio Albacete
- Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain; Centre for Ecological Research and Forestry Applications (CREAF), 08193 Bellaterra, Spain
| | - Annely Brandt
- LLH-Bee Institute Kirchhain, Erlenstr. 9, 35274 Kirchhain, Germany
| | - Monica Colli
- Biotecnologie BT Srl - Fraz. Pantalla 06059 Todi (PG), Italy
| | - Daniela Grossar
- Swiss Bee Research Center, Agroscope, Schwarzenburgstrasse 161, 3003 Bern, Switzerland
| | - Lukas Jeker
- Swiss Bee Research Center, Agroscope, Schwarzenburgstrasse 161, 3003 Bern, Switzerland
| | - Valeria Malagnini
- Centro Trasferimento Tecnologico Fondazione Ednund Mach, Via E. Mach, 1 38098 San Michele all'Adige (TN), Italy
| | - Gonzalo Sancho
- Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain; Centre for Ecological Research and Forestry Applications (CREAF), 08193 Bellaterra, Spain
| | - Aleksandra Splitt
- The National Institute of Horticultural Research, Konstytucji 3 Maja 1/3, 96-100 Skierniewice, Poland
| | - Lars Straub
- Institute of Bee Health, Vetsuisse Faculty, University of Bern, Bern, Switzerland; Centre for Ecology, Evolution, and Behaviour, Department of Biological Sciences, Royal Holloway University of London, Egham, UK
| | - Verena Strobl
- Institute of Bee Health, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Mikolaj Boranski
- The National Institute of Horticultural Research, Konstytucji 3 Maja 1/3, 96-100 Skierniewice, Poland
| | - Jacek Jachuła
- The National Institute of Horticultural Research, Konstytucji 3 Maja 1/3, 96-100 Skierniewice, Poland
| | - Cátia Martins
- Dipartimento di Scienze e Tecnologie Agro-Alimentari, Alma Mater Studiorum Università di Bologna, 40127 Bologna, Italy
| | - Piotr Medrzycki
- CREA-Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria, Centro di Ricerca Agricoltura ed Ambiente, 40128 Bologna, Italy
| | | | - Simone Tosi
- Department of Agricultural, Forest, and Food Sciences, University of Turin, Largo Paolo Braccini 2, 10095 Grugliasco (TO), Italy
| | - Jordi Bosch
- Centre for Ecological Research and Forestry Applications (CREAF), 08193 Bellaterra, Spain
| |
Collapse
|
3
|
Basu P, Ngo HT, Aizen MA, Garibaldi LA, Gemmill-Herren B, Imperatriz-Fonseca V, Klein AM, Potts SG, Seymour CL, Vanbergen AJ. Pesticide impacts on insect pollinators: Current knowledge and future research challenges. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176656. [PMID: 39366587 DOI: 10.1016/j.scitotenv.2024.176656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 09/29/2024] [Accepted: 09/30/2024] [Indexed: 10/06/2024]
Abstract
With the need to intensify agriculture to meet growing food demand, there has been significant rise in pesticide use to protect crops, but at different rates in different world regions. In 2016, the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES) global assessment on pollinators, pollination and food production identified pesticides as one of the major drivers of pollinator decline. This assessment highlighted that studies on the effects of pesticides on pollinating insects have been limited to only a few species, primarily from developed countries. Given the worldwide variation in the scale of intensive agricultural practices, pesticide application intensities are likely to vary regionally and consequently the associated risks for insect pollinators. We provide the first long-term, global analysis of inter-regional trends in the use of different classes of pesticide between 1995 and 2020 (FAOSTAT) and a review of literature since the IPBES pollination assessment (2016). All three pesticide classes use rates varied greatly with some countries seeing increased use by 3000 to 4000 % between 1995 and 2020, while for most countries, growth roughly doubled. We present forecast models to predict regional trends of different pesticides up to 2030. Use of all three pesticide classes is to increase in Africa and South America. Herbicide use is to increase in North America and Central Asia. Fungicide use is to increase across all Asian regions. In each of the respective regions, we also examined the number of studies since 2016 in relation to pesticide use trends over the past twenty-five years. Additionally, we present a comprehensive update on the status of knowledge on pesticide impacts on different pollinating insects from literature published during 2016-2022. Finally, we outline several research challenges and knowledge gaps with respect to pesticides and highlight some regional and international conservation efforts and initiatives that address pesticide reduction and/or elimination.
Collapse
Affiliation(s)
- P Basu
- Department of Zoology, University of Calcutta, Kolkata, India.
| | - H T Ngo
- Food and Agriculture Organization of the United Nations (UN FAO), Regional Office for Latin America and the Caribbean (RLC), Región Metropolitana, Santiago, Chile
| | - M A Aizen
- Instituto de Investigaciones en Biodiversidad y Medioambiente (INIBIOMA), Universidad Nacional del Comahue-CONICET, San Carlos de Bariloche, Río Negro, Argentina
| | - L A Garibaldi
- National University of Río Negro, Instituto de Investigaciones en Recursos Naturales, Agroecología y Desarrollo Rural, San Carlos de Bariloche, Río Negro, Argentina; National Council of Scientific and Technical Research, Institute of Research in Natural Resources, Agroecology and Rural Development, San Carlos de Bariloche, Río Negro, Argentina
| | | | | | - A M Klein
- Nature Conservation and Landscape Ecology, University of Freiburg, 79106 Freiburg, Germany
| | | | - C L Seymour
- South African National Biodiversity Institute, Kirstenbosch Research Centre, Private Bag X7, Claremont 7735, South Africa; FitzPatrick Institute of African Ornithology, DST/NRF Centre of Excellence, Department of Biological Sciences, University of Cape Town, Rondebosch 7701, South Africa
| | - A J Vanbergen
- Agroécologie, INRAE, Institut Agro, Université de Bourgogne, Université de Bourgogne-Franche-Comté, Dijon, France
| |
Collapse
|
4
|
Kato AY, Freitas TAL, Gomes CRA, Alves TRR, Ferraz YMM, Trivellato MF, De Jong D, Biller JD, Nicodemo D. Bixafen, Prothioconazole, and Trifloxystrobin Alone or in Combination Have a Greater Effect on Health Related Gene Expression in Honey Bees from Nutritionally Deprived than from Protein Supplemented Colonies. INSECTS 2024; 15:523. [PMID: 39057256 PMCID: PMC11277445 DOI: 10.3390/insects15070523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/25/2024] [Accepted: 06/27/2024] [Indexed: 07/28/2024]
Abstract
The aim of this study was to evaluate whether alterations in food availability compromise the metabolic homeostasis of honey bees exposed to three fungicides alone or together. Ten honey bee colonies were used, with half receiving carbohydrate-protein supplementation for 15 weeks while another five colonies had their protein supply reduced with pollen traps. Subsequently, forager bees were collected and exposed by contact to 1 or 7 µg of bixafen, prothioconazole, or trifloxystrobin, either individually or in combination. After 48 h, bee abdomens without the intestine were used for the analysis of expression of antioxidant genes (SOD-1, CAT, and GPX-1), detoxification genes (GST-1 and CYP306A1), the storage protein gene vitellogenin, and immune system antimicrobial peptide genes (defensin-1, abaecin, hymenoptaecin, and apidaecin), through real-time PCR. All fungicide treatments induced changes in gene expression, with bixafen showing the most prominent upregulation. Exposure to 1 µg of each of the three pesticides resulted in upregulation of genes associated with detoxification and nutrition processes, and downregulation of immune system genes. When the three pesticides were combined at a dose of 7 µg each, there was a pronounced downregulation of all genes. Food availability in the colonies affected the impact of fungicides on the expression of the studied genes in forager bees.
Collapse
Affiliation(s)
- Aline Y. Kato
- Post Graduate Program in Animal Science, School of Agricultural and Veterinarian Sciences, São Paulo State University (Unesp), Jaboticabal 14884-900, SP, Brazil
| | - Tainá A. L. Freitas
- Post Graduate Program in Animal Science, School of Agricultural and Veterinarian Sciences, São Paulo State University (Unesp), Jaboticabal 14884-900, SP, Brazil
| | - Cássia R. A. Gomes
- Post Graduate Program in Animal Science, School of Agricultural and Veterinarian Sciences, São Paulo State University (Unesp), Jaboticabal 14884-900, SP, Brazil
| | - Thais R. R. Alves
- Post Graduate Program in Animal Science, School of Agricultural and Veterinarian Sciences, São Paulo State University (Unesp), Jaboticabal 14884-900, SP, Brazil
| | - Yara M. M. Ferraz
- Post Graduate Program in Animal Science, School of Agricultural and Veterinarian Sciences, São Paulo State University (Unesp), Jaboticabal 14884-900, SP, Brazil
| | - Matheus F. Trivellato
- Post Graduate Program in Animal Science, School of Agricultural and Veterinarian Sciences, São Paulo State University (Unesp), Jaboticabal 14884-900, SP, Brazil
| | - David De Jong
- Genetics Department, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900, SP, Brazil
| | - Jaqueline D. Biller
- Department of Animal Science, College of Agricultural and Technology Sciences, São Paulo State University (Unesp), Dracena 17915-899, SP, Brazil
| | - Daniel Nicodemo
- Department of Animal Science, School of Agricultural and Veterinarian Sciences, São Paulo State University (Unesp), Jaboticabal 14884-900, SP, Brazil
| |
Collapse
|
5
|
Henriques Martins CA, Azpiazu C, Bosch J, Burgio G, Dindo ML, Francati S, Sommaggio D, Sgolastra F. Different Sensitivity of Flower-Visiting Diptera to a Neonicotinoid Insecticide: Expanding the Base for a Multiple-Species Risk Assessment Approach. INSECTS 2024; 15:317. [PMID: 38786873 PMCID: PMC11122312 DOI: 10.3390/insects15050317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 04/18/2024] [Accepted: 04/24/2024] [Indexed: 05/25/2024]
Abstract
Insects play an essential role as pollinators of wild flowers and crops. At the same time, pollinators in agricultural environments are commonly exposed to pesticides, compromising their survival and the provision of pollination services. Although pollinators include a wide range of species from several insect orders, information on pesticide sensitivity is mostly restricted to bees. In addition, the disparity of methodological procedures used for different insect groups hinders the comparison of toxicity data between bees and other pollinators. Dipterans are a highly diverse insect order that includes some important pollinators. Therefore, in this study, we assessed the sensitivity of two hoverflies (Sphaerophoria rueppellii, Eristalinus aeneus) and one tachinid fly (Exorista larvarum) to a neonicotinoid insecticide (Confidor®, imidacloprid) following a comparative approach. We adapted the standardized methodology of acute contact exposure in honey bees to build dose-response curves and calculate median lethal doses (LD50) for the three species. The methodology consisted in applying 1 µL of the test solution on the thorax of each insect. Sphaerophoria rueppelli was the most sensitive species (LD50 = 10.23 ng/insect), and E. aeneus (LD50 = 18,176 ng/insect) the least. We then compared our results with those available in the literature for other pollinator species using species sensitivity distribution (SSD). Based on the SSD curve, the 95th percentile of pollinator species would be protected by a safety factor of 100 times the Apis mellifera endpoint. Overall, dipterans were less sensitive to imidacloprid than most bee species. As opposed to most bee species, oviposition and fecundity of many dipteran species can be reliably assessed in the laboratory. We measured the number of eggs laid following exposure to different insecticide doses and assessed the potential trade-off between oviposition and survival through the sublethal sensitivity index (SSI). Exposure to imidacloprid had a significant effect on fecundity, and SSI values indicated that oviposition is a sensitive endpoint for the three dipteran species tested. Future studies should integrate this information related to population dynamics in simulation models for environmental risk assessment.
Collapse
Affiliation(s)
- Cátia Ariana Henriques Martins
- Dipartimento di Scienze e Tecnologie Agro-Alimentari, Alma Mater Studiorum Università di Bologna, 40127 Bologna, Italy; (C.A.H.M.); (G.B.); (M.L.D.); (S.F.)
| | - Celeste Azpiazu
- CREAF, Centre de Recerca Ecològica i Aplicacions Forestals, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain; (C.A.); (J.B.)
- Universidad Politécnica de Madrid, 28040 Madrid, Spain
| | - Jordi Bosch
- CREAF, Centre de Recerca Ecològica i Aplicacions Forestals, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain; (C.A.); (J.B.)
| | - Giovanni Burgio
- Dipartimento di Scienze e Tecnologie Agro-Alimentari, Alma Mater Studiorum Università di Bologna, 40127 Bologna, Italy; (C.A.H.M.); (G.B.); (M.L.D.); (S.F.)
| | - Maria Luisa Dindo
- Dipartimento di Scienze e Tecnologie Agro-Alimentari, Alma Mater Studiorum Università di Bologna, 40127 Bologna, Italy; (C.A.H.M.); (G.B.); (M.L.D.); (S.F.)
| | - Santolo Francati
- Dipartimento di Scienze e Tecnologie Agro-Alimentari, Alma Mater Studiorum Università di Bologna, 40127 Bologna, Italy; (C.A.H.M.); (G.B.); (M.L.D.); (S.F.)
| | - Daniele Sommaggio
- Dipartimento di Scienze della Vita, Università di Modena e Reggio Emilia, 41121 Modena, Italy;
- National Biodiversity Future Center (NBFC), Piazza Marina 61, 90133 Palermo, Italy
| | - Fabio Sgolastra
- Dipartimento di Scienze e Tecnologie Agro-Alimentari, Alma Mater Studiorum Università di Bologna, 40127 Bologna, Italy; (C.A.H.M.); (G.B.); (M.L.D.); (S.F.)
| |
Collapse
|
6
|
Rasmussen SB, Bosker T, Ramanand GG, Vijver MG. Participatory hackathon to determine ecological relevant endpoints for a neurotoxin to aquatic and benthic invertebrates. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:22885-22899. [PMID: 38418784 PMCID: PMC10997722 DOI: 10.1007/s11356-024-32566-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 02/16/2024] [Indexed: 03/02/2024]
Abstract
The aim of this study is twofold: i) to determine innovative yet sensitive endpoints for sulfoxaflor and ii) to develop best practices for innovative teaching in ecotoxicology. To this end, a group of 52 MSc students participated in an environmental hackathon, during which they did creative toxicity testing on 5 freshwater invertebrate species: Daphnia magna, Chironomus riparius, Asellus aquaticus, Lymnaea stagnalis, and Anisus vortex. Involving the students in an active learning environment stimulated increased creativity and productivity. In total, 28 endpoints were investigated, including standard endpoints (e.g., mortality) as well as biomechanistic and energy-related endpoints. Despite high variances in the results, likely linked to the limited lab experience of the students and interpersonal differences, a promising set of endpoints was selected for further investigation. A more targeted follow-up experiment focused on the most promising organism and set of endpoints: biomechanistic endpoints of C. riparius larvae. Larvae were exposed to a range of sulfoxaflor concentrations (0.90-67.2 μg/L) for 21 days. Video tracking showed that undulation and swimming were significantly reduced at 11.1 μg sulfoxaflor/L after 9 days of exposure, and an EC50 = 10.6 μg/L for mean velocities of the larvae in the water phase was found. Biomechanistic endpoints proved much more sensitive than mortality, for which an LC50 value of 116 μg/L was found on Day 9. Our results show that performing a hackathon with students has excellent potential to find sensitive endpoints that can subsequently be verified using more targeted and professional follow-up experiments. Furthermore, utilising hackathon events in teaching can increase students' enthusiasm about ecotoxicology, driving better learning experiences.
Collapse
Affiliation(s)
- Sofie B Rasmussen
- Institute of Environmental Sciences, Leiden University, P.O. Box 9518, 2300, RA, Leiden, The Netherlands.
| | - Thijs Bosker
- Institute of Environmental Sciences, Leiden University, P.O. Box 9518, 2300, RA, Leiden, The Netherlands
- Leiden University College, Leiden University, P.O. Box 13228, 2501, EE, The Hague, The Netherlands
| | - Giovani G Ramanand
- Institute of Environmental Sciences, Leiden University, P.O. Box 9518, 2300, RA, Leiden, The Netherlands
| | - Martina G Vijver
- Institute of Environmental Sciences, Leiden University, P.O. Box 9518, 2300, RA, Leiden, The Netherlands
| |
Collapse
|
7
|
Han Q, Zhou Y, Zi Y, Zhang R, Feng T, Zou R, Zhu W, Wang Y, Duan H. Discovery of piperonyl-tethered sulfoximines as novel low bee-toxicity aphicides targeting Amelα1/ratβ2 complex. Int J Biol Macromol 2023; 253:126719. [PMID: 37678680 DOI: 10.1016/j.ijbiomac.2023.126719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 08/18/2023] [Accepted: 09/03/2023] [Indexed: 09/09/2023]
Abstract
Nicotinic acetylcholine receptor (nAChR) is recognized as a significant insecticide target for neonicotinoids and some agonists. In this study, the nAChR α1 subunit from Apis mellifera was first found to be narrowly tuned to different bee toxicity insecticides, namely, sulfoxaflor (SFX) and flupyradifurone (FPF). Hence, novel sulfoximine derivatives 7a-h were rationally designed and synthesized by introducing a benzo[d][1,3]dioxole moiety into a unique sulfoximine skeleton based on the binding cavity characteristics of Amelα1/ratβ2. The two electrode voltage clamp responses of 7a-h were obviously lower than that of SFX, indicating their potentially low bee toxicity. Besides, representative compounds 7b and 7g exhibited low bee toxicity (LD50 > 11.0 μg/bee at 48 h) revealed by acute contact toxicity bioassays. Molecular modelling results indicated that Ile152, Ala151, and Val160 from honeybee subunit Amelα1 and Lys144 and Trp80 from aphid subunit Mpα1 may be crucial for bee toxicity and aphicidal activity, respectively. These results clarify the toxic mechanism of agonist insecticides on nontargeted pollinators and reveal novel scaffold sulfoximine aphicidal candidates with low bee toxicity. These results will provide a new perspective on the rational design and highly effective development of novel eco-friendly insecticides based on the structure of the nAChR subunit.
Collapse
Affiliation(s)
- Qing Han
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, People's Republic of China; Key Laboratory of National Forestry and Grassland Administration on Pest Chemical Control, Beijing 100193, People's Republic of China
| | - Yuxin Zhou
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, Jilin 116000, People's Republic of China; Key Laboratory of Vegetation Ecology, MOE, Northeast Normal University, Changchun, Jilin 116000, People's Republic of China
| | - Yunjiang Zi
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, People's Republic of China; Key Laboratory of National Forestry and Grassland Administration on Pest Chemical Control, Beijing 100193, People's Republic of China
| | - Rulei Zhang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, People's Republic of China; Key Laboratory of National Forestry and Grassland Administration on Pest Chemical Control, Beijing 100193, People's Republic of China
| | - Tianyu Feng
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, People's Republic of China; Key Laboratory of National Forestry and Grassland Administration on Pest Chemical Control, Beijing 100193, People's Republic of China
| | - Renxuan Zou
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, People's Republic of China; Key Laboratory of National Forestry and Grassland Administration on Pest Chemical Control, Beijing 100193, People's Republic of China
| | - Wenya Zhu
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, People's Republic of China; Key Laboratory of National Forestry and Grassland Administration on Pest Chemical Control, Beijing 100193, People's Republic of China
| | - Yinliang Wang
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, Jilin 116000, People's Republic of China; Key Laboratory of Vegetation Ecology, MOE, Northeast Normal University, Changchun, Jilin 116000, People's Republic of China.
| | - Hongxia Duan
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, People's Republic of China; Key Laboratory of National Forestry and Grassland Administration on Pest Chemical Control, Beijing 100193, People's Republic of China.
| |
Collapse
|
8
|
Shukla S, Jhamtani RC, Agarwal R. Biochemical and gene expression alterations due to individual exposure of atrazine, dichlorvos, and imidacloprid and their combination in zebrafish. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:118291-118303. [PMID: 37821735 DOI: 10.1007/s11356-023-30160-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 09/25/2023] [Indexed: 10/13/2023]
Abstract
In environmental toxicology, combined toxicity has emerged as an important concern. Atrazine (ATZ), dichlorvos (DIC), and imidacloprid (IMD) are the major pesticides, extensively used to control insect, flies, mosquitoes, and weed. Here, we investigate whether the exposure to three different types of pesticides individually and in combination for 24 h alters antioxidant enzyme responses in zebrafish (Danio rerio). Oxidative stress parameters (biochemical and mRNA expression), acetylcholinesterase (AChE) activity, and Metallothionein-II (MT-II) mRNA expression levels were measured. Present work includes toxicological assessment of individual and combined (CMD) exposure of ATZ (185.4 µM), DIC (181 µM), IMD (97.8 µ), and CMD (ATZ 92.7 µM + DIC 90.5 µM + IMD 48.9 µM), in the liver, kidney, and brain of adult zebrafish. Lipid peroxidation (LPO), glutathione (GSH) content, AChE, superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) activity along with mRNA expression of SOD, CAT, GPx, and MT-II were evaluated. Briefly, LPO, GSH content, the activity of AChE, and all antioxidant enzymes enhanced significantly in individual exposure, which was further altered in the CMD group. The mRNA expression of SOD, CAT, GPx, and MT-II in the liver and kidney showed significant down-regulation in all exposed groups. In the brain, significant upregulation in mRNA expression of SOD, CAT, GPx, and MT-II was observed in DIC and IMD groups, while ATZ and CMD showed significant downregulation except for GPx. Findings postulate that the CMD group exhibits synergistic toxic manifestation. The present study provides the baseline data on the combined toxic effects of pesticides and suggests regulating the use of pesticides.
Collapse
Affiliation(s)
- Saurabh Shukla
- Laboratory of Analytical & Molecular Toxicology (Forensic Chemistry & Toxicology Laboratory), School of Forensic Science, National Forensic Sciences University, Sector 09, Gandhinagar, 382007, Gujarat, India
- Department of Forensic Science, School of Bioengineering and Bioscience, Lovely Professional University, Jalandhar, 144411, India
| | - Reena C Jhamtani
- Laboratory of Analytical & Molecular Toxicology (Forensic Chemistry & Toxicology Laboratory), School of Forensic Science, National Forensic Sciences University, Sector 09, Gandhinagar, 382007, Gujarat, India
- School of Forensic Science, Centurion University of Technology and Management, 752050, Bhubhaneshwar, Orrisa, India
| | - Rakhi Agarwal
- Laboratory of Analytical & Molecular Toxicology (Forensic Chemistry & Toxicology Laboratory), School of Forensic Science, National Forensic Sciences University, Sector 09, Gandhinagar, 382007, Gujarat, India.
- National Forensic Sciences University, Delhi Campus, Delhi, 110085, India.
| |
Collapse
|
9
|
Sınacı C, Çelik A, Yetkin D, Çevik S, Güler G. Sulfoxaflor insecticide exhibits cytotoxic or genotoxic and apoptotic potential via oxidative stress-associated DNA damage in human blood lymphocytes cell cultures. Drug Chem Toxicol 2023; 46:972-983. [PMID: 36036091 DOI: 10.1080/01480545.2022.2114006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 05/27/2022] [Accepted: 06/08/2022] [Indexed: 11/03/2022]
Abstract
The need for foodstuff that emerged with the rapidly increasing world population made fertilizers and pesticides inevitable to obtain maximum efficiency from existing agricultural areas. Sulfoxaflor is currently the only member of the new sulfoximine insecticide subclass of nicotinic acetylcholine receptor agonists. In the study, it was aimed to determine the in vitro genetic, oxidative damage potential, genotoxic and apoptotic effects of three different concentrations (10 µg/mL, 20 µg/mL and 40 µg/mL) of sulfoxaflor insecticide in the cultures of blood lymphocytes. In this study, the single-cell gel electrophoresis (comet), Cytokinesis Block Micronuclues Test (MN test), flow cytometry and measurement of Catalase (CAT) enzyme activity were used to determine genotoxic, apoptotic effects and oxidative damage potential, respectively. It found that there is a decrease in CPBI values and Live cell numbers. It was observed an increase in late apoptotic and necrotic cell numbers, Micronucleus frequency, and Comet analysis parameters (GDI and DCP). There is a significant difference between negative control and all concentration of insecticide for Cytokinesis Block Proliferation Index (CBPI) values and late apoptotic, necrotic and viable cell counts. An increase in CAT enzyme levels was observed at 10 and 20 µg/mL concentrations compared to control., It is found that CAT enzyme activity was inhibited at concentrations of 40 µg/mL. This study is crucial as it is the first study to investigate the impact of Sulfoxaflor insecticide on peripheral blood lymphocyte cells. The genotoxic, oxidative damage, and apoptotic effects of Sulfoxafluor insecticide on the results obtained and its adverse effects on other organisms raise concerns about health and safety.
Collapse
Affiliation(s)
- Cebrail Sınacı
- Department of Biology, Graduate School of Natural and Applied Science, Mersin University, Mersin, Turkey
| | - Ayla Çelik
- Department of Biology, Faculty of Science and Letters, Mersin University, Mersin, Turkey
| | - Derya Yetkin
- Advanced Technology, Education, Research and Application Center, MersinUniversity, Mersin, Turkey
| | - Sertan Çevik
- Department of Molecular Biology and Genetic, Faculty of Science and Letters, Harran University, Şanlıurfa, Turkey
| | - Gizem Güler
- Department of Biology, Graduate School of Natural and Applied Science, Mersin University, Mersin, Turkey
| |
Collapse
|
10
|
Łukaszewicz P, Siudak P, Kropidłowska K, Caban M, Haliński ŁP. Unicellular cyanobacteria degrade sulfoxaflor to its amide metabolite of potentially higher aquatic toxicity. CHEMOSPHERE 2023; 337:139440. [PMID: 37422216 DOI: 10.1016/j.chemosphere.2023.139440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 07/03/2023] [Accepted: 07/05/2023] [Indexed: 07/10/2023]
Abstract
Sulfoxaflor (SFX) is a fourth-generation neonicotinoid used widely in modern agriculture. Due to its high water solubility and mobility in environment, it is expected to occur in water environment. Degradation of SFX leads to formation of corresponding amide (M474), which in the light of recent studies may be much more toxic to aquatic organisms than the parent molecule. Therefore, the aim of the study was to assess the potential of two common species of unicellular bloom-forming cyanobacteria (Synechocystis salina and Microcystis aeruginosa) to metabolize SFX in a 14-day-long experiment, using elevated (10 mg L-1) and predicted highest environmental (10 μg L-1) concentrations. The results obtained support the occurrence of SFX metabolism in cyanobacterial monocultures, leading to release of M474 into the water. Differential SFX decline in culture media, followed by the presence of M474, was observed for both species at different concentration levels. For S. salina, SFX concentration decreased by 7.6% at lower concentration and by 21.3% at higher concentration; the M474 concentrations were 436 ng L-1 and 514 μg L-1, respectively. Corresponding values for M. aeruginosa were 14.3% and 3.0% for SFX decline; 282 ng L-1 and 317 μg L-1 for M474 concentration. In the same time, abiotic degradation was almost non-existent. Metabolic fate of SFX was then studied for its elevated starting concentration. Uptake of SFX to cells and amounts of M474 released to water fully addressed the decrease in SFX concentration in M. aeruginosa culture, while in S. salina 15.5% of initial SFX was transformed to yet unknown metabolites. The degradation rate of SFX observed in the present study is sufficient to produce a concentration of M474 that is potentially toxic for aquatic invertebrates during cyanobacterial blooms. Therefore, there is a need for more reliable risk assessment for the presence of SFX in natural waters.
Collapse
Affiliation(s)
- Paulina Łukaszewicz
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdańsk, Ul. Wita Stwosza 63, 80-308, Gdańsk, Poland
| | - Przemysław Siudak
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdańsk, Ul. Wita Stwosza 63, 80-308, Gdańsk, Poland
| | - Klaudia Kropidłowska
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdańsk, Ul. Wita Stwosza 63, 80-308, Gdańsk, Poland
| | - Magda Caban
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdańsk, Ul. Wita Stwosza 63, 80-308, Gdańsk, Poland
| | - Łukasz P Haliński
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdańsk, Ul. Wita Stwosza 63, 80-308, Gdańsk, Poland.
| |
Collapse
|
11
|
Azpiazu C, Hinarejos S, Sancho G, Albacete S, Sgolastra F, Martins CAH, Domene X, Benrezkallah J, Rodrigo A, Arnan X, Bosch J. Description and validation of an improved method to feed solitary bees (Osmia spp.) known amounts of pesticides. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 264:115398. [PMID: 37634482 DOI: 10.1016/j.ecoenv.2023.115398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 08/17/2023] [Accepted: 08/19/2023] [Indexed: 08/29/2023]
Abstract
Pesticide exposure is an important driver of bee declines. Laboratory toxicity tests provide baseline information on the potential effects of pesticides on bees, but current risk assessment schemes rely on one species, the highly social honey bee, Apis mellifera, and there is uncertainty regarding the extent to which this species is a suitable surrogate for other pollinators. For this reason, Osmia cornuta and Osmia bicornis have been proposed as model solitary bee species in the EU risk assessment scheme. The use of solitary bees in risk assessment requires the development of new methodologies adjusted to the biology of these species. For example, oral dosing methods used with honey bees cannot be readily applied to solitary bees due to differences in feeding behaviour and social interactions. In this study, we describe the "petal method", a laboratory feeding method, and validate its use in acute and chronic exposure oral tests with Osmia spp. We conducted five experiments in which we compared the performance of several artificial flowers combining visual and olfactory cues against the petal method, or in which variations of the petal method were confronted. We then use the results of these experiments to optimize the feeding arenas and propose standardized methods for both acute and chronic exposure tests. The petal method provides high levels of feeding success, thus reducing the number of bees needed. It works with a wide variety of petal species and with both female and male Osmia spp., thus ensuring reproducibility across studies. To validate the use of the petal method in ecotoxicology tests, we assess the toxicity of a standard reference insecticide, dimethoate, in O. cornuta adults and determine LD50 values for this species. The petal method should facilitate the inclusion of solitary bees in risk assessment schemes therefore increasing the protection coverage of pesticide regulation.
Collapse
Affiliation(s)
- C Azpiazu
- CREAF (Centre for Ecological Research and Forestry Applications), 08193 Bellaterra, Spain; Institut de Biologia Evolutiva (CSIC, Universitat Pompeu Fabra), 08034 Barcelona, Spain; Universidad Politécnica de Madrid, 28040 Madrid, Spain.
| | - S Hinarejos
- Sumitomo Chemical, Saint Didier au Mont d'Or, France
| | - G Sancho
- CREAF (Centre for Ecological Research and Forestry Applications), 08193 Bellaterra, Spain
| | - S Albacete
- CREAF (Centre for Ecological Research and Forestry Applications), 08193 Bellaterra, Spain
| | - F Sgolastra
- Dipartimento di Scienze e Tecnologie Agro-Alimentari, Università di Bologna, viale Fanin 42, 40127 Bologna, Italy
| | - C A H Martins
- Dipartimento di Scienze e Tecnologie Agro-Alimentari, Università di Bologna, viale Fanin 42, 40127 Bologna, Italy
| | - X Domene
- CREAF (Centre for Ecological Research and Forestry Applications), 08193 Bellaterra, Spain; Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - J Benrezkallah
- Laboratory of Zoology, Institute for Biosciences, University of Mons, Place du Parc, 20, 7000 Mons, Belgium
| | - A Rodrigo
- CREAF (Centre for Ecological Research and Forestry Applications), 08193 Bellaterra, Spain; Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - X Arnan
- Universidade de Pernambuco - Campus Garanhuns, Rua Capitão Pedro Rodrigues, 105-São José, Garanhuns 55294-902, Brazil
| | - J Bosch
- CREAF (Centre for Ecological Research and Forestry Applications), 08193 Bellaterra, Spain
| |
Collapse
|
12
|
Straw EA, Cini E, Gold H, Linguadoca A, Mayne C, Rockx J, Brown MJF, Garratt MPD, Potts SG, Senapathi D. Neither sulfoxaflor, Crithidia bombi, nor their combination impact bumble bee colony development or field bean pollination. Sci Rep 2023; 13:16462. [PMID: 37777537 PMCID: PMC10542809 DOI: 10.1038/s41598-023-43215-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 09/21/2023] [Indexed: 10/02/2023] Open
Abstract
Many pollinators, including bumble bees, are in decline. Such declines are known to be driven by a number of interacting factors. Decreases in bee populations may also negatively impact the key ecosystem service, pollination, that they provide. Pesticides and parasites are often cited as two of the drivers of bee declines, particularly as they have previously been found to interact with one another to the detriment of bee health. Here we test the effects of an insecticide, sulfoxaflor, and a highly prevalent bumble bee parasite, Crithidia bombi, on the bumble bee Bombus terrestris. After exposing colonies to realistic doses of either sulfoxaflor and/or Crithidia bombi in a fully crossed experiment, colonies were allowed to forage on field beans in outdoor exclusion cages. Foraging performance was monitored, and the impacts on fruit set were recorded. We found no effect of either stressor, or their interaction, on the pollination services they provide to field beans, either at an individual level or a whole colony level. Further, there was no impact of any treatment, in any metric, on colony development. Our results contrast with prior findings that similar insecticides (neonicotinoids) impact pollination services, and that sulfoxaflor impacts colony development, potentially suggesting that sulfoxaflor is a less harmful compound to bee health than neonicotinoids insecticides.
Collapse
Affiliation(s)
- Edward A Straw
- Department of Botany, Trinity College Dublin, Dublin, D02 PN40, Ireland
- Department of Biological Sciences, Centre for Ecology, Evolution and Behaviour, School of Life Sciences and the Environment, Royal Holloway University of London, Egham, Surrey, TW20 0EX, UK
| | - Elena Cini
- Centre for Agri-Environmental Research, School of Agriculture, Policy and Development, University of Reading, Reading, RG6 6AR, UK.
| | - Harriet Gold
- The School of Archaeology, Geography and Environmental Sciences, University of Reading, Reading, RG6 6AB, UK
| | - Alberto Linguadoca
- Department of Biological Sciences, Centre for Ecology, Evolution and Behaviour, School of Life Sciences and the Environment, Royal Holloway University of London, Egham, Surrey, TW20 0EX, UK
- Pesticides Peer Review Unit, European Food Safety Authority (EFSA), Via Carlo Magno 1A, 43126, Parma, Italy
| | - Chloe Mayne
- School of Biological Sciences, University of Reading, Reading, RG6 6AS, UK
| | - Joris Rockx
- Centre for Agri-Environmental Research, School of Agriculture, Policy and Development, University of Reading, Reading, RG6 6AR, UK
| | - Mark J F Brown
- Department of Biological Sciences, Centre for Ecology, Evolution and Behaviour, School of Life Sciences and the Environment, Royal Holloway University of London, Egham, Surrey, TW20 0EX, UK
| | - Michael P D Garratt
- Centre for Agri-Environmental Research, School of Agriculture, Policy and Development, University of Reading, Reading, RG6 6AR, UK
| | - Simon G Potts
- Centre for Agri-Environmental Research, School of Agriculture, Policy and Development, University of Reading, Reading, RG6 6AR, UK
| | - Deepa Senapathi
- Centre for Agri-Environmental Research, School of Agriculture, Policy and Development, University of Reading, Reading, RG6 6AR, UK.
| |
Collapse
|
13
|
Svoboda J, Pech P, Heneberg P. Low concentrations of acetamiprid, deltamethrin, and sulfoxaflor, three commonly used insecticides, adversely affect ant queen survival and egg laying. Sci Rep 2023; 13:14893. [PMID: 37689830 PMCID: PMC10492783 DOI: 10.1038/s41598-023-42129-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 09/05/2023] [Indexed: 09/11/2023] Open
Abstract
Ants are key ecosystem service providers and can serve as important biological control agents in pest management. However, the effects of insecticides on common farmland ant species are poorly understood. We tested the effects of three commonly used insecticides on ants (Hymenoptera, Formicidae). The tested insecticides were acetamiprid (neonicotinoid; formulated as Mospilan 20 SP), deltamethrin (pyrethroid; formulated as Sanium Ultra), and sulfoxaflor (sulfilimine; formulated as Gondola). We tested two ant (Hymenoptera: Formicidae) species with different colony founding strategies, Lasius niger (Linnaeus, 1758) and Myrmica rubra (Linnaeus, 1758). We sprayed their queens with insecticides at concentrations recommended for use in foliar applications in agriculture, i.e., at 1.25 g L-1 (acetamiprid), 0.6 g L-1 (sulfoxaflor), and 0.875 g L-1 (deltamethrin). Further, we diluted the compounds in distilled water and tested them at 10%, 1%, and 0.1% of the field-recommended concentrations, and used distilled water as a control. We monitored the survival of the queens and the number of eggs laid. All three tested insecticides caused severe lethal and sublethal concentration-dependent effects. Even at concentrations three orders of magnitudes lower than recommended for field applications, significantly lower numbers of eggs were found in the queens' nests. The extent of the sublethal effects of acetamiprid and sulfoxaflor was concentration-dependent and differed between the two ant species. Besides bees and bumblebees, ants represent an important group of hymenopterans that are severely affected even by low concentrations of the tested compounds and therefore should be included in risk assessment schemes.
Collapse
Affiliation(s)
- Jakub Svoboda
- Faculty of Science, University of Hradec Králové, Hradec Králové, Czech Republic
| | - Pavel Pech
- Research and Breeding Institute of Pomology Holovousy Ltd., 508 01, Holovousy 129, Czech Republic
| | - Petr Heneberg
- Third Faculty of Medicine, Charles University, Ruská 87, 100 00, Prague, Czech Republic.
| |
Collapse
|
14
|
Azpiazu C, Medina P, Sgolastra F, Moreno-Delafuente A, Viñuela E. Pesticide residues in nectar and pollen of melon crops: Risk to pollinators and effects of a specific pesticide mixture on Bombus terrestris (Hymenoptera: Apidae) micro-colonies. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 326:121451. [PMID: 36933818 DOI: 10.1016/j.envpol.2023.121451] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 03/13/2023] [Accepted: 03/14/2023] [Indexed: 06/18/2023]
Abstract
Residues detected in pollen collected by honey bees are often used to estimate pesticide exposure in ecotoxicological studies. However, for a more accurate assessment of pesticides effect on foraging pollinators, residues found directly on flowers are a more realistic exposure approximation. We conducted a multi-residue analysis of pesticides on pollen and nectar of melon flowers collected from five fields. The cumulative chronic oral exposure Risk Index (RI) was calculated for Apis mellifera, Bombus terrestris and Osmia bicornis to multiple pesticides. However, this index could underestimate the risk since sublethal or synergistic effects are not considered. Therefore, a mixture containing three of the most frequently detected pesticides in our study was tested for synergistic impact on B. terrestris micro-colonies through a chronic oral toxicity test. According to the result, pollen and nectar samples contained numerous pesticide residues, including nine insecticides, nine fungicides, and one herbicide. Eleven of those were not applied by farmers during the crop season, revealing that melon agroecosystems may be pesticide contaminated environments. The primary contributor to the chronic RI was imidacloprid and O. bircornis is at greatest risk for lethality resulting from chronic oral exposure at these sites. In the bumblebee micro-colony bioassay, dietary exposure to acetamiprid, chlorpyrifos and oxamyl at residue level concentration, showed no effects on worker mortality, drone production or drone size and no synergies were detected when pesticide mixtures were evaluated. In conclusion, our findings have significant implications for improving pesticide risk assessment schemes to guarantee pollinator conservation. In particular, bee pesticide risk assessment should not be limited to acute exposure effects to isolated active ingredients in honey bees. Instead, risk assessments should consider the long-term pesticide exposure effects in both pollen and nectar on a range of bees that reflect the diversity of natural ecosystems and the synergistic potential among pesticide formulations.
Collapse
Affiliation(s)
- Celeste Azpiazu
- Unidad de Protección de Cultivos, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid (ETSIAAB-UPM), Madrid, Spain; Institute of Evolutionary Biology (CSIC- Universitat Pompeu Fabra), Barcelona, Spain; CREAF-Universitat Autònoma de Barcelona, Bellaterra (Cerdanyola Del Vallès), Catalonia, Spain.
| | - Pilar Medina
- Unidad de Protección de Cultivos, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid (ETSIAAB-UPM), Madrid, Spain
| | - Fabio Sgolastra
- Dipartimento di Scienze e Tecnologie Agro-Alimentari, Alma Mater Studiorum Università di Bologna, Bologna, Italy
| | - Ana Moreno-Delafuente
- Unidad de Protección de Cultivos, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid (ETSIAAB-UPM), Madrid, Spain; Instituto Madrileño de Investigación y Desarrollo Rural, Agrario y Alimentario (IMIDRA), Alcalá de Henares, Madrid, Spain
| | - Elisa Viñuela
- Unidad de Protección de Cultivos, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid (ETSIAAB-UPM), Madrid, Spain
| |
Collapse
|
15
|
Decourtye A, Rollin O, Requier F, Allier F, Rüger C, Vidau C, Henry M. Decision-making criteria for pesticide spraying considering the bees’ presence on crops to reduce their exposure risk. Front Ecol Evol 2023. [DOI: 10.3389/fevo.2023.1062441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023] Open
Abstract
The risk of poisoning bees by sprayed pesticides depends on the attractiveness of plants and environmental and climatic factors. Thus, to protect bees from pesticide intoxication, an usual exemption to pesticide regulations allows for spraying on blooming flowers with insecticides or acaricides when no bees are foraging on crops. Nevertheless, decision-making criteria for farmers to assess the absence of bees on their crops remain under debate. To fill this gap, we present here a review of the literature and an analysis of weather conditions and environmental factors that affect the presence of bees on flowering crops that may be treated with pesticides, with the objective of proposing to farmers a series of decision-making criteria on how and when to treat. We conclude that the criteria commonly considered, such as ambient temperature, crop attractiveness, or distance from field edges, cannot guarantee the absence of forager exposure during pesticide sprays. Nocturnal sprays of pesticides on crops would be the most effective action to help farmers avoid unintentional acute poisoning of bees.
Collapse
|
16
|
Castle D, Alkassab AT, Steffan-Dewenter I, Pistorius J. Nutritional resources modulate the responses of three bee species to pesticide exposure. JOURNAL OF HAZARDOUS MATERIALS 2023; 443:130304. [PMID: 36368063 DOI: 10.1016/j.jhazmat.2022.130304] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 10/06/2022] [Accepted: 10/30/2022] [Indexed: 06/16/2023]
Abstract
The response of bee species to various stressors is assumed to depend on the availability of sufficient nutrients in their environment. We compare the response of three bee species (Apis mellifera, Bombus terrestris, Osmia bicornis) under laboratory conditions. Survival, physiology, and sensitivity, after exposure to the fungicide prochloraz, the insecticide chlorantraniliprole, and their mixture with different nutritional resources (sugar only, sugar with amino acids or pollen) were observed. Prochloraz reduced the bee survival of A. mellifera and O. bicornis fed with pollen, but not with other diets. Chlorantraniliprole impaired the survival of A. mellifera fed with sugar or pollen diet, but not with amino acid diet. The mixture impaired survival of A. mellifera and O. bicornis in association with every diet. B. terrestris was only affected by chlorantraniliprole and its mixture with prochloraz fed with sugar diet. The activity of P450 reductase was higher in A. mellifera fed with amino acids in all treatments, whereas no effect emerged in O. bicornis and B. terrestris. Our results indicate that the sensitivity of bee species after exposure to agrochemicals is affected by diet. Thus, balanced and species-dependent nutrition ameliorated the effects. Further field studies are necessary to evaluate the potential effects of such mixtures on bee populations.
Collapse
Affiliation(s)
- Denise Castle
- Julius Kühn-Institut (JKI), Federal Research Centre for Cultivated Plants, Institute for Bee Protection, Messeweg 11/12, Braunschweig, Germany; University of Würzburg, Department of Animal Ecology and Tropical Biology, Biocenter, Am Hubland, Würzburg, Germany.
| | - Abdulrahim T Alkassab
- Julius Kühn-Institut (JKI), Federal Research Centre for Cultivated Plants, Institute for Bee Protection, Messeweg 11/12, Braunschweig, Germany
| | - Ingolf Steffan-Dewenter
- University of Würzburg, Department of Animal Ecology and Tropical Biology, Biocenter, Am Hubland, Würzburg, Germany
| | - Jens Pistorius
- Julius Kühn-Institut (JKI), Federal Research Centre for Cultivated Plants, Institute for Bee Protection, Messeweg 11/12, Braunschweig, Germany
| |
Collapse
|
17
|
Martins CAH, Caliani I, D'Agostino A, Di Noi A, Casini S, Parrilli M, Azpiazu C, Bosch J, Sgolastra F. Biochemical responses, feeding and survival in the solitary bee Osmia bicornis following exposure to an insecticide and a fungicide alone and in combination. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:27636-27649. [PMID: 36383317 PMCID: PMC9995414 DOI: 10.1007/s11356-022-24061-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 11/02/2022] [Indexed: 06/16/2023]
Abstract
In agricultural ecosystems, bees are exposed to combinations of pesticides that may have been applied at different times. For example, bees visiting a flowering crop may be chronically exposed to low concentrations of systemic insecticides applied before bloom and then to a pulse of fungicide, considered safe for bees, applied during bloom. In this study, we simulate this scenario under laboratory conditions with females of the solitary bee, Osmia bicornis L. We studied the effects of chronic exposure to the neonicotinoid insecticide, Confidor® (imidacloprid) at a realistic concentration, and of a pulse (1 day) exposure of the fungicide Folicur® SE (tebuconazole) at field application rate. Syrup consumption, survival, and four biomarkers: acetylcholinesterase (AChE), carboxylesterase (CaE), glutathione S-transferase (GST), and alkaline phosphatase (ALP) were evaluated at two different time points. An integrated biological response (IBRv2) index was elaborated with the biomarker results. The fungicide pulse had no impact on survival but temporarily reduced syrup consumption and increased the IBRv2 index, indicating potential molecular alterations. The neonicotinoid significantly reduced syrup consumption, survival, and the neurological activity of the enzymes. The co-exposure neonicotinoid-fungicide did not increase toxicity at the tested concentrations. AChE proved to be an efficient biomarker for the detection of early effects for both the insecticide and the fungicide. Our results highlight the importance of assessing individual and sub-individual endpoints to better understand pesticide effects on bees.
Collapse
Affiliation(s)
- Cátia Ariana Henriques Martins
- Department of Agricultural and Food Sciences, Alma Mater Studiorum Università Di Bologna, Viale Fanin 42, 40127, Bologna, Italy
| | - Ilaria Caliani
- Department of Physical, Earth and Environmental Sciences, University of Siena, Via Mattioli 4, 53100, Siena, Italy
| | - Antonella D'Agostino
- Department of Management and Quantitative Studies, University of Naples Parthenope, Naples, Italy
| | - Agata Di Noi
- Department of Life Sciences, University of Siena, Via Mattioli, 4, 53100, Siena, Italy.
| | - Silvia Casini
- Department of Physical, Earth and Environmental Sciences, University of Siena, Via Mattioli 4, 53100, Siena, Italy
| | - Martina Parrilli
- Department of Agricultural and Food Sciences, Alma Mater Studiorum Università Di Bologna, Viale Fanin 42, 40127, Bologna, Italy
| | - Celeste Azpiazu
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Passeig Marítim de La Barceloneta 37, 08003, Barcelona, Spain
- Universidad Politécnica de Madrid, 28040, Madrid, Spain
| | - Jordi Bosch
- CREAF, Universitat Autònoma de Barcelona, 08193, Barcelona, Bellaterra, Spain
| | - Fabio Sgolastra
- Department of Agricultural and Food Sciences, Alma Mater Studiorum Università Di Bologna, Viale Fanin 42, 40127, Bologna, Italy
| |
Collapse
|
18
|
Cheng S, Dai P, Li R, Chen Z, Liang P, Xie X, Zhen C, Gao X. The sulfoximine insecticide sulfoxaflor exposure reduces the survival status and disrupts the intestinal metabolism of the honeybee Apis mellifera. JOURNAL OF HAZARDOUS MATERIALS 2023; 442:130109. [PMID: 36303336 DOI: 10.1016/j.jhazmat.2022.130109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 09/02/2022] [Accepted: 09/30/2022] [Indexed: 06/16/2023]
Abstract
Honeybees (Apis mellifera) are indispensable pollinators in agricultural production, biodiversity conservation, and nutrients provision. The abundance and diversity of honeybees have been rapidly diminishing, possibly related to the extensive use of insecticides in ecosystems. Sulfoxaflor is a novel sulfoximine insecticide that, like neonicotinoids, acts as a competitive modulator of nicotinic acetylcholine receptors (nAChR) in insects. However, few studies have addressed the negative effects of sulfoxaflor on honeybees at environmentally relevant concentrations. In the present study, adult workers were fed a 50% (w/v) of sugar solution containing different concentrations (0, 0.05, 0.5 and 2.0 mg/L) of sulfoxaflor for two weeks consecutively. The survival rates, food intake, and body weight of the honeybees significantly decreased after continuous exposure at higher doses (0.5 and 2.0 mg/L) of sulfoxaflor when compared with the control. The change in the metabolites in the honeybee gut was determined using high-throughput non-targeted metabolomics on day 14 after sulfoxaflor treatment. The results revealed that 24 and 105 metabolites changed after exposure to 0.5 and 2.0 mg/L sulfoxaflor, respectively, compared with that of the control groups. A total of 12 changed compounds including pregenolone and glutathione were detected as potential biomarkers, which were eventually found to be enriched in pathways of the steroid hormone biosynthesis (p = 0.0001) and glutathione metabolism (p = 0.021). These findings provide a new perspective on the physiological influence of sulfoxaflor stress in honeybees.
Collapse
Affiliation(s)
- Shenhang Cheng
- Department of Entomology, China Agricultural University, Beijing 100193, PR China
| | - Pingli Dai
- Key Laboratory of Pollinating Insect Biology, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, PR China
| | - Ren Li
- Department of Entomology, China Agricultural University, Beijing 100193, PR China
| | - Zhibin Chen
- Department of Entomology, China Agricultural University, Beijing 100193, PR China
| | - Pingzhuo Liang
- Department of Entomology, China Agricultural University, Beijing 100193, PR China
| | - Xiaoping Xie
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Congai Zhen
- Department of Entomology, China Agricultural University, Beijing 100193, PR China
| | - Xiwu Gao
- Department of Entomology, China Agricultural University, Beijing 100193, PR China.
| |
Collapse
|
19
|
Barascou L, Sene D, Le Conte Y, Alaux C. Pesticide risk assessment: honeybee workers are not all equal regarding the risk posed by exposure to pesticides. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:90328-90337. [PMID: 35864404 DOI: 10.1007/s11356-022-21969-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 07/07/2022] [Indexed: 06/15/2023]
Abstract
Toxicological studies in honeybees have long shown that a single pesticide dose or concentration does not necessarily induce a single response. Inter-individual differences in pesticide sensitivity and/or the level of exposure (e.g., ingestion of pesticide-contaminated matrices) may explain this variability in risk posed by a pesticide. Therefore, to better inform pesticide risk assessment for honeybees, we studied the risk posed by pesticides to two behavioral castes, nurse, and forager bees, which are largely represented within colonies and which exhibit large differences in their physiological backgrounds. For that purpose, we determined the sensitivity of nurses and foragers to azoxystrobin (fungicide) and sulfoxaflor (insecticide) upon acute or chronic exposure. Azoxystrobin was found to be weakly toxic to both types of bees. However, foragers were more sensitive to sulfoxaflor than nurses upon acute and chronic exposure. This phenomenon was not explained by better sulfoxaflor metabolization in nurses, but rather by differences in body weight (nurses being 1.6 times heavier than foragers). Foragers consistently consumed more sugar syrup than nurses, and this increased consumption was even more pronounced with pesticide-contaminated syrup (at specific concentrations). Altogether, the stronger susceptibility and exposure of foragers to sulfoxaflor contributed to increases of 2 and tenfold for the acute and chronic risk quotients, respectively, compared to nurses. In conclusion, to increase the safety margin and avoid an under-estimation of the risk posed by insecticides to honeybees, we recommend systematically including forager bees in regulatory tests.
Collapse
Affiliation(s)
| | - Deborah Sene
- INRAE, Abeilles Et Environnement, Avignon, France
| | | | - Cedric Alaux
- INRAE, Abeilles Et Environnement, Avignon, France.
| |
Collapse
|
20
|
Azpiazu C, Bosch J, Martins C, Sgolastra F. Effects of chronic exposure to the new insecticide sulfoxaflor in combination with a SDHI fungicide in a solitary bee. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 850:157822. [PMID: 35931165 DOI: 10.1016/j.scitotenv.2022.157822] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 07/31/2022] [Accepted: 07/31/2022] [Indexed: 06/15/2023]
Abstract
The recent EU ban of the three most widely used neonicotinoids (imidacloprid, thiamethoxam and clothianidin) to all outdoors applications has stimulated the introduction of new insecticides into the market. Sulfoxaflor is a new systemic insecticide that, like neonicotinoids, acts as a modulator of nicotinic acetylcholine receptors. In agro-environments, bees can be exposed to this compound via contaminated pollen and nectar for long periods of time. Therefore, it is important to assess the potential effects of chronic exposure to sulfoxaflor, alone and in combination with fungicides, on pollinators. In this study, we tested the effects of chronic exposure to two field concentrations of sulfoxaflor (20 and 100 ppb) alone and in combination with four concentrations of the fungicide fluxapyroxad (7500, 15,000, 30,000 and 60,000 ppb) on syrup consumption and longevity in females of the solitary bee Osmia bicornis L. Exposure to 20 ppb of sulfoxaflor, alone and in combination with the fungicide, stimulated syrup consumption, but did not affect longevity. In contrast, syrup consumption decreased in bees exposed to 100 ppb, all of which died after 2-6 days of exposure. We found no evidence of synergism between the two compounds at any of the two sulfoxaflor concentrations tested. Comparison of our findings with the literature, confirms that O. bicornis is more sensitive to sulfoxaflor than honey bees. Our results highlight the need to include different bee species in risk assessment schemes.
Collapse
Affiliation(s)
- Celeste Azpiazu
- Dipartimento di Scienze e Tecnologie Agro-Alimentari, Alma Mater Studiorum Università di Bologna, viale Fanin 42, 40127 Bologna, Italy; CREAF, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain; Institute of Evolutionary Biology (CSIC- Universitat Pompeu Fabra), 08034 Barcelona, Spain; Universidad Politécnica de Madrid, 28040 Madrid, Spain.
| | - Jordi Bosch
- CREAF, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Cátia Martins
- Dipartimento di Scienze e Tecnologie Agro-Alimentari, Alma Mater Studiorum Università di Bologna, viale Fanin 42, 40127 Bologna, Italy
| | - Fabio Sgolastra
- Dipartimento di Scienze e Tecnologie Agro-Alimentari, Alma Mater Studiorum Università di Bologna, viale Fanin 42, 40127 Bologna, Italy
| |
Collapse
|
21
|
Al Naggar Y, Singavarapu B, Paxton RJ, Wubet T. Bees under interactive stressors: the novel insecticides flupyradifurone and sulfoxaflor along with the fungicide azoxystrobin disrupt the gut microbiota of honey bees and increase opportunistic bacterial pathogens. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 849:157941. [PMID: 35952893 DOI: 10.1016/j.scitotenv.2022.157941] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 08/01/2022] [Accepted: 08/05/2022] [Indexed: 05/21/2023]
Abstract
The gut microbiome plays an important role in bee health and disease. But it can be disrupted by pesticides and in-hive chemicals, putting honey bee health in danger. We used a controlled and fully crossed laboratory experimental design to test the effects of a 10-day period of chronic exposure to field-realistic sublethal concentrations of two nicotinic acetylcholine receptor agonist insecticides (nACHRs), namely flupyradifurone (FPF) and sulfoxaflor (Sulf), and a fungicide, azoxystrobin (Azoxy), individually and in combination, on the survival of individual honey bee workers and the composition of their gut microbiota (fungal and bacterial diversity). Metabarcoding was used to examine the gut microbiota on days 0, 5, and 10 of pesticide exposure to determine how the microbial response varies over time; to do so, the fungal ITS2 fragment and the V4 region of the bacterial 16S rRNA were targeted. We found that FPF has a negative impact on honey bee survival, but interactive (additive or synergistic) effects between either insecticide and the fungicide on honey bee survival were not statistically significant. Pesticide treatments significantly impacted the microbial community composition. The fungicide Azoxy substantially reduced the Shannon diversity of fungi after chronic exposure for 10 days. The relative abundance of the top 10 genera of the bee gut microbiota was also differentially affected by the fungicide, insecticides, and fungicide-insecticide combinations. Gut microbiota dysbiosis was associated with an increase in the relative abundance of opportunistic pathogens such as Serratia spp. (e.g. S. marcescens), which can have devastating consequences for host health such as increased susceptibility to infection and reduced lifespan. Our findings raise concerns about the long-term impact of novel nACHR insecticides, particularly FPF, on pollinator health and recommend a novel methodology for a refined risk assessment that includes the potential effects of agrochemicals on the gut microbiome of bees.
Collapse
Affiliation(s)
- Yahya Al Naggar
- General Zoology, Institute for Biology, Martin Luther University Halle-Wittenberg, Hoher Weg 8, 06120 Halle (Saale), Germany; Zoology Department, Faculty of Science, Tanta University, Tanta 31527, Egypt.
| | - Bala Singavarapu
- Department of Community Ecology, UFZ-Helmholtz Centre for Environmental Research, Theodor-Lieser-Str. 4, 06120 Halle (Saale), Germany; German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstrasse 4, 04103 Leipzig, Germany; Institute of Biology/Geobotany and Botanical Garden, Martin Luther University Halle-Wittenberg, Am Kirchtor 1, 06108 Halle (Saale), Germany
| | - Robert J Paxton
- General Zoology, Institute for Biology, Martin Luther University Halle-Wittenberg, Hoher Weg 8, 06120 Halle (Saale), Germany; German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstrasse 4, 04103 Leipzig, Germany
| | - Tesfaye Wubet
- Department of Community Ecology, UFZ-Helmholtz Centre for Environmental Research, Theodor-Lieser-Str. 4, 06120 Halle (Saale), Germany; German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstrasse 4, 04103 Leipzig, Germany
| |
Collapse
|
22
|
Belden JB. The acute toxicity of pesticide mixtures to honeybees. INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT 2022; 18:1694-1704. [PMID: 35212143 DOI: 10.1002/ieam.4595] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 02/07/2022] [Accepted: 02/23/2022] [Indexed: 06/14/2023]
Abstract
Honeybees (Apis mellifera) frequently live in complex environments where exposure to mixtures of pesticides is possible. Although several studies have expressed concern regarding the combined effects of pesticide mixtures, other studies did not find increased toxicity. Thus, the primary objective of this study was to identify peer-reviewed literature measuring the toxicity of pesticide mixtures to honeybees and determine how frequently synergistic interactions occur. Many experiments (258) were identified that met the criteria for inclusion. When considering all experiments, 34% of experiments had model deviation ratios (MDR; expected toxicity/observed toxicity) greater than 2, suggesting greater-than-additive toxicity. Twelve percent of experiments had MDR values greater than 5, with several studies exceeding 100. However, most experiments that had higher MDRs included azole fungicides or acaricides as a component of the mixture. After removal of these groups, only 8% of experiments exceeded an MDR of 2, and no experiments exceeded 5. Moreover, the influence of the azole fungicides was dose dependent. If only experiments that used azole exposure at environmentally relevant concentrations were considered, azole fungicides had limited impact on neonicotinoid insecticides. However, pyrethroid insecticides still had greater than expected toxicity with 80% of experiments having MDR values greater than 2. Acaricides also had greater than expected incidence of synergy with approximately 30% of studies reporting MDR values greater than 2. It should be noted that even the azole studies considered environmentally relevant frequently used maximum exposure rates and worst-case exposure scenarios. The primary finding is that synergy is uncommon except for a few cases where known synergists (azole fungicides) and pesticides with variable metabolism potential, such as some pyrethroids, are in combination. Future work is still needed to refine the relevance of azole fungicides at commonly occurring environmental concentrations. Integr Environ Assess Manag 2022;18:1694-1704. © 2022 SETAC.
Collapse
Affiliation(s)
- Jason B Belden
- Department of Integrative Biology, Oklahoma State University, Stillwater, OK, USA
| |
Collapse
|
23
|
Zhao H, Li G, Cui X, Wang H, Liu Z, Yang Y, Xu B. Review on effects of some insecticides on honey bee health. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2022; 188:105219. [PMID: 36464327 DOI: 10.1016/j.pestbp.2022.105219] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 04/03/2022] [Accepted: 08/26/2022] [Indexed: 06/17/2023]
Abstract
Insecticides, one of the main agrochemicals, are useful for controlling pests; however, the indiscriminate use of insecticides has led to negative effects on nontarget insects, especially honey bees, which are essential for pollination services. Different classes of insecticides, such as neonicotinoids, pyrethroids, chlorantraniliprole, spinosad, flupyradifurone and sulfoxaflor, not only negatively affect honey bee growth and development but also decrease their foraging activity and pollination services by influencing their olfactory sensation, memory, navigation back to the nest, flight ability, and dance circuits. Honey bees resist the harmful effects of insecticides by coordinating the expression of genes related to immunity, metabolism, and detoxification pathways. To our knowledge, more research has been conducted on the effects of neonicotinoids on honey bee health than those of other insecticides. In this review, we summarize the current knowledge regarding the effects of some insecticides, especially neonicotinoids, on honey bee health. Possible strategies to increase the positive impacts of insecticides on agriculture and reduce their negative effects on honey bees are also discussed.
Collapse
Affiliation(s)
- Hang Zhao
- College of Life Sciences, Qufu Normal University, Qufu 273165, China
| | - Guilin Li
- College of Life Sciences, Qufu Normal University, Qufu 273165, China
| | - Xuepei Cui
- College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Hongfang Wang
- College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Zhenguo Liu
- College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Yuewei Yang
- College of Life Sciences, Qufu Normal University, Qufu 273165, China.
| | - Baohua Xu
- College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong 271018, China.
| |
Collapse
|
24
|
Boff S, Keller A, Raizer J, Lupi D. Decreased efficiency of pollen collection due to Sulfoxaflor exposure leads to a reduction in the size of bumble bee workers in late European summer. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.842563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Bumble bees (Bombus terrestris) are important pollinators of wild and crop plants. Despite their importance in the process of fruit and seed production on crop sites, their activity may be impaired due to exposure to pesticides. This species has a yearly life cycle and colony success may rely on effective foraging of workers on ruderal plants late in summer when most crops are no longer flowering. In the current study, we investigated the effect of chronic exposure to Sulfoxaflor on aspects of the foraging behavior of bumble bees and whether Sulfoxaflor influences the body size of workers of B. terrestris in a crop landscape. We found that 2 weeks of continuous exposure to Sulfoxaflor influenced workers’ foraging dynamics and collection of resources. However, there was no evidence that the 5 ppb dose of the pesticide impacted the ability of bees to handle flowers with different traits. Workers from colonies exposed to Sulfoxaflor were smaller. The effect on worker size may be explained as a consequence of the reduced pollen income per unit of worker foraging. Thus, if the effects of Sulfoxaflor applied directly to crops had the same effect as that observed on commercial bumble bees after our chronic exposure, it might negatively impact colony success due to the impact on pollen collection and the reduction in the size of workers.
Collapse
|
25
|
Capela N, Sarmento A, Simões S, Azevedo-Pereira HMVS, Sousa JP. Sub-lethal doses of sulfoxaflor impair honey bee homing ability. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 837:155710. [PMID: 35526620 DOI: 10.1016/j.scitotenv.2022.155710] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 04/29/2022] [Accepted: 05/01/2022] [Indexed: 06/14/2023]
Abstract
Agricultural intensification has increased the number of stressors that pollinators are exposed to. Besides increasing landscape fragmentation that limit the supply of flower resources, intensive agricultural practices relying on the use of pesticides to control agricultural pests also affect non-target organisms like honey bees. The use of most pesticides containing neonicotinoids has been severely restricted in the European Union, leaving pesticides containing acetamiprid as the only ones that are still authorized. In the meantime, new substances like sulfoxaflor, that have a similar mode of action acting on the insect's nicotinic acetylcholine receptors (nAChR), have been approved for agricultural use. In Europe and USA, the use of pesticides containing this active ingredient is limited due to toxic effects already reported on bees, but no restrictions regarding this matter were applied in other countries (e.g., Brazil). In this study, homing ability tests with acetamiprid and sulfoxaflor were performed, in which honey bees were fed with three sub-lethal doses from each substance. After exposure, each honey bee was equipped with an RFID chip and released 1 km away from the colony to evaluate their homing ability. No significant effects were detected in honey bees fed with 32, 48 and 61 ng of acetamiprid while a poor performance on their homing ability, with only 28% of them reaching the colony instead of 75%, was detected at a 26 ng/a.s./bee dose of sulfoxaflor. Although, both pesticides act on the nAChR, the higher sulfoxaflor toxicity might be related with the honey bees detoxifying mechanisms, which are more effective on cyano-based neonicotinoids (i.e., acetamiprid) than sulfoximines. With this study we encourage the use of homing ability tests to be a suitable candidate to integrate the future risk assessment scheme, providing valuable data to models predicting effects on colony health that emerge from the individual actions of each bee.
Collapse
Affiliation(s)
- Nuno Capela
- Centre for Functional Ecology, Department of Life Sciences, Associated Laboratory TERRA, University of Coimbra, Portugal.
| | - Artur Sarmento
- Centre for Functional Ecology, Department of Life Sciences, Associated Laboratory TERRA, University of Coimbra, Portugal
| | - Sandra Simões
- Centre for Functional Ecology, Department of Life Sciences, Associated Laboratory TERRA, University of Coimbra, Portugal
| | - Henrique M V S Azevedo-Pereira
- Centre for Functional Ecology, Department of Life Sciences, Associated Laboratory TERRA, University of Coimbra, Portugal; ForestWISE - Collaborative Laboratory for Integrated Forest & Fire Management, Quinta de Prados, 5001-801 Vila Real, Portugal
| | - José Paulo Sousa
- Centre for Functional Ecology, Department of Life Sciences, Associated Laboratory TERRA, University of Coimbra, Portugal
| |
Collapse
|
26
|
Schwarz JM, Knauer AC, Allan MJ, Dean RR, Ghazoul J, Tamburini G, Wintermantel D, Klein AM, Albrecht M. No evidence for impaired solitary bee fitness following pre-flowering sulfoxaflor application alone or in combination with a common fungicide in a semi-field experiment. ENVIRONMENT INTERNATIONAL 2022; 164:107252. [PMID: 35483184 DOI: 10.1016/j.envint.2022.107252] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 04/04/2022] [Accepted: 04/17/2022] [Indexed: 06/14/2023]
Abstract
Pesticide exposure is considered a major driver of pollinator decline and the use of neonicotinoid insecticides has been restricted by regulatory authorities due to their risks for pollinators. Impacts of new alternative sulfoximine-based compounds on solitary bees and their potential interactive effects with other commonly applied pesticides in agriculture remain unclear. Here, we conducted a highly replicated full-factorial semi-field experiment with the solitary bee Osmia bicornis, an important pollinator of crops and wild plants in Europe, and Phacelia tanacetifolia as a model crop. We show that spray applications of the insecticide sulfoxaflor (product Closer) and the fungicide azoxystrobin (product Amistar), both alone and combined, had no significant negative impacts on adult female survival or the production, mortality, sex ratio and body size of offspring when sulfoxaflor was applied five days before crop flowering. Our results indicate that for O. bicornis (1) the risk of adverse impacts of sulfoxaflor (Closer) on fitness is small when applied at least five days before crop flowering and (2) that azoxystrobin (Amistar) has a low potential of exacerbating sulfoxaflor effects under field-realistic conditions.
Collapse
Affiliation(s)
- Janine Melanie Schwarz
- Agroscope, Agroecology and Environment, Zurich, Switzerland; ETH Zurich, Institute for Terrestrial Ecosystems, Ecosystem Management, Zurich, Switzerland.
| | - Anina C Knauer
- Agroscope, Agroecology and Environment, Zurich, Switzerland
| | | | - Robin R Dean
- Red Beehive Company, Bishops Waltham, United Kingdom
| | - Jaboury Ghazoul
- ETH Zurich, Institute for Terrestrial Ecosystems, Ecosystem Management, Zurich, Switzerland
| | - Giovanni Tamburini
- University of Freiburg, Nature Conservation and Landscape Ecology, Freiburg, Germany; University of Bari, Department of Soil, Plant and Food Sciences (DiSSPA - Entomology), Bari, Italy
| | - Dimitry Wintermantel
- University of Freiburg, Nature Conservation and Landscape Ecology, Freiburg, Germany
| | - Alexandra-Maria Klein
- University of Freiburg, Nature Conservation and Landscape Ecology, Freiburg, Germany
| | | |
Collapse
|
27
|
Sensitivity of Buff-Tailed Bumblebee (Bombus terrestris L.) to Insecticides with Different Mode of Action. INSECTS 2022; 13:insects13020184. [PMID: 35206757 PMCID: PMC8879041 DOI: 10.3390/insects13020184] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/26/2022] [Accepted: 02/06/2022] [Indexed: 12/10/2022]
Abstract
Simple Summary Several neonicotinoid insecticides that were once widely used for pest control are currently banned for outdoor use in the European Union (EU) because they pose a risk to bees. This restriction meant that farmers had to look for alternatives for pest management and use known insecticides or new substances with supposedly more bee-friendly characteristics. We evaluated the toxicity of six insecticides on buff-tailed bumblebee workers (Bombus terrestris): two banned neonicotinoids (imidacloprid, thiacloprid), two pyrethroids (deltamethrin, esfenvalerate), one sulfoximine (sulfoxaflor) and a microbial insecticide based on Bacillus thuringiensis toxins, which are present in genetically modified (Bt) maize. The results obtained show that certain insecticides in use have higher acute toxicity to B. terrestris than some of the banned neonicotinoids. Abstract Systemic insecticides are recognized as one of the drivers of the worldwide bee decline as they are exposed to them through multiple pathways. Specifically, neonicotinoids, some of which are banned for outdoor use in the European Union (EU), have been pointed out as a major cause of bee collapse. Thus, farmers have had to look for alternatives for pest control and use known insecticides or new substances reportedly less harmful to bees. We evaluated the oral acute toxicity of six insecticides (three of them systemic: imidacloprid, thiacloprid and sulfoxaflor) with four different modes of action on buff-tailed bumblebee workers (Bombus terrestris): two banned neonicotinoids (imidacloprid, thiacloprid), two pyrethroids (deltamethrin, esfenvalerate), one sulfoximine (sulfoxaflor) and a microbial insecticide based on Bacillus thuringiensis toxins, present in genetically modified (Bt) maize. The microbial insecticide only caused mortality to bumblebee workers at extremely high concentrations, so it is expected that Bt maize does not pose a risk to them. The toxicity of the other five insecticides on bumblebees was, from highest to lowest: imidacloprid, sulfoxaflor, deltamethrin, esfenvalerate and thiacloprid. This outcome suggests that certain insecticides in use are more toxic to B. terrestris than some banned neonicotinoids. Further chronic toxicity studies, under realistic conditions, are necessary for a proper risk assessment.
Collapse
|
28
|
Barascou L, Requier F, Sené D, Crauser D, Le Conte Y, Alaux C. Delayed effects of a single dose of a neurotoxic pesticide (sulfoxaflor) on honeybee foraging activity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 805:150351. [PMID: 34818794 DOI: 10.1016/j.scitotenv.2021.150351] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/10/2021] [Accepted: 09/11/2021] [Indexed: 06/13/2023]
Abstract
Pesticide risk-assessment guidelines for honeybees (Apis mellifera) generally require determining the acute toxicity of a chemical over the short-term through fix-duration tests. However, potential long-lasting or delayed effects resulting from an acute exposure (e.g. a single dose) are often overlooked, although the modification of a developmental process may have life-long consequences. To investigate this question, we exposed young honeybee workers to a single sublethal field-realistic dose of a neurotoxic pesticide, sulfoxaflor, at one of two amounts (16 or 60 ng), at the moment when they initiated orientation flights (preceding foraging activity). We then tracked in the field their flight activity and lifespan with automated life-long monitoring devices. Both amounts of sulfoxaflor administered reduced the total number of flights but did not affect bee survival and flight duration. When looking at the time series of flight activity, effects were not immediate but delayed until foraging activity with a decrease in the daily number of foraging flights and consequently in their total number (24 and 33% less for the 16 and 60 ng doses, respectively). The results of our study therefore blur the general assumption in honeybee toxicology that acute exposure results in immediate and rapid effects and call for long-term recording and/or time-to-effect measurements, even upon exposure to a single dose of pesticide.
Collapse
Affiliation(s)
| | - Fabrice Requier
- Université Paris-Saclay, CNRS, IRD, UMR Évolution, Génomes, Comportement et Écologie, F-91198 Gif-sur-Yvette, France
| | - Deborah Sené
- INRAE, Abeilles et Environnement, Avignon, France
| | | | | | - Cedric Alaux
- INRAE, Abeilles et Environnement, Avignon, France
| |
Collapse
|
29
|
Tamburini G, Pereira-Peixoto MH, Borth J, Lotz S, Wintermantel D, Allan MJ, Dean R, Schwarz JM, Knauer A, Albrecht M, Klein AM. Fungicide and insecticide exposure adversely impacts bumblebees and pollination services under semi-field conditions. ENVIRONMENT INTERNATIONAL 2021; 157:106813. [PMID: 34455190 DOI: 10.1016/j.envint.2021.106813] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 07/30/2021] [Accepted: 07/30/2021] [Indexed: 06/13/2023]
Abstract
Sulfoximines, the next generation systemic insecticides developed to replace neonicotinoids, have been shown to negatively impact pollinator development and reproduction. However, field-realistic studies on sulfoximines are few and consequences on pollination services unexplored. Moreover, the impacts of other agrochemicals such as fungicides, and their combined effects with insecticides remain poorly investigated. Here, we show in a full factorial semi-field experiment that spray applications of both the product Closer containing the insecticide sulfoxaflor and the product Amistar containing the fungicide azoxystrobin, negatively affected the individual foraging performance of bumblebees (Bombus terrestris). Insecticide exposure further reduced colony growth and size whereas fungicide exposure decreased pollen deposition. We found indications for resource limitation that might have exacerbated pesticide effects on bumblebee colonies. Our work demonstrates that field-realistic exposure to sulfoxaflor can adversely impact bumblebees and that applications before bloom may be insufficient as a mitigation measure to prevent its negative impacts on pollinators. Moreover, fungicide use during bloom could reduce bumblebee foraging performance and pollination services.
Collapse
Affiliation(s)
- Giovanni Tamburini
- University of Freiburg, Nature Conservation and Landscape Ecology, Freiburg, Germany; University of Bari, Department of Soil, Plant and Food Sciences (DiSSPA - Entomology), Bari, Italy.
| | | | - Jonas Borth
- University of Freiburg, Nature Conservation and Landscape Ecology, Freiburg, Germany
| | - Simon Lotz
- University of Freiburg, Nature Conservation and Landscape Ecology, Freiburg, Germany
| | - Dimitry Wintermantel
- University of Freiburg, Nature Conservation and Landscape Ecology, Freiburg, Germany
| | | | | | | | - Anina Knauer
- Agroscope, Agroecology and Environment, Zurich, Switzerland
| | | | - Alexandra-Maria Klein
- University of Freiburg, Nature Conservation and Landscape Ecology, Freiburg, Germany
| |
Collapse
|
30
|
Li J, Zhao L, Qi S, Zhao W, Xue X, Wu L, Huang S. Sublethal effects of Isoclast™ Active (50% sulfoxaflor water dispersible granules) on larval and adult worker honey bees (Apis mellifera L.). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 220:112379. [PMID: 34058677 DOI: 10.1016/j.ecoenv.2021.112379] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 04/28/2021] [Accepted: 05/24/2021] [Indexed: 06/12/2023]
Abstract
Sulfoxaflor is a novel sulfoximine insecticide which is widely used to control crop pests. Risk assessments have reported its high toxicity to pollinators. However, sulfoxaflor is not persistent in the environment and few studies have addressed its negative effects on larval and newly emerged honeybees at environmentally relevant concentrations. In the present study, the sublethal effects of a sulfoxaflor commercial product, Isoclast™ Active, were evaluated in the laboratory using larvae and newly emerged worker honeybees. The results of 96-h acute toxicity showed that Isoclast is moderately toxic to adult bees, and it could induce significant death and growth failure of larvae after continuous dietary intake. In addition, Isoclast induced significant changes in antioxidative (SOD, CAT), lipid peroxidation (POD, LPO, MDA), detoxification (GST, GR, GSH) and signal transduction-related (AChE, ACh) enzymes or products both in larvae and adult honey bees under residue levels. Here we firstly reported the lethal and sublethal effects of commercial sulfoxaflor to honeybees' larvae and young workers. All these findings revealed the potential risks of sulfoxaflor residue in environment to honey bees, and may also to other pollinators. This is a laboratory mimic studies, and further studies are still needed to investigate the risks and in-depth mechanisms of sulfoxaflor to bees in field.
Collapse
Affiliation(s)
- Jiahuan Li
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China; Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
| | - Liuwei Zhao
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
| | - Suzhen Qi
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China.
| | - Wenting Zhao
- Key Laboratory of Urban Agriculture In North China,Ministry of Agriculture and Rural Affairs, Beijing University of Agriculture, Beijing 102206, China
| | - Xiaofeng Xue
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
| | - Liming Wu
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
| | - Shaokang Huang
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian Honey Bee Biology Observation Station, Ministry of Agriculture and Rural Affairs, Fuzhou 350002, China.
| |
Collapse
|