1
|
Kou L, Huang T, Zhang H, Wen G, Li K. Aerobic denitrifying bacterial community with low C/N ratio remove nitrate from micro-polluted water: Metagenomics unravels denitrification pathways. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175457. [PMID: 39137850 DOI: 10.1016/j.scitotenv.2024.175457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/30/2024] [Accepted: 08/10/2024] [Indexed: 08/15/2024]
Abstract
The efficient nitrogen removal from micro-polluted source water is an international challenge to be solved urgently. However, the inner denitrification mechanism of native aerobic denitrifying bacterial communities in response to carbon scarcity remains relatively unclear. Here, the bacterial community XT6, screened from an oligotrophic reservoir, exhibited aerobic denitrifying capacity under low-carbon environments. Up to 76.79-81.64 % of total organic carbon (TOC) and 51.48-67.60 % of NO3--N were removed by XT6 within 48 h at C/N ratios of 2.0-3.0. Additionally, the nitrogen balance experiments further manifested that 26.27-38.13 % of NO3--N was lost in gaseous form. As the C/N ratio decreased, XT6 tended to generate more extracellular polymeric substances (EPS), with the tightly bound EPS showing the largest increase. Pseudomonas and Variovorax were quite abundant in XT6, constituting 59.69 % and 28.65 % of the total sequences, respectively. Furthermore, metagenomics analysis evidenced that XT6 removed TOC and nitrate mainly through the tricarboxylic acid cycle and aerobic denitrification. Overall, the abovementioned results provide a deeper understanding of the nitrogen metabolic pathways of indigenous aerobic denitrifying bacterial communities with low C/N ratios and offer useful guidance for controlling nitrogen pollution in oligotrophic ecosystems.
Collapse
Affiliation(s)
- Liqing Kou
- Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountains, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, PR China
| | - Tinglin Huang
- Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountains, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, PR China.
| | - Haihan Zhang
- Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountains, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, PR China
| | - Gang Wen
- Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountains, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, PR China
| | - Kai Li
- Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountains, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, PR China
| |
Collapse
|
2
|
Hao Z, Wang Q, Wang J, Deng Y, Yan Z, Tian L, Jiang H. Water Level Fluctuations Modulate the Microbiomes Involved in Biogeochemical Cycling in Floodplains. MICROBIAL ECOLOGY 2023; 87:24. [PMID: 38159125 DOI: 10.1007/s00248-023-02331-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 12/08/2023] [Indexed: 01/03/2024]
Abstract
Drastic changes in hydrological conditions within floodplain ecosystems create distinct microbial habitats. However, there remains a lack of exploration regarding the variations in microbial function potentials across the flooding and drought seasons. In this study, metagenomics and environmental analyses were employed in floodplains that experience hydrological variations across four seasons. Analysis of functional gene composition, encompassing nitrogen, carbon, and sulfur metabolisms, revealed apparent differences between the flooding and drought seasons. The primary environmental drivers identified were water level, overlying water depth, submergence time, and temperature. Specific modules, e.g., the hydrolysis of β-1,4-glucosidic bond, denitrification, and dissimilatory/assimilatory nitrate reduction to ammonium, exhibited higher relative abundance in summer compared to winter. It is suggested that cellulose degradation was potentially coupled with nitrate reduction during the flooding season. Phylogenomic analysis of metagenome-assembled genomes (MAGs) unveiled that the Desulfobacterota lineage possessed abundant nitrogen metabolism genes supported by pathway reconstruction. Variation of relative abundance implied its environmental adaptability to both the wet and dry seasons. Furthermore, a novel order was found within Methylomirabilota, containing nitrogen reduction genes in the MAG. Overall, this study highlights the crucial role of hydrological factors in modulating microbial functional diversity and generating genomes with abundant nitrogen metabolism potentials.
Collapse
Affiliation(s)
- Zheng Hao
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, 73 East Beijing Road, Nanjing, 210008, China
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Qianhong Wang
- Changjiang Nanjing Waterway Engineering Bureau, Nanjing, 210011, China
| | - Jianjun Wang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, 73 East Beijing Road, Nanjing, 210008, China
| | - Ye Deng
- CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Zaisheng Yan
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, 73 East Beijing Road, Nanjing, 210008, China
| | - Linqi Tian
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, 73 East Beijing Road, Nanjing, 210008, China
| | - Helong Jiang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, 73 East Beijing Road, Nanjing, 210008, China.
| |
Collapse
|
3
|
Zhang Y, Li J, Pang Y, Shu Y, Liu S, Sang P, Sun X, Liu J, Yang Y, Chen M, Hong P. Systematic investigation of simultaneous copper biosorption and nitrogen removal from wastewater by an aerobic denitrifying bacterium of auto-aggregation. ENVIRONMENTAL RESEARCH 2023; 235:116602. [PMID: 37429397 DOI: 10.1016/j.envres.2023.116602] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 07/02/2023] [Accepted: 07/07/2023] [Indexed: 07/12/2023]
Abstract
Finding effective methods for simultaneous removal of eutrophic nutrients and heavy metals has attracted increasing concerns for the environmental remediation. Herein, a novel auto-aggregating aerobic denitrifying strain (Aeromonas veronii YL-41) was isolated with capacities for copper tolerance and biosorption. The denitrification efficiency and nitrogen removal pathway of the strain were investigated by nitrogen balance analysis and amplification of key denitrification functional genes. Moreover, the changes in the auto-aggregation properties of the strain caused by extracellular polymeric substances (EPS) production were focused on. The biosorption capacity and mechanisms of copper tolerance during denitrification were further explored by measuring changes in copper tolerance and adsorption indices, as well as by variations in extracellular functional groups. The strain showed extremely strong total nitrogen removal ability, with 67.5%, 82.08% and 78.48% of total nitrogen removal when NH4+-N, NO2--N, and NO3--N were used as the only initial nitrogen source, respectively. The successful amplification of napA, nirK, norR, and nosZ genes further demonstrated that the strain accomplished nitrate removal through a complete aerobic denitrification pathway. The production of protein-rich EPS of up to 23.31 mg/g and an auto-aggregation index of up to 76.42% may confer a strong biofilm-forming potential to the strain. Under the stress of 20 mg/L copper ions, the removal of nitrate-nitrogen was still as high as 71.4%. In addition, the strain could achieve an efficient removal of 96.9% of copper ions at an initial concentration of 80 mg/L. Scanning electron microscopy and deconvolution analysis of characteristic peaks confirmed that the strains encapsulate heavy metals by secreting EPS and, meanwhile, form strong hydrogen bonding structures to enhance intermolecular forces to resist copper ion stress. This study provides an innovative and effective biological approach for the synergistic bioaugmentation removal of eutrophic substances and heavy metals from aquatic environments.
Collapse
Affiliation(s)
- Yancheng Zhang
- College of Life Sciences, School of Ecology and Environment, Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded By Anhui Province and Ministry of Education, Anhui Normal University, Wuhu, 241002, China
| | - Jing Li
- College of Life Sciences, School of Ecology and Environment, Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded By Anhui Province and Ministry of Education, Anhui Normal University, Wuhu, 241002, China
| | - Yu Pang
- College of Life Sciences, School of Ecology and Environment, Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded By Anhui Province and Ministry of Education, Anhui Normal University, Wuhu, 241002, China
| | - Yilin Shu
- College of Life Sciences, School of Ecology and Environment, Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded By Anhui Province and Ministry of Education, Anhui Normal University, Wuhu, 241002, China
| | - Shu Liu
- College of Life Sciences, School of Ecology and Environment, Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded By Anhui Province and Ministry of Education, Anhui Normal University, Wuhu, 241002, China
| | - Pengcheng Sang
- College of Life Sciences, School of Ecology and Environment, Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded By Anhui Province and Ministry of Education, Anhui Normal University, Wuhu, 241002, China
| | - Xiaohui Sun
- College of Life Sciences, School of Ecology and Environment, Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded By Anhui Province and Ministry of Education, Anhui Normal University, Wuhu, 241002, China
| | - Jiexiu Liu
- College of Life Sciences, School of Ecology and Environment, Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded By Anhui Province and Ministry of Education, Anhui Normal University, Wuhu, 241002, China
| | - Yanfang Yang
- College of Life Sciences, School of Ecology and Environment, Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded By Anhui Province and Ministry of Education, Anhui Normal University, Wuhu, 241002, China
| | - Minglin Chen
- College of Life Sciences, School of Ecology and Environment, Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded By Anhui Province and Ministry of Education, Anhui Normal University, Wuhu, 241002, China.
| | - Pei Hong
- College of Life Sciences, School of Ecology and Environment, Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded By Anhui Province and Ministry of Education, Anhui Normal University, Wuhu, 241002, China.
| |
Collapse
|
4
|
Gupta RK, Singh AK, Bajaj A, Khardenavis AA, Purohit HJ. Phylogenomic analysis of Citrobacter sp. strain AAK_AS5 and its metabolic capabilities to support nitrogen removal behavior. J Basic Microbiol 2023; 63:359-376. [PMID: 36453555 DOI: 10.1002/jobm.202200323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 09/02/2022] [Accepted: 10/22/2022] [Indexed: 12/03/2022]
Abstract
Despite the ubiquity of the genus Citrobacter in clinical, industrial, and environmental scenarios, a large number of Citrobacter strains have not been explored at the genome-scale level. In this study, accurate taxonomic assignment of strain AAK_AS5 isolated from activated sludge was achieved by in-silico genomic comparison using Overall Genome-based Relatedness Indices (ANI(OAT): 97.55%, ANIb:97.28%, and ANIm: 97.83%) that indicated its closest identity to the related strain Citrobacter portucalensis A60T . Results were consistent with a digital DNA-DNA hybridization value of 80% with C. portucalensis A60T which was greater than the species boundary value >70% for delineating closely related bacterial species. Gene mining through Kyoto Encyclopedia of Genes and Genomes (KEGG), and annotation using rapid annotation subsystem technology (RAST) revealed the notable gene contents for nitrogen metabolism and other pathways associated with nitrate/nitrite ammonification (28 genes), ammonia assimilation (22 genes), and denitrification pathways (14 genes). Furthermore, the strain AAK_AS5 also exhibited a high soluble chemical oxygen demand (sCOD), NH4 + -N, and NO3 - -N removal efficiency of 91.4%, 90%, and 93.6%, respectively thus validating its genetic capability for utilizing both (NH4 )2 SO4 and KNO3 as the nitrogen source. The study provided deeper insights into the phylogenomics and the genetic potential of Citrobacter, sp. strain AAK AS5 associated with nitrogen metabolism thus signifying the potential application of the isolate for treating nitrogen-rich wastewaters.
Collapse
Affiliation(s)
- Rakesh K Gupta
- Environmental Biotechnology and Genomics Division (EBGD), CSIR-National Environmental Engineering Research Institute (NEERI), Nagpur, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Ashish K Singh
- Environmental Biotechnology and Genomics Division (EBGD), CSIR-National Environmental Engineering Research Institute (NEERI), Nagpur, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Abhay Bajaj
- Environmental Biotechnology and Genomics Division (EBGD), CSIR-National Environmental Engineering Research Institute (NEERI), Nagpur, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Anshuman A Khardenavis
- Environmental Biotechnology and Genomics Division (EBGD), CSIR-National Environmental Engineering Research Institute (NEERI), Nagpur, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Hemant J Purohit
- Environmental Biotechnology and Genomics Division (EBGD), CSIR-National Environmental Engineering Research Institute (NEERI), Nagpur, India
| |
Collapse
|
5
|
Kalkan S. Multimodal analysis of south-eastern Black Sea sediment bacterial population diversity. MARINE POLLUTION BULLETIN 2022; 183:114063. [PMID: 36057154 DOI: 10.1016/j.marpolbul.2022.114063] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 07/15/2022] [Accepted: 08/18/2022] [Indexed: 06/15/2023]
Abstract
This study focused on marine sediments from the Black Sea, mainly due to bacterial diversity-induced public health / biotechnology application value. Sediment samples were gathered from 14 locations at differing depths across Turkish shores on a seasonal basis over 10 months, with bacterial identifications performed through using multimodal analytical platforms. Overall, 26 differing, predominantly Gram-positive (57.5 %) bacterial species were identified for this region, including Bacillaceae (50.0 %) and Pseudomonadaceae (15.0 %). The most dominant classes were identified as Bacilli (52.5 %) and Gammaproteobacteria (40.0 %). Ten isolates (25 %) to the species level and thirty-six isolates (90 %) to the genus level were identified using VITEK® MS and Bruker Microflex® LT/SH, in comparison to 16S rRNA sequencing results. Identified species - particularly, novel reported species - can contribute to the knowledge of microbial life dwelling upon sediments of the south-eastern regions of the Black Sea.
Collapse
Affiliation(s)
- Samet Kalkan
- Recep Tayyip Erdogan University, Faculty of Fisheries, Ataturk Street Fener District, 53100 Merkez, Rize, Turkey.
| |
Collapse
|