1
|
Zhang Z, Yao L. Drug risks associated with sarcopenia: a real-world and GWAS study. BMC Pharmacol Toxicol 2024; 25:84. [PMID: 39511635 PMCID: PMC11542392 DOI: 10.1186/s40360-024-00813-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 11/05/2024] [Indexed: 11/15/2024] Open
Abstract
INTRODUCTION Drug-induced sarcopenia has not received adequate attention. Meanwhile, there is growing recognition of the importance of effective pharmacovigilance in evaluating the benefits and risks of medications. AIMS The primary aim of this study is to investigate the potential association between drug use and sarcopenia through an analysis of adverse event reports from the Food and Drug Administration (FDA) Adverse Event Reporting System (FAERS) and to evaluate the genetic factors contributing to drug-induced sarcopenia using summary-data-based Mendelian randomization (SMR). METHODS We obtained reports of adverse drug reactions from FAERS. Primary outcomes included sarcopenia and potential sarcopenia. We calculated the Proportional reporting ratio (PRR) to assess the risk of specific adverse events associated with various drugs, applying chi-square tests for statistical significance. Additionally, we used SMR based on Genome-wide association study (GWAS) to evaluate the potential associations between drug target genes of some significant medications and sarcopenia outcomes. The outcome data for sarcopenia included metrics as hand grip strength and appendicular lean mass (ALM). RESULTS A total of 55 drugs were identified as inducing potential sarcopenia, and 3 drugs were identified as inducing sarcopenia. The top 5 drugs causing a potential risk of sarcopenia were levofloxacin (PRR = 9.96, χ2 = 1057), pregabalin (PRR = 7.20, χ2 = 1023), atorvastatin (PRR = 4.68, χ2 = 903), duloxetine (PRR = 4.76, χ2 = 527) and venlafaxine (PRR = 5.56, χ2 = 504), and the 3 drugs that had been proved to induced sarcopenia included metformin (PRR = 7.41, χ2 = 58), aspirin (PRR = 5.93, χ2 = 35), and acetaminophen (PRR = 4.73, χ2 = 25). We identified electron-transfer flavoprotein dehydrogenase (ETFDH) and protein Kinase AMP-Activated Non-Catalytic Subunit Beta 1 (PRKAB1) as the primary drug target genes for metformin, while Prostaglandin-endoperoxide Synthase 1 (PTGS1) and Prostaglandin-endoperoxide Synthase 2 (PTGS2) were considered the primary action target genes for aspirin and acetaminophen according to DrugBank database. SMR showed that the expression abundance of ETFDH was negatively correlated with right hand grip strength (blood: OR = 1.01, p-value = 1.27e-02; muscle: OR = 1.01, p-value = 1.42e-02) and negatively correlated with appendicular lean mass (blood: OR = 1.03, p-value = 7.73e-08; muscle: OR = 1.03, p-value = 1.67e-07). CONCLUSIONS We find that metformin, aspirin, and acetaminophen are specifically noted for their potential to induce sarcopenia based on the analyses conducted. We perform signal mining for drug-associated sarcopenia events based on real-world data and provides certain guidance for the safe use of medications to prevent sarcopenia.
Collapse
Affiliation(s)
- Zhaoliang Zhang
- The Affiliated Yixing Hospital of Jiangsu University, Yixing, Jiangsu, 214200, China
| | - Liehui Yao
- The Affiliated Yixing Hospital of Jiangsu University, Yixing, Jiangsu, 214200, China.
| |
Collapse
|
2
|
Mak G, Tarnopolsky M, Lu JQ. A case of mixed hereditary gelsolin amyloidosis and hydroxychloroquine induced myopathy. Acta Neurol Belg 2024:10.1007/s13760-024-02607-9. [PMID: 39078605 DOI: 10.1007/s13760-024-02607-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 07/13/2024] [Indexed: 07/31/2024]
Abstract
Hereditary gelsolin amyloidosis is an adult onset autosomal dominant disease with neurologic, ophthalmologic and dermatologic features that may be mistaken for Sjögren syndrome. We describe a case of a 68 year old female presenting with facial numbness and asymmetry, dry eyes, dry mouth and fatigue, originally diagnosed as Sjögren syndrome and treated with hydroxychloroquine. Due to her insidious progression of facial weakness with associated proximal muscle weakness she underwent a muscle biopsy, which demonstrated features of hydroxychloroquine induced myopathy and amyloid deposition. This subsequently led to targeted genetic testing, revealing an autosomal dominant c.640G > A pathogenic variant of the gelsolin gene. Therefore, this is a unique case of complex muscle pathology with features of a rare hereditary systemic amyloidosis an uncommon drug- induced myopathy.
Collapse
Affiliation(s)
- Gloria Mak
- Department of Medicine, University of Alberta, Edmonton, AB, Canada
| | - Mark Tarnopolsky
- Department of Medicine and Pediatrics, McMaster University, Hamilton, ON, Canada
| | - Jian-Qiang Lu
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada.
| |
Collapse
|
3
|
Miernik S, Matusiewicz A, Olesińska M. Drug-Induced Myopathies: A Comprehensive Review and Update. Biomedicines 2024; 12:987. [PMID: 38790948 PMCID: PMC11117896 DOI: 10.3390/biomedicines12050987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 04/19/2024] [Accepted: 04/28/2024] [Indexed: 05/26/2024] Open
Abstract
Drug-induced myopathies are a common cause of muscle pain, and the range of drugs that can cause muscle side effects is constantly expanding. In this article, the authors comprehensively discuss the diagnostic and therapeutic process in patients with myalgia, and present the spectrum of drug-induced myopathies. The review provides a detailed analysis of the literature on the incidence of myopathy during treatment with hypolipemic drugs, beta-blockers, amiodarone, colchicine, glucocorticosteroids, antimalarials, cyclosporine, zidovudine, and checkpoint inhibitors, a group of drugs increasingly used in the treatment of malignancies. The article considers the clinical course of the different types of myopathies, their pathogenesis, histopathological features, and treatment methods of these disorders. The aim of this paper is to gather from the latest available literature up-to-date information on the course, pathophysiology, and therapeutic options of drug-induced myopathies, to systematize the knowledge of drug-induced myopathies and to draw the attention of internists to the fact that these clinical issues are an important therapeutic problem.
Collapse
Affiliation(s)
| | - Agata Matusiewicz
- Department of Connective Tissue Diseases, National Institute of Geriatrics, Rheumatology and Rehabilitation, 02-637 Warsaw, Poland; (S.M.); (M.O.)
| | | |
Collapse
|
4
|
Marmen MB, Ohana M, Von Hunolstein JJ, Lannes B, Meyer A. Skeletal and Cardiac Muscle Hydroxychloroquine Toxicity. J Rheumatol 2024; 51:207. [PMID: 37839814 DOI: 10.3899/jrheum.2023-0120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Affiliation(s)
- Maude Bouchard Marmen
- Service de Rhumatologie, CHU de Québec - Université Laval, Quebec City, Quebec, Canada;
| | - Mickael Ohana
- Département de Radiologie, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | | | - Béatrice Lannes
- Département de Pathologie, Hôpitaux Universitaires de Strasbourg Strasbourg, France
| | - Alain Meyer
- Service de Physiologie et d'Explorations Fonctionnelles, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| |
Collapse
|
5
|
Kuzuya M. Drug-related sarcopenia as a secondary sarcopenia. Geriatr Gerontol Int 2024; 24:195-203. [PMID: 38158766 PMCID: PMC11503558 DOI: 10.1111/ggi.14770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 11/24/2023] [Indexed: 01/03/2024]
Abstract
Sarcopenia has a significant impact on falls, physical function, activities of daily living, and quality of life in older adults, and its prevention and treatment are becoming increasingly important as the global population ages. In addition to primary age-related sarcopenia, activity-related sarcopenia, disease-related sarcopenia, and nutrition-related sarcopenia have been proposed as secondary sarcopenia. Polypharmacy and potentially inappropriate medication based on multiple diseases cause health problems in older patients. In some cases, drugs used for therapeutic or preventive purposes act on skeletal muscle as adverse drug reactions and induce sarcopenia. Although sarcopenia caused by these adverse drug reactions may be more common in older patients, in particular those taking many medications, drug-related sarcopenia has not yet received much attention. This review summarizes drugs that may induce sarcopenia and emphasizes the importance of drug-related sarcopenia as a secondary sarcopenia. Geriatr Gerontol Int 2024; 24: 195-203.
Collapse
Affiliation(s)
- Masafumi Kuzuya
- Meitetsu HospitalNagoyaJapan
- Professor Emeritus Nagoya UniversityNagoyaJapan
| |
Collapse
|
6
|
Kim KH, Oprescu SN, Snyder MM, Kim A, Jia Z, Yue F, Kuang S. PRMT5 mediates FoxO1 methylation and subcellular localization to regulate lipophagy in myogenic progenitors. Cell Rep 2023; 42:113329. [PMID: 37883229 PMCID: PMC10727913 DOI: 10.1016/j.celrep.2023.113329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 08/29/2023] [Accepted: 10/06/2023] [Indexed: 10/28/2023] Open
Abstract
Development is regulated by various factors, including protein methylation status. While PRMT5 is well known for its roles in oncogenesis by mediating symmetric di-methylation of arginine, its role in normal development remains elusive. Using Myod1Cre to drive Prmt5 knockout in embryonic myoblasts (Prmt5MKO), we dissected the role of PRMT5 in myogenesis. The Prmt5MKO mice are born normally but exhibit progressive muscle atrophy and premature death. Prmt5MKO inhibits proliferation and promotes premature differentiation of embryonic myoblasts, reducing the number and regenerative function of satellite cells in postnatal mice. Mechanistically, PRMT5 methylates and destabilizes FoxO1. Prmt5MKO increases the total FoxO1 level and promotes its cytoplasmic accumulation, leading to activation of autophagy and depletion of lipid droplets (LDs). Systemic inhibition of autophagy in Prmt5MKO mice restores LDs in myoblasts and moderately improves muscle regeneration. Together, PRMT5 is essential for muscle development and regeneration at least partially through mediating FoxO1 methylation and LD turnover.
Collapse
Affiliation(s)
- Kun Ho Kim
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Stephanie N Oprescu
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907, USA; Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Madigan M Snyder
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907, USA; Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Aran Kim
- Department of Pharmacy, Purdue University, West Lafayette, IN 47907, USA
| | - Zhihao Jia
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Feng Yue
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Shihuan Kuang
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907, USA; Center for Cancer Research, Purdue University, West Lafayette, IN 47907, USA.
| |
Collapse
|
7
|
Anjani QK, Volpe-Zanutto F, Hamid KA, Sabri AHB, Moreno-Castellano N, Gaitán XA, Calit J, Bargieri DY, Donnelly RF. Primaquine and chloroquine nano-sized solid dispersion-loaded dissolving microarray patches for the improved treatment of malaria caused by Plasmodium vivax. J Control Release 2023; 361:385-401. [PMID: 37562555 DOI: 10.1016/j.jconrel.2023.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 08/01/2023] [Accepted: 08/07/2023] [Indexed: 08/12/2023]
Abstract
Malaria is a global parasitic infection that leads to substantial illness and death. The most commonly-used drugs for treatment of malaria vivax are primaquine and chloroquine, but they have limitations, such as poor adherence due to frequent oral administration and gastrointestinal side effects. To overcome these limitations, we have developed nano-sized solid dispersion-based dissolving microarray patches (MAPs) for the intradermal delivery of these drugs. In vitro testing showed that these systems can deliver to skin and receiver compartment up to ≈60% of the payload for CQ-based dissolving MAPs and a total of ≈42% of drug loading for PQ-based dissolving MAPs. MAPs also displayed acceptable biocompatibility in cell tests. Pharmacokinetic studies in rats showed that dissolving MAPs could deliver sustained plasma levels of both PQ and CQ for over 7 days. Efficacy studies in a murine model for malaria showed that mice treated with PQ-MAPs and CQ-MAPs had reduced parasitaemia by up to 99.2%. This pharmaceutical approach may revolutionise malaria vivax treatment, especially in developing countries where the disease is endemic. The development of these dissolving MAPs may overcome issues associated with current pharmacotherapy and improve patient outcomes.
Collapse
Affiliation(s)
- Qonita Kurnia Anjani
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK; Fakultas Farmasi, Universitas Megarezky, Jl. Antang Raya No. 43, Makassar 90234, Indonesia
| | - Fabiana Volpe-Zanutto
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Khuriah Abdul Hamid
- Department of Pharmaceutics, Faculty of Pharmacy, Universiti Teknologi MARA Cawangan Selangor, 42300, Puncak Alam, Malaysia
| | - Akmal Hidayat Bin Sabri
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Natalia Moreno-Castellano
- Basic Science Department, Faculty of Health, Universidad Industrial de Santander, Bucaramanga 680001, Colombia
| | - Xiomara A Gaitán
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Juliana Calit
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Daniel Y Bargieri
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Ryan F Donnelly
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK.
| |
Collapse
|
8
|
Almoallim H, Samkari A, Fallata A, Adam H, Kary M, Bahabri M, Cheikh M. Hydroxychloroquine-Induced Myopathy Responding to Intravenous Immunoglobulin (IVIG). Cureus 2023; 15:e41016. [PMID: 37519556 PMCID: PMC10372520 DOI: 10.7759/cureus.41016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/23/2023] [Indexed: 08/01/2023] Open
Abstract
Hydroxychloroquine (HCQ), a drug used to treat many diseases such as rheumatoid arthritis (RA) and systemic lupus erythematosus (SLE), has limited reports documenting drug-induced myopathies as a side effect. This entity is underdiagnosed with unclear treatment interventions apart from discontinuing the offending drug. We report a case of a biopsy-proven hydroxychloroquine-induced myopathy in a 35-year-old female patient with SLE. The offending drug was stopped, but the patient did not improve. However, she showed marked improvement after the use of intravenous immunoglobulin (IVIG).
Collapse
Affiliation(s)
- Hani Almoallim
- Department of Medicine, Faculty of Medicine, Umm Al-Qura University, Makkah, SAU
- Department of Medicine, Faculty of Medicine, International Medical Center, Jeddah, SAU
| | - Alaa Samkari
- Department of Medicine, Faculty of Medicine, King Saud Bin Abdulaziz University for Health Sciences, Jeddah, SAU
- Department of Pathology and Laboratory Medicine, Faculty of Medicine, Ministry of National Guard-Health Affairs, Jeddah, SAU
| | - Ahmad Fallata
- Department of Medicine, Faculty of Medicine, University of Tabuk, Tabuk, SAU
| | - Heba Adam
- Department of Medicine, Faculty of Medicine, Dr. Soliman Fakeeh Hospital, Jeddah, SAU
| | - Malak Kary
- Department of Medicine, Faculty of Medicine, King Abdulaziz University, Jeddah, SAU
| | - Mohammed Bahabri
- Department of Medicine, Faculty of Medicine, King Abdulaziz University, Jeddah, SAU
| | - Mohamed Cheikh
- Department of Medicine, Faculty of Medicine, Dr. Soliman Fakeeh Hospital, Jeddah, SAU
- Department of Medicine, Faculty of Medicine, Fakeeh College for Medical Sciences, Jeddah, SAU
| |
Collapse
|
9
|
Gagnon LR, Sadasivan C, Yogasundaram H, Oudit GY. Review of Hydroxychloroquine Cardiotoxicity: Lessons From the COVID-19 Pandemic. Curr Heart Fail Rep 2022; 19:458-466. [PMID: 36167917 PMCID: PMC9514702 DOI: 10.1007/s11897-022-00581-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/15/2022] [Indexed: 11/30/2022]
Abstract
Purpose of Review The coronavirus disease 2019 (COVID-19) pandemic has popularized the usage of hydroxychloroquine and chloroquine (HCQ/CQ) as treatments for COVID-19. Previously used as anti-malarial and now commonly used in rheumatologic conditions, preliminary in vitro studies have demonstrated these medications also have anti-viral properties. Retinopathy and neuromyopathy are well recognized complications of using these treatments; however, cardiotoxicity is under-recognized. This review will discuss the implications and cardiotoxicity of HCQ/CQ, their mechanisms of action, and their utility in COVID-19. Recent Findings Early clinical trials demonstrated a modest benefit of HCQ in COVID-19, causing a push for the usage of it. However, further large multi-center randomized control centers, demonstrated no benefit, and even a trend towards worse outcomes. The predominant cardiac complication observed with HCQ in COVID-19 was cardiac arrhythmias and prolonging of the QT interval. However, with chronic usage of HCQ/CQ, the development of heart failure (HF) and cardiomyopathy (CM) can occur. Summary Although, most adverse cardiac events related to HCQ/CQ usage in COVID-19 were secondary to conduction disorders given the short duration of treatment, HCQ/CQ can cause CM and HF, with chronic usage. Given the insufficient evidence, HCQ/CQ usage in COVID-19 is not routinely recommended, especially with novel therapies now being developed and used. Additionally, usage of HCQ/CQ should prompt initial cardiac evaluation with ECG, and yearly monitoring, with consideration for advanced imaging if clinically warranted. The diagnosis of HCQ/CQ cardiomyopathy is important, as prompt cessation can allow for recovery when these changes are still reversible.
Collapse
Affiliation(s)
- Luke R Gagnon
- Department of Medicine, University of Alberta, Edmonton, Alberta, Canada.,Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Chandu Sadasivan
- Department of Medicine, University of Alberta, Edmonton, Alberta, Canada.,Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Haran Yogasundaram
- Department of Medicine, University of Alberta, Edmonton, Alberta, Canada.,Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Gavin Y Oudit
- Department of Medicine, University of Alberta, Edmonton, Alberta, Canada. .,Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Alberta, Canada. .,Division of Cardiology, Department of Medicine, Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Alberta, T6G 2S2, Canada.
| |
Collapse
|