1
|
Osadare IE, Monecke S, Abdilahi A, Müller E, Collatz M, Braun S, Reissig A, Schneider-Brachert W, Kieninger B, Eichner A, Rath A, Fritsch J, Gary D, Frankenfeld K, Wellhöfer T, Ehricht R. Fast and Economic Microarray-Based Detection of Species-, Resistance-, and Virulence-Associated Genes in Clinical Strains of Vancomycin-Resistant Enterococci (VRE). SENSORS (BASEL, SWITZERLAND) 2024; 24:6476. [PMID: 39409516 PMCID: PMC11479252 DOI: 10.3390/s24196476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 09/27/2024] [Accepted: 09/27/2024] [Indexed: 10/20/2024]
Abstract
Today, there is a continuous worldwide battle against antimicrobial resistance (AMR) and that includes vancomycin-resistant enterococci (VRE). Methods that can adequately and quickly detect transmission chains in outbreaks are needed to trace and manage this problem fast and cost-effectively. In this study, DNA-microarray-based technology was developed for this purpose. It commenced with the bioinformatic design of specific oligonucleotide sequences to obtain amplification primers and hybridization probes. Microarrays were manufactured using these synthesized oligonucleotides. A highly parallel and stringent labeling and hybridization protocol was developed and employed using isolated genomic DNA from previously sequenced (referenced) clinical VRE strains for optimal sensitivity and specificity. Microarray results showed the detection of virulence, resistance, and species-specific genes in the VRE strains. Theoretical predictions of the microarray results were also derived from the sequences of the same VRE strain and were compared to array results while optimizing protocols until the microarray result and theoretical predictions were a match. The study concludes that DNA microarray technology can be used to quickly, accurately, and economically detect specifically and massively parallel target genes in enterococci.
Collapse
Affiliation(s)
- Ibukun Elizabeth Osadare
- Leibniz Institute of Photonic Technology (IPHT), Research Alliance Leibniz Center for Photonics in Infection Research (LPI), 07745 Jena, Germany; (I.E.O.); (S.M.); (A.A.); (E.M.); (M.C.); (S.B.); (A.R.)
- InfectoGnostics Research Campus, 07743 Jena, Germany
| | - Stefan Monecke
- Leibniz Institute of Photonic Technology (IPHT), Research Alliance Leibniz Center for Photonics in Infection Research (LPI), 07745 Jena, Germany; (I.E.O.); (S.M.); (A.A.); (E.M.); (M.C.); (S.B.); (A.R.)
- InfectoGnostics Research Campus, 07743 Jena, Germany
| | - Abdinasir Abdilahi
- Leibniz Institute of Photonic Technology (IPHT), Research Alliance Leibniz Center for Photonics in Infection Research (LPI), 07745 Jena, Germany; (I.E.O.); (S.M.); (A.A.); (E.M.); (M.C.); (S.B.); (A.R.)
- InfectoGnostics Research Campus, 07743 Jena, Germany
| | - Elke Müller
- Leibniz Institute of Photonic Technology (IPHT), Research Alliance Leibniz Center for Photonics in Infection Research (LPI), 07745 Jena, Germany; (I.E.O.); (S.M.); (A.A.); (E.M.); (M.C.); (S.B.); (A.R.)
- InfectoGnostics Research Campus, 07743 Jena, Germany
| | - Maximilian Collatz
- Leibniz Institute of Photonic Technology (IPHT), Research Alliance Leibniz Center for Photonics in Infection Research (LPI), 07745 Jena, Germany; (I.E.O.); (S.M.); (A.A.); (E.M.); (M.C.); (S.B.); (A.R.)
- InfectoGnostics Research Campus, 07743 Jena, Germany
| | - Sascha Braun
- Leibniz Institute of Photonic Technology (IPHT), Research Alliance Leibniz Center for Photonics in Infection Research (LPI), 07745 Jena, Germany; (I.E.O.); (S.M.); (A.A.); (E.M.); (M.C.); (S.B.); (A.R.)
- InfectoGnostics Research Campus, 07743 Jena, Germany
| | - Annett Reissig
- Leibniz Institute of Photonic Technology (IPHT), Research Alliance Leibniz Center for Photonics in Infection Research (LPI), 07745 Jena, Germany; (I.E.O.); (S.M.); (A.A.); (E.M.); (M.C.); (S.B.); (A.R.)
- InfectoGnostics Research Campus, 07743 Jena, Germany
| | - Wulf Schneider-Brachert
- Department of Infection Prevention and Infectious Diseases, University Hospital Regensburg, 93053 Regensburg, Germany; (W.S.-B.); (B.K.); (A.E.); (A.R.); (J.F.)
| | - Bärbel Kieninger
- Department of Infection Prevention and Infectious Diseases, University Hospital Regensburg, 93053 Regensburg, Germany; (W.S.-B.); (B.K.); (A.E.); (A.R.); (J.F.)
| | - Anja Eichner
- Department of Infection Prevention and Infectious Diseases, University Hospital Regensburg, 93053 Regensburg, Germany; (W.S.-B.); (B.K.); (A.E.); (A.R.); (J.F.)
| | - Anca Rath
- Department of Infection Prevention and Infectious Diseases, University Hospital Regensburg, 93053 Regensburg, Germany; (W.S.-B.); (B.K.); (A.E.); (A.R.); (J.F.)
| | - Jürgen Fritsch
- Department of Infection Prevention and Infectious Diseases, University Hospital Regensburg, 93053 Regensburg, Germany; (W.S.-B.); (B.K.); (A.E.); (A.R.); (J.F.)
| | - Dominik Gary
- fzmb GmbH, Forschungszentrum für Medizintechnik und Biotechnologie, 99947 Bad Langensalza, Germany; (D.G.); (K.F.); (T.W.)
| | - Katrin Frankenfeld
- fzmb GmbH, Forschungszentrum für Medizintechnik und Biotechnologie, 99947 Bad Langensalza, Germany; (D.G.); (K.F.); (T.W.)
| | - Thomas Wellhöfer
- fzmb GmbH, Forschungszentrum für Medizintechnik und Biotechnologie, 99947 Bad Langensalza, Germany; (D.G.); (K.F.); (T.W.)
| | - Ralf Ehricht
- Leibniz Institute of Photonic Technology (IPHT), Research Alliance Leibniz Center for Photonics in Infection Research (LPI), 07745 Jena, Germany; (I.E.O.); (S.M.); (A.A.); (E.M.); (M.C.); (S.B.); (A.R.)
- InfectoGnostics Research Campus, 07743 Jena, Germany
- Institute of Physical Chemistry, Friedrich-Schiller University, 07743 Jena, Germany
| |
Collapse
|
2
|
Bivona D, Nicitra E, Bonomo C, Calvo M, Migliorisi G, Perez M, Privitera GF, Musso N, Stefani S, Bongiorno D. Molecular diversity in fusidic acid-resistant Methicillin Susceptible Staphylococcus aureus. JAC Antimicrob Resist 2024; 6:dlae154. [PMID: 39372818 PMCID: PMC11452824 DOI: 10.1093/jacamr/dlae154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 09/16/2024] [Indexed: 10/08/2024] Open
Abstract
Objectives The recent emergence of fusidic acid (FA)-resistant Staphylococcus aureus has underscored the importance of active surveillance in isolating these strains. The molecular basis of fusidic acid resistance and the carriage of virulence factors in four borderline oxacillin-resistant Staphylococcus aureus (BORSA) clinical strains was assessed through phenotypical and genotypical methods. Methods All S. aureus clinical strains were obtained from various hospital units in Sicily. In vitro antibiotic susceptibility testing was conducted. WGS was performed using the Illumina MiSeq Platform, and data analysis was carried out to determine ST, resistome and virulome profiles. Results Genotypic characterization revealed that the strains belong to four STs: ST630, ST8, ST15, and ST1. FA resistance was associated with mutations in the fusA gene or fusB and fusC genes. Additionally, one case exhibited resistance to mupirocin, related to the presence of the mupA gene. Borderline MIC values were observed for cefoxitin in three out of four cases, leading to their categorization as BORSA. Virulence gene content was complex and diversified, with one testing positive for the lukS/F genes, coding for PVL toxin. Conclusions Resistance to FA is multifactorial, involving point mutations in chromosomal genes or association with mobile genetic elements. Monitoring the resistance to these antibiotics might help to manage and eradicate mupirocin- and FA-resistant S. aureus strains, which are also known to be important carriers of virulence determinants.
Collapse
Affiliation(s)
- Dalida Bivona
- Department of Biomedical and Biotechnological Sciences, Medical Molecular Microbiology and Antibiotic Resistance Laboratory (MMARLab), University of Catania, 95123 Catania, Italy
| | - Emanuele Nicitra
- Department of Biomedical and Biotechnological Sciences, Medical Molecular Microbiology and Antibiotic Resistance Laboratory (MMARLab), University of Catania, 95123 Catania, Italy
| | - Carmelo Bonomo
- Department of Biomedical and Biotechnological Sciences, Medical Molecular Microbiology and Antibiotic Resistance Laboratory (MMARLab), University of Catania, 95123 Catania, Italy
| | - Maddalena Calvo
- U.O.C. Laboratory Analysis Unit, A.O.U. ‘Policlinico-San Marco’, Via S. Sofia 78, 95123 Catania, Italy
| | - Giuseppe Migliorisi
- U.O.C. Laboratory Analysis Unit, A.O. ‘G.F. Ingrassia’, Corso Calatafimi 1002, 90131 Palermo, Italy
| | - Marianna Perez
- U.O.C. Laboratory Analysis Unit, A.O.U. ‘Policlinico-San Marco’, Via S. Sofia 78, 95123 Catania, Italy
| | | | - Nicolò Musso
- Department of Biomedical and Biotechnological Sciences, Biochemistry Section, University of Catania, 95123 Catania, Italy
| | - Stefania Stefani
- Department of Biomedical and Biotechnological Sciences, Medical Molecular Microbiology and Antibiotic Resistance Laboratory (MMARLab), University of Catania, 95123 Catania, Italy
- U.O.C. Laboratory Analysis Unit, A.O.U. ‘Policlinico-San Marco’, Via S. Sofia 78, 95123 Catania, Italy
| | - Dafne Bongiorno
- Department of Biomedical and Biotechnological Sciences, Medical Molecular Microbiology and Antibiotic Resistance Laboratory (MMARLab), University of Catania, 95123 Catania, Italy
| |
Collapse
|
3
|
Monecke S, Boswihi S, Braun SD, Diezel C, Müller E, Reinicke M, Udo E, Ehricht R. Sequencing a CC239-MRSA-III with a novel composite SCC mec element from Kuwait. Eur J Clin Microbiol Infect Dis 2024; 43:1761-1775. [PMID: 38990431 DOI: 10.1007/s10096-024-04891-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 06/28/2024] [Indexed: 07/12/2024]
Abstract
Staphylococcus aureus CC239-MRSA-III is an ancient pandemic strain of hospital-associated, methicillin-resistant S. aureus that spread globally for decades and that still can be found in some parts of the world. In Kuwait, microarray-based surveillance identified from 2019 to 2022 a series of isolates of a hitherto unknown variant of this strain that carried a second set of recombinase genes, ccrA/B-2. To elucidate the structure of its SCCmec element, two isolates were subjected to nanopore sequencing. This revealed, in addition to ccrA/B-2, several SCC-associated genes including speG (spermidine N acetyltransferase) and a gene encoding a large "E-domain containing protein" (dubbed as edcP-SCC). This gene contained three regions consisting of multiple repeating units. In terms of sequence and structure it was similar but not identical to the biofilm-related aap gene from S. epidermidis. A review of published sequences identified edcP-SCC in eighteen genome sequences of S. aureus, S. epidermidis and S. capitis, and frequently it appears in a similar cluster of genes as in the strains sequenced herein. Isolates also carried a prophage with the adhesion factor sasX/sesI and aminoglycoside resistance genes. This is consistent with an affiliation to the "South-East Asian" Clade of CC239. The emergence of edcP-SCC and sasX-positive CC239 strain shows that, against a global trend towards community-associated MRSA, the ancient pandemic CC239 hospital strain still continues to evolve and to cause outbreaks.
Collapse
Affiliation(s)
- Stefan Monecke
- Leibniz Institute of Photonic Technology (IPHT), Leibniz Center for Photonics in Infection Research (LPI), Jena, Germany.
- InfectoGnostics Research Campus, Jena, Germany.
| | - Samar Boswihi
- Faculty of Medicine, Department of Microbiology, Kuwait University, Kuwait City, Kuwait
| | - Sascha D Braun
- Leibniz Institute of Photonic Technology (IPHT), Leibniz Center for Photonics in Infection Research (LPI), Jena, Germany
- InfectoGnostics Research Campus, Jena, Germany
| | - Celia Diezel
- Leibniz Institute of Photonic Technology (IPHT), Leibniz Center for Photonics in Infection Research (LPI), Jena, Germany
- InfectoGnostics Research Campus, Jena, Germany
| | - Elke Müller
- Leibniz Institute of Photonic Technology (IPHT), Leibniz Center for Photonics in Infection Research (LPI), Jena, Germany
- InfectoGnostics Research Campus, Jena, Germany
| | - Martin Reinicke
- Leibniz Institute of Photonic Technology (IPHT), Leibniz Center for Photonics in Infection Research (LPI), Jena, Germany
- InfectoGnostics Research Campus, Jena, Germany
| | - Edet Udo
- Faculty of Medicine, Department of Microbiology, Kuwait University, Kuwait City, Kuwait
| | - Ralf Ehricht
- Leibniz Institute of Photonic Technology (IPHT), Leibniz Center for Photonics in Infection Research (LPI), Jena, Germany
- InfectoGnostics Research Campus, Jena, Germany
- Institute of Physical Chemistry, Friedrich-Schiller University, Jena, Germany
| |
Collapse
|
4
|
Alkuraythi DM, Alkhulaifi MM. Methicillin-resistant Staphylococcus aureus prevalence in food-producing animals and food products in Saudi Arabia: A review. Vet World 2024; 17:1753-1764. [PMID: 39328450 PMCID: PMC11422649 DOI: 10.14202/vetworld.2024.1753-1764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Accepted: 07/15/2024] [Indexed: 09/28/2024] Open
Abstract
In Saudi Arabia, the occurrence of methicillin-resistant Staphylococcus aureus (MRSA) in food and livestock represents a major public health hazard. The emergence of livestock-associated MRSA has heightened the risk of human infection with comparable virulence traits. The lack of information about MRSA transmission in our region hinders accurate risk assessment, despite its detection in food animals and retail foods. Adopting a One Health approach is essential for effectively combating MRSA in Saudi Arabia. This method unites actions in the human, animal, and environmental spheres. To combat MRSA contamination, surveillance measures need strengthening; interdisciplinary collaboration among healthcare professionals, veterinarians, and environmental scientists is crucial, and targeted interventions must be implemented in local food chains and animal populations. Through a holistic strategy, public health and sustainable food production in the region are protected. This review aims to improve public health interventions by increasing understanding of MRSA prevalence and related risks in local food chains and animal populations.
Collapse
Affiliation(s)
- Dalal M Alkuraythi
- Department of Biology, College of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Manal M Alkhulaifi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
5
|
Alkuraythi DM, Alkhulaifi MM, Binjomah AZ, Alarwi M, Aldakhil HM, Mujallad MI, Alharbi SA, Alshomrani M, Alshahrani SM, Gojobori T, Alajel SM. Clonal Flux and Spread of Staphylococcus aureus Isolated from Meat and Its Genetic Relatedness to Staphylococcus aureus Isolated from Patients in Saudi Arabia. Microorganisms 2023; 11:2926. [PMID: 38138070 PMCID: PMC10745650 DOI: 10.3390/microorganisms11122926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 11/14/2023] [Accepted: 11/21/2023] [Indexed: 12/24/2023] Open
Abstract
In this study, we investigated both meat-derived and methicillin-resistant Staphylococcus aureus (MRSA), exploring their genetic relatedness to patient-derived MRSA isolates in Saudi Arabia. We collected 250 meat samples and identified 53 S. aureus isolates, with 79% being methicillin-sensitive Staphylococcus aureus (MSSA) and 21% being MRSA. Moreover, we included 80 clinically confirmed patient-derived MRSA isolates. We identified the most common S. aureus clone in both patients and retail meat. In meat, ST6 and ST97 were the most common clones in 55% of the MRSA isolates, and ST1153 and ST672 were the most common in 21% and 17% of the MSSA isolates. In patients, ST5 and ST6 were the predominant clones in 46% of the S. aureus isolates. CC5/ST5-SCCmecVc-t311 and CC361/ST672-SCCmecV-t3841 were common MRSA clones in both meat and patients. CC97 and CC361 clones were the second most prevalent S. aureus clones in meat and were relatively common in patients. Furthermore, we sequenced and characterized novel S. aureus strains ST8109, ST8110, and ST8111. The genomic similarities between meat- and patient-derived S. aureus isolates suggest that retail meat might be a reservoir for S.aureus and MRSA transmission. Therefore, a structured One Health approach is recommended for S. aureus dissemination, genetic characterization, antibiotic resistance, and impact on human health.
Collapse
Affiliation(s)
- Dalal M. Alkuraythi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia (M.M.A.)
- Department of Biology, College of Science, University of Jeddah, Jeddah 23445, Saudi Arabia
| | - Manal M. Alkhulaifi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia (M.M.A.)
| | - Abdulwahab Z. Binjomah
- Microbiology Department, Riyadh Regional Laboratory, Ministry of Health, Riyadh 12746, Saudi Arabia (S.A.A.)
- College of Medicine, AL-Faisal University, Takhassusi Street, Riyadh 11533, Saudi Arabia
| | - Mohammed Alarwi
- Computational Bioscience Research Center, Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia
| | - Hind M. Aldakhil
- Computational Bioscience Research Center, Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia
| | | | - Saleh Ali Alharbi
- Microbiology Department, Riyadh Regional Laboratory, Ministry of Health, Riyadh 12746, Saudi Arabia (S.A.A.)
| | - Mohammad Alshomrani
- Microbiology Department, Riyadh Regional Laboratory, Ministry of Health, Riyadh 12746, Saudi Arabia (S.A.A.)
| | - Saeed Mastour Alshahrani
- Department of Public Health, College of Applied Medical Sciences, King Khalid University, Abha 62529, Saudi Arabia
| | - Takashi Gojobori
- Computational Bioscience Research Center, Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia
| | - Sulaiman M. Alajel
- Reference Laboratory for Microbiology, Executive Department for Reference Laboratories, Research and Laboratories Sector, Food and Drug Authority, Riyadh 12843, Saudi Arabia
| |
Collapse
|
6
|
Abdullahi IN, Lozano C, Zarazaga M, Trabelsi I, Reuben RC, Stegger M, Torres C. Nasal staphylococci microbiota and resistome in healthy adults in La Rioja, northern Spain: High frequency of toxigenic S. aureus and MSSA-CC398 subclade. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2023; 116:105529. [PMID: 38013047 DOI: 10.1016/j.meegid.2023.105529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 11/19/2023] [Indexed: 11/29/2023]
Abstract
This study determined the nasal staphylococci diversity and characterized their resistome, with a focus on the mobilome of methicillin-susceptible Staphylococcus aureus (MSSA)-CC398 subclade from healthy adults in La Rioja (northern Spain). Nasal staphylococci recovered from 57 healthy individuals (HI) were identified (MALDI-TOF-MS) and their antimicrobial resistance, virulence determinants and genetic lineages were studied. The relatedness of MSSA-CC398 isolates was assessed by core-genome single-nucleotide-polymorphisms (SNPs). One-hundred-forty-three non-repetitive staphylococci were obtained from most HI (98.2%), of which S. epidermidis (87.7%) and S. aureus (36.8%) were the predominant species. About 15% of the 27 S. aureus and 30.1% of the 116 coagulase-negative staphylococci (CoNS) isolates presented a multidrug resistance (MDR) phenotype. All S. aureus isolates were MSSA but 30.2% of CoNS isolates were mecA-positive and carried SCCmec types III, IV, and V. The highest non-beta-lactam resistance (frequency/genes) in S. aureus and CoNS were: erythromycin-clindamycin-inducible (25.9%/ermT, ermC) and mupirocin (30.1%/mupA), respectively. About 85% of S. aureus isolates carried relevant virulence genes. Eight clonal complexes (CCs) of MSSA were identified, of which CC398 was the predominant (33.3%). About 78% of the CC398 isolates harboured rep13-bound ermT gene, however, one carried a rep10-bound ermC gene. Only the ermT-positive MSSA-CC398 isolates were closely related (<50 SNPs) and carried the φSa3. Diverse MDR-S. epidermidis isolates were identified which included the lineages ST59 and ST210. The high rate of toxigenic S. aureus and of MSSA-CC398 subclade highlight the ability of HI to carry and transmit virulent isolates. Moreover, the high frequency of MDR-CoNS, often linked with SCCmec, needs to be monitored for their potential human health implications.
Collapse
Affiliation(s)
- Idris Nasir Abdullahi
- Area of Biochemistry and Molecular Biology, OneHealth-UR Research Group, University of La Rioja, Logroño, Spain
| | - Carmen Lozano
- Area of Biochemistry and Molecular Biology, OneHealth-UR Research Group, University of La Rioja, Logroño, Spain
| | - Myriam Zarazaga
- Area of Biochemistry and Molecular Biology, OneHealth-UR Research Group, University of La Rioja, Logroño, Spain
| | - Islem Trabelsi
- Bioresources, Environment and Biotechnology Laboratory, Higher Institute of Applied Biological Sciences of Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Rine Christopher Reuben
- Area of Biochemistry and Molecular Biology, OneHealth-UR Research Group, University of La Rioja, Logroño, Spain
| | - Marc Stegger
- Department of Bacteria, Parasites and Fungi, Statens Serum Institut, Copenhagen, Denmark; Antimicrobial Resistance and Infectious Diseases Laboratory, Harry Butler Institute, Murdoch University, Murdoch, WA, Australia
| | - Carmen Torres
- Area of Biochemistry and Molecular Biology, OneHealth-UR Research Group, University of La Rioja, Logroño, Spain.
| |
Collapse
|
7
|
Monecke S, Bedewy AK, Müller E, Braun SD, Diezel C, Elsheredy A, Kader O, Reinicke M, Ghazal A, Rezk S, Ehricht R. Characterisation of Methicillin-Resistant Staphylococcus aureus from Alexandria, Egypt. Antibiotics (Basel) 2023; 12:78. [PMID: 36671279 PMCID: PMC9855118 DOI: 10.3390/antibiotics12010078] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/28/2022] [Accepted: 12/09/2022] [Indexed: 01/03/2023] Open
Abstract
The present study aims to characterise clinical MRSA isolates from a tertiary care centre in Egypt's second-largest city, Alexandria. Thirty isolates collected in 2020 were genotypically characterised by microarray to detect their resistance and virulence genes and assign them to clonal complexes (CC) and strains. Isolates belonged to 11 different CCs and 14 different strains. CC15-MRSA-[V+fus] (n = 6), CC1-MRSA-[V+fus+tir+ccrA/B-1] (PVL+) (n = 5) as well as CC1-MRSA-[V+fus+tir+ccrA/B-1] and CC1153-MRSA-[V+fus] (PVL+) (both with n = 3) were the most common strains. Most isolates (83%) harboured variant or composite SCCmec V or VI elements that included the fusidic acid resistance gene fusC. The SCCmec [V+fus+tir+ccrA/B-1] element of one of the CC1 isolates was sequenced, revealing a presence not only of fusC but also of blaZ, aacA-aphD and other resistance genes. PVL genes were also common (40%). The hospital-acquired MRSA CC239-III strain was only found twice. A comparison to data from a study on strains collected in 2015 (Montelongo et al., 2022) showed an increase in fusC and PVL carriage and a decreasing prevalence of the CC239 strain. These observations indicate a diffusion of community-acquired strains into hospital settings. The beta-lactam use in hospitals and the widespread fusidic acid consumption in the community might pose a selective pressure that favours MRSA strains with composite SCCmec elements comprising mecA and fusC. This is an unsettling trend, but more MRSA typing data from Egypt are required.
Collapse
Affiliation(s)
- Stefan Monecke
- Leibniz Institute of Photonic Technology (IPHT), 07745 Jena, Germany
- InfectoGnostics Research Campus, 07743 Jena, Germany
- Institute for Medical Microbiology and Virology, Dresden University Hospital, 01307 Dresden, Germany
| | - Amira K. Bedewy
- Department of Microbiology, Medical Research Institute, Alexandria University, Alexandria 5424041, Egypt
| | - Elke Müller
- Leibniz Institute of Photonic Technology (IPHT), 07745 Jena, Germany
- InfectoGnostics Research Campus, 07743 Jena, Germany
| | - Sascha D. Braun
- Leibniz Institute of Photonic Technology (IPHT), 07745 Jena, Germany
- InfectoGnostics Research Campus, 07743 Jena, Germany
| | - Celia Diezel
- Leibniz Institute of Photonic Technology (IPHT), 07745 Jena, Germany
- InfectoGnostics Research Campus, 07743 Jena, Germany
| | - Amel Elsheredy
- Department of Microbiology, Medical Research Institute, Alexandria University, Alexandria 5424041, Egypt
| | - Ola Kader
- Department of Microbiology, Medical Research Institute, Alexandria University, Alexandria 5424041, Egypt
| | - Martin Reinicke
- Leibniz Institute of Photonic Technology (IPHT), 07745 Jena, Germany
- InfectoGnostics Research Campus, 07743 Jena, Germany
| | - Abeer Ghazal
- Department of Microbiology, Medical Research Institute, Alexandria University, Alexandria 5424041, Egypt
| | - Shahinda Rezk
- Department of Microbiology, Medical Research Institute, Alexandria University, Alexandria 5424041, Egypt
| | - Ralf Ehricht
- Leibniz Institute of Photonic Technology (IPHT), 07745 Jena, Germany
- InfectoGnostics Research Campus, 07743 Jena, Germany
- Institute of Physical Chemistry, Friedrich-Schiller University, 07743 Jena, Germany
| |
Collapse
|
8
|
Soundararajan M, Marincola G, Liong O, Marciniak T, Wencker FDR, Hofmann F, Schollenbruch H, Kobusch I, Linnemann S, Wolf SA, Helal M, Semmler T, Walther B, Schoen C, Nyasinga J, Revathi G, Boelhauve M, Ziebuhr W. Farming Practice Influences Antimicrobial Resistance Burden of Non-Aureus Staphylococci in Pig Husbandries. Microorganisms 2022; 11:microorganisms11010031. [PMID: 36677324 PMCID: PMC9865537 DOI: 10.3390/microorganisms11010031] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/15/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
Non-aureus staphylococci (NAS) are ubiquitous bacteria in livestock-associated environments where they may act as reservoirs of antimicrobial resistance (AMR) genes for pathogens such as Staphylococcus aureus. Here, we tested whether housing conditions in pig farms could influence the overall AMR-NAS burden. Two hundred and forty porcine commensal and environmental NAS isolates from three different farm types (conventional, alternative, and organic) were tested for phenotypic antimicrobial susceptibility and subjected to whole genome sequencing. Genomic data were analysed regarding species identity and AMR gene carriage. Seventeen different NAS species were identified across all farm types. In contrast to conventional farms, no AMR genes were detectable towards methicillin, aminoglycosides, and phenicols in organic farms. Additionally, AMR genes to macrolides and tetracycline were rare among NAS in organic farms, while such genes were common in conventional husbandries. No differences in AMR detection existed between farm types regarding fosfomycin, lincosamides, fusidic acid, and heavy metal resistance gene presence. The combined data show that husbandry conditions influence the occurrence of resistant and multidrug-resistant bacteria in livestock, suggesting that changing husbandry practices may be an appropriate means of limiting the spread of AMR bacteria on farms.
Collapse
Affiliation(s)
| | - Gabriella Marincola
- Institute of Molecular Infection Biology, University of Würzburg, 97080 Würzburg, Germany
| | - Olivia Liong
- Institute of Molecular Infection Biology, University of Würzburg, 97080 Würzburg, Germany
| | - Tessa Marciniak
- Institute of Molecular Infection Biology, University of Würzburg, 97080 Würzburg, Germany
| | - Freya D. R. Wencker
- Institute of Molecular Infection Biology, University of Würzburg, 97080 Würzburg, Germany
| | - Franka Hofmann
- Department of Agriculture; South Westphalia University of Applied Sciences, 59494 Soest, Germany
| | - Hannah Schollenbruch
- Department of Agriculture; South Westphalia University of Applied Sciences, 59494 Soest, Germany
| | - Iris Kobusch
- Department of Agriculture; South Westphalia University of Applied Sciences, 59494 Soest, Germany
| | - Sabrina Linnemann
- Department of Agriculture; South Westphalia University of Applied Sciences, 59494 Soest, Germany
| | - Silver A. Wolf
- Genome Sequencing and Genomic Epidemiology, Robert Koch Institute, 13353 Berlin, Germany
| | - Mustafa Helal
- Genome Sequencing and Genomic Epidemiology, Robert Koch Institute, 13353 Berlin, Germany
| | - Torsten Semmler
- Genome Sequencing and Genomic Epidemiology, Robert Koch Institute, 13353 Berlin, Germany
| | - Birgit Walther
- Advanced Light and Electron Microscopy (ZBS4), Robert Koch Institute, 13353 Berlin, Germany
| | - Christoph Schoen
- Institute of Hygiene and Microbiology, University of Würzburg, 97080 Würzburg, Germany
| | - Justin Nyasinga
- Department of Pathology, Aga-Khan-University Hospital Nairobi, Nairobi, Kenya
- Department of Biomedical Sciences and Technology, The Technical University of Kenya, Nairobi, Kenya
| | - Gunturu Revathi
- Department of Pathology, Aga-Khan-University Hospital Nairobi, Nairobi, Kenya
| | - Marc Boelhauve
- Department of Agriculture; South Westphalia University of Applied Sciences, 59494 Soest, Germany
| | - Wilma Ziebuhr
- Institute of Molecular Infection Biology, University of Würzburg, 97080 Würzburg, Germany
- Correspondence: ; Tel.: +49-(0)931-31-2578
| |
Collapse
|
9
|
Aptamer-based colorimetric detection of methicillin-resistant Staphylococcus aureus by using a CRISPR/Cas12a system and recombinase polymerase amplification. Anal Chim Acta 2022; 1230:340357. [DOI: 10.1016/j.aca.2022.340357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 08/31/2022] [Accepted: 09/02/2022] [Indexed: 11/18/2022]
|
10
|
Monecke S, Roberts MC, Braun SD, Diezel C, Müller E, Reinicke M, Linde J, Joshi PR, Paudel S, Acharya M, Chalise MK, Feßler AT, Hotzel H, Khanal L, Koju NP, Schwarz S, Kyes RC, Ehricht R. Sequence Analysis of Novel Staphylococcus aureus Lineages from Wild and Captive Macaques. Int J Mol Sci 2022; 23:11225. [PMID: 36232529 PMCID: PMC9570271 DOI: 10.3390/ijms231911225] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/16/2022] [Accepted: 09/19/2022] [Indexed: 11/24/2022] Open
Abstract
Staphylococcus aureus is a widespread and common opportunistic bacterium that can colonise or infect humans as well as a wide range of animals. There are a few studies of both methicillin-susceptible S. aureus (MSSA) and methicillin-resistant S. aureus (MRSA) isolated from monkeys, apes, and lemurs, indicating a presence of a number of poorly or unknown lineages of the pathogen. In order to obtain insight into staphylococcal diversity, we sequenced strains from wild and captive individuals of three macaque species (Macaca mulatta, M. assamensis, and M. sylvanus) using Nanopore and Illumina technologies. These strains were previously identified by microarray as poorly or unknown strains. Isolates of novel lineages ST4168, ST7687, ST7688, ST7689, ST7690, ST7691, ST7692, ST7693, ST7694, ST7695, ST7745, ST7746, ST7747, ST7748, ST7749, ST7750, ST7751, ST7752, ST7753, and ST7754 were sequenced and characterised for the first time. In addition, isolates belonging to ST2990, a lineage also observed in humans, and ST3268, a MRSA strain already known from macaques, were also included into the study. Mobile genetic elements, genomic islands, and carriage of prophages were analysed. There was no evidence for novel host-specific virulence factors. However, a conspicuously high rate of carriage of a pathogenicity island harbouring edinB and etD2/etE as well as a higher number of repeat units within the gene sasG (encoding an adhesion factor) than in human isolates were observed. None of the strains harboured the genes encoding Panton-Valentine leukocidin. In conclusion, wildlife including macaques may harbour an unappreciated diversity of S. aureus lineages that may be of clinical relevance for humans, livestock, or for wildlife conservation, given the declining state of many wildlife populations.
Collapse
Affiliation(s)
- Stefan Monecke
- Leibniz Institute of Photonic Technology (IPHT), 07745 Jena, Germany
- InfectoGnostics Research Campus, 07745 Jena, Germany
- Institute for Medical Microbiology and Virology, Dresden University Hospital, 01307 Dresden, Germany
| | - Marilyn C. Roberts
- Department of Environmental and Occupational Health, School of Public Health, University of Washington, Seattle, WA 98195, USA
| | - Sascha D. Braun
- Leibniz Institute of Photonic Technology (IPHT), 07745 Jena, Germany
- InfectoGnostics Research Campus, 07745 Jena, Germany
| | - Celia Diezel
- Leibniz Institute of Photonic Technology (IPHT), 07745 Jena, Germany
- InfectoGnostics Research Campus, 07745 Jena, Germany
| | - Elke Müller
- Leibniz Institute of Photonic Technology (IPHT), 07745 Jena, Germany
- InfectoGnostics Research Campus, 07745 Jena, Germany
| | - Martin Reinicke
- Leibniz Institute of Photonic Technology (IPHT), 07745 Jena, Germany
- InfectoGnostics Research Campus, 07745 Jena, Germany
| | - Jörg Linde
- Friedrich-Loeffler-Institut (Federal Research Institute for Animal Health), Institute of Bacterial Infections and Zoonoses, 07743 Jena, Germany
| | - Prabhu Raj Joshi
- Division of Biology, Kansas State University, Manhattan, KS 66506, USA
| | - Saroj Paudel
- Nepalese Farming Institute, Maitidevi, Kathmandu 44600, Nepal
| | - Mahesh Acharya
- Nepalese Farming Institute, Maitidevi, Kathmandu 44600, Nepal
| | - Mukesh K. Chalise
- Nepal Biodiversity Research Society, Central Department of Zoology, Tribhuvan University, Kirtipur, Kathmandu 44618, Nepal
| | - Andrea T. Feßler
- Institute of Microbiology and Epizootics, Freie Universität Berlin, 14163 Berlin, Germany
- Veterinary Centre for Resistance Research (TZR), Freie Universität Berlin, 14163 Berlin, Germany
| | - Helmut Hotzel
- Friedrich-Loeffler-Institut (Federal Research Institute for Animal Health), Institute of Bacterial Infections and Zoonoses, 07743 Jena, Germany
| | - Laxman Khanal
- Central Department of Zoology, Institute of Science and Technology, Tribhuvan University, Kathmandu 44618, Nepal
| | - Narayan P. Koju
- Center for Postgraduate Studies, Nepal Engineering College, Pokhara University, Lalitpur 33700, Nepal
- Department of Psychology, University of Washington, Seattle, WA 98195, USA
| | - Stefan Schwarz
- Institute of Microbiology and Epizootics, Freie Universität Berlin, 14163 Berlin, Germany
- Veterinary Centre for Resistance Research (TZR), Freie Universität Berlin, 14163 Berlin, Germany
| | - Randall C. Kyes
- Washington National Primate Research Center, Center for Global Field Study, Departments of Psychology, Global Health, Anthropology, University of Washington, Seattle, WA 98195, USA
| | - Ralf Ehricht
- Leibniz Institute of Photonic Technology (IPHT), 07745 Jena, Germany
- InfectoGnostics Research Campus, 07745 Jena, Germany
- Institute of Physical Chemistry, Friedrich-Schiller University, 07743 Jena, Germany
| |
Collapse
|
11
|
Ju Y, Pu M, Sun K, Song G, Geng J. Nanopore Electrochemistry for Pathogen Detection. Chem Asian J 2022; 17:e202200774. [PMID: 36069587 DOI: 10.1002/asia.202200774] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/06/2022] [Indexed: 11/05/2022]
Abstract
Pathogen infections have seriously threatened human health, and there is an urgent demand for rapid and efficient pathogen identification to provide instructions in clinical diagnosis and therapeutic intervention. Recently, nanopore technology, a rapidly maturing technology which delivers ultrasensitive sensing and high throughput in real-time and at low cost, has achieved success in pathogen detection. Furthermore, the remarkable development of nanopore sequencing, for example, the MinION sequencer from Oxford Nanopore Technologies (ONT) as a competitive sequencing technology, has facilitated the rapid analysis of disease-related microbiomes at the whole-genome level and on a large scale. Here, we highlighted recent advances in nanopore approaches for pathogen detection at the single-molecule level. We also overviewed the applications of nanopore sequencing in pathogenic bacteria identification and diagnosis. In the end, we discussed the challenges and future developments of nanopore technology as promising tools for the management of infections, which may be helpful to aid understanding as well as decision-making.
Collapse
Affiliation(s)
- Yuan Ju
- Sichuan University, Sichuan University Library, CHINA
| | - Mengjun Pu
- Sichuan University, Department of Laboratory Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, CHINA
| | - Ke Sun
- Sichuan University, Department of Laboratory Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, CHINA
| | - Guiqin Song
- North Sichuan Medical College [Search North Sichuan Medical College]: North Sichuan Medical University, Shool of Basic Medical Sciences and Forensic Medicine, CHINA
| | - Jia Geng
- Sichuan University, State Key Laboratory of Biotherapy, No 17 Section 3 of South Renmin Rd, 610040, Chengdu, CHINA
| |
Collapse
|
12
|
El-Deeb W, Cave R, Fayez M, Alhumam N, Quadri S, Mkrtchyan HV. Methicillin Resistant Staphylococci Isolated from Goats and Their Farm Environments in Saudi Arabia Genotypically Linked to Known Human Clinical Isolates: a Pilot Study. Microbiol Spectr 2022; 10:e0038722. [PMID: 35913203 PMCID: PMC9431424 DOI: 10.1128/spectrum.00387-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 07/09/2022] [Indexed: 11/20/2022] Open
Abstract
We conducted a pilot whole genome sequencing (WGS) study to characterize the genotypes of nine methicillin resistant staphylococci (MRS) isolates recovered from goats and their farm environments in Eastern Province, Saudi Arabia, between November 2019 to August 2020. Seven out of nine isolates were methicillin resistant Staphylococcus aureus (MRSA), and two were methicillin resistant Staphylococcus epidermidis (MRSE). All MRSA isolates possessed genotypes previously identified to infect humans, including isolates harboring ST6-SCCmec IV-t304 (n = 4), ST5-SCCmec VI- t688 (n = 2) and ST5-SCCmec V-t311 (n = 1). 2 MRSA isolates possessed plasmids that were genetically similar to those identified in S. aureus isolates recovered from humans and poultry. In contrast, plasmids found in three MRSA isolates and one MRSE isolate were genetically similar to those recovered from humans. All MRSA isolates harbored the host innate modulate genes sak and scn previously associated with human infections. The genotypes of MRSE isolates were determined as ST35, a well-known zoonotic sequence type and ST153, which has been associated with humans. However, the MRSE isolates were untypeable due to extra ccr complexes identified in their SCCmec elements. Moreover, we identified in ST153 isolate SCCmec element also harbored the Arginine Catabolic Mobile Element (ACME) IV. All MRS isolates were phenotypically resistant to trimethoprim-sulfamethoxazole, an antibiotic for the decolonization of MRS. Three isolates carried antibiotic resistance genes in their SCCmec elements that were not previously described, including those encoding fusidic acid resistance (fusC) and trimethoprim resistance (dfrC) incorporated in the MRSA SCCmec VI. IMPORTANCE Our findings demonstrate a possible cross-transmission of methicillin resistant staphylococci between goats and their local environments and between goats and humans. Due to ever increasing resistance to multiple antibiotics, the burden of MRS has a significant impact on livestock farming, public health, and the economy worldwide. This study highlights that implementing a holistic approach to whole genome sequencing surveillance in livestock and farm environments would aid our understanding of the transmission of methicillin resistant staphylococci and, most importantly, allow us to implement appropriate infection control and hygiene practices.
Collapse
Affiliation(s)
- Wael El-Deeb
- Department of Clinical Sciences, College of Veterinary Medicine, King Faisal University, Al-Hofuf, Al-Ahsa, Saudi Arabia
- Department of Internal Medicine, Infectious Diseases and Fish Diseases, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Rory Cave
- School of Biomedical Sciences, University of West London, London, United Kingdom
| | - Mahmoud Fayez
- Al Ahsa Veterinary Diagnostic Laboratory, Ministry of Environment, Water and Agriculture, Al-Hofuf, Al-Ahsa, Saudi Arabia
- Veterinary Serum and Vaccine Research Institute, Ministry of Agriculture, Cairo, Egypt
| | - Naser Alhumam
- Department of Microbiology and parasitology, College of Veterinary Medicine, King Faisal University, Al-Hofuf, Al-Ahsa, Saudi Arabia
| | - Sayed Quadri
- Division of Microbiology and Immunology, Department of Biomedical Sciences, College of Medicine, King Faisal University, Al-Hofuf, Al-Ahsa, Kingdom of Saudi Arabia
| | - Hermine V. Mkrtchyan
- School of Biomedical Sciences, University of West London, London, United Kingdom
| |
Collapse
|
13
|
Monecke S, Schaumburg F, Shittu AO, Schwarz S, Mühldorfer K, Brandt C, Braun SD, Collatz M, Diezel C, Gawlik D, Hanke D, Hotzel H, Müller E, Reinicke M, Feßler AT, Ehricht R. Description of Staphylococcal Strains from Straw-Coloured Fruit Bat (Eidolon helvum) and Diamond Firetail (Stagonopleura guttata) and a Review of their Phylogenetic Relationships to Other Staphylococci. Front Cell Infect Microbiol 2022; 12:878137. [PMID: 35646742 PMCID: PMC9132046 DOI: 10.3389/fcimb.2022.878137] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 03/16/2022] [Indexed: 12/30/2022] Open
Abstract
The phylogenetic tree of the Staphylococcus aureus complex consists of several distinct clades and the majority of human and veterinary S. aureus isolates form one large clade. In addition, two divergent clades have recently been described as separate species. One was named Staphylococcus argenteus, due to the lack of the “golden” pigment staphyloxanthin. The second one is S. schweitzeri, found in humans and animals from Central and West Africa. In late 2021, two additional species, S. roterodami and S. singaporensis, have been described from clinical samples from Southeast Asia. In the present study, isolates and their genome sequences from wild Straw-coloured fruit bats (Eidolon helvum) and a Diamond firetail (Stagonopleura guttata, an estrildid finch) kept in a German aviary are described. The isolates possessed staphyloxanthin genes and were closer related to S. argenteus and S. schweitzeri than to S. aureus. Phylogenetic analysis revealed that they were nearly identical to both, S. roterodami and S. singaporensis. We propose considering the study isolates, the recently described S. roterodami and S. singaporensis as well as some Chinese strains with MLST profiles stored in the PubMLST database as different clonal complexes within one new species. According to the principle of priority we propose it should be named S. roterodami. This species is more widespread than previously believed, being observed in West Africa, Southeast Asia and Southern China. It has a zoonotic connection to bats and has been shown to be capable of causing skin and soft tissue infections in humans. It is positive for staphyloxanthin, and it could be mis-identified as S. aureus (or S. argenteus) using routine procedures. However, it can be identified based on distinct MLST alleles, and “S. aureus” sequence types ST2470, ST3135, ST3952, ST3960, ST3961, ST3963, ST3965, ST3980, ST4014, ST4075, ST4076, ST4185, ST4326, ST4569, ST6105, ST6106, ST6107, ST6108, ST6109, ST6999 and ST7342 belong to this species.
Collapse
Affiliation(s)
- Stefan Monecke
- Leibniz Institute of Photonic Technology (IPHT), Jena, Germany
- InfectoGnostics Research Campus, Jena, Germany
- *Correspondence: Stefan Monecke,
| | - Frieder Schaumburg
- Institute of Medical Microbiology, University Hospital Münster, Münster, Germany
| | - Adebayo O. Shittu
- Institute of Medical Microbiology, University Hospital Münster, Münster, Germany
- Department of Microbiology, Obafemi Awolowo University, Ile-Ife, Nigeria
| | - Stefan Schwarz
- Institute of Microbiology and Epizootics, Freie Universität Berlin, Berlin, Germany
- Veterinary Centre for Resistance Research (TZR), Freie Universität Berlin, Berlin, Germany
| | - Kristin Mühldorfer
- Department of Wildlife Diseases, Leibniz Institute for Zoo and Wildlife Research, Berlin, Germany
| | - Christian Brandt
- Institute for Infectious Diseases and Infection Control, Jena University Hospital, Jena, Germany
| | - Sascha D. Braun
- Leibniz Institute of Photonic Technology (IPHT), Jena, Germany
- InfectoGnostics Research Campus, Jena, Germany
| | - Maximilian Collatz
- Leibniz Institute of Photonic Technology (IPHT), Jena, Germany
- InfectoGnostics Research Campus, Jena, Germany
| | - Celia Diezel
- Leibniz Institute of Photonic Technology (IPHT), Jena, Germany
- InfectoGnostics Research Campus, Jena, Germany
| | | | - Dennis Hanke
- Institute of Microbiology and Epizootics, Freie Universität Berlin, Berlin, Germany
- Veterinary Centre for Resistance Research (TZR), Freie Universität Berlin, Berlin, Germany
| | - Helmut Hotzel
- Friedrich-Loeffler-Institut (Federal Research Institute for Animal Health), Institute of Bacterial Infections and Zoonoses, Jena, Germany
| | - Elke Müller
- Leibniz Institute of Photonic Technology (IPHT), Jena, Germany
- InfectoGnostics Research Campus, Jena, Germany
| | - Martin Reinicke
- Leibniz Institute of Photonic Technology (IPHT), Jena, Germany
- InfectoGnostics Research Campus, Jena, Germany
| | - Andrea T. Feßler
- Institute of Microbiology and Epizootics, Freie Universität Berlin, Berlin, Germany
- Veterinary Centre for Resistance Research (TZR), Freie Universität Berlin, Berlin, Germany
| | - Ralf Ehricht
- Leibniz Institute of Photonic Technology (IPHT), Jena, Germany
- InfectoGnostics Research Campus, Jena, Germany
- Institute of Physical Chemistry, Friedrich-Schiller-University, Jena, Germany
| |
Collapse
|
14
|
El-Ashker M, Monecke S, Gwida M, Saad T, El-Gohary A, Mohamed A, Reißig A, Frankenfeld K, Gary D, Müller E, Ehricht R. Molecular characterisation of methicillin-resistant and methicillin-susceptible Staphylococcus aureusclones isolated from healthy dairy animals and their caretakers in Egypt. Vet Microbiol 2022; 267:109374. [DOI: 10.1016/j.vetmic.2022.109374] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 02/15/2022] [Accepted: 02/16/2022] [Indexed: 11/28/2022]
|
15
|
Senok A, Monecke S, Nassar R, Celiloglu H, Thyagarajan S, Müller E, Ehricht R. Lateral Flow Immunoassay for the Detection of Panton-Valentine Leukocidin in Staphylococcus aureus From Skin and Soft Tissue Infections in the United Arab Emirates. Front Cell Infect Microbiol 2021; 11:754523. [PMID: 34733796 PMCID: PMC8558463 DOI: 10.3389/fcimb.2021.754523] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 09/13/2021] [Indexed: 01/11/2023] Open
Abstract
Introduction Panton Valentine leukocidin (PVL) is a virulence factor which is associated with methicillin sensitive and resistant Staphylococcus aureus (MSSA/MRSA) causing skin and soft tissue infections (SSTI). This study aimed to evaluate a novel lateral flow immunoassay (LFI) for PVL detection in S. aureus cultures and to describe their genotypic characterization. Methods The study was carried out from January-August 2020 in Dubai, United Arab Emirates. S. aureus isolates associated with SSTI were tested for PVL detection using LFI. DNA microarray-based assays were used for molecular characterization including detection of pvl genes. Results One-hundred thirty-five patients with a clinical diagnosis of SSTIs were recruited. Sixty-six patients received antibiotics, mostly beta lactams (n=36) and topical fusidic acid (n=15). One-hundred twenty-nine isolates (MRSA: n=43; MSSA: n=86) were tested by LFI and DNA microarrays. All 76 (58.9%) isolates which were unambiguously negative for the PVL in LFI were negative for pvl genes using the DNA microarray. All the LFI PVL positive isolates (n=53) had pvl genes detected. This translates into 100% each for sensitivity, specificity, positive and negative predictive values for the LFI. The LFI typically takes about 15 min inclusive of a 10 min incubation period. Predominant S. aureus clonal complexes (CC) were CC30 (n=18), CC22 (n=13), CC5 (n=12), CC1 (n=11), CC152 (n=8), CC15 (n=7); CC97 (n=7); CC8 and CC20 (n=6 each). Among MRSA, the proportion of pvl-positives (35/43; 81%) was higher than among MSSA (n/N=18/86; 21%). The fusidic acid resistance gene fusC was detected in 14 MRSA (33%) compared to 8 MSSA (9%). A co-carriage of fusC and pvl genes was present in 7 MRSA and in one MSSA. Conclusion LFI shows excellent diagnostic accuracy indices for rapid identification of PVL in MSSA/MRSA in a setting with high prevalence of pvl+ve strains. The high occurrence of pvl and fusC genes in MRSA strains causing SSTI is of concern and needs constant surveillance.
Collapse
Affiliation(s)
- Abiola Senok
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| | - Stefan Monecke
- Department of Optical Molecular Diagnostics and System Technology, Leibniz Institute of Photonic Technology (IPHT), Jena, Germany.,InfectoGnostics Research Campus, Jena, Germany.,Institute for Medical Microbiology and Virology, Dresden University Hospital, Dresden, Germany
| | - Rania Nassar
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates.,Oral and Biomedical Sciences, School of Dentistry, Cardiff University, Cardiff, United Kingdom
| | - Handan Celiloglu
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates.,Department of Pathology & Laboratory Medicine, Mediclinic City Hospital, Dubai, United Arab Emirates
| | - Sreeraj Thyagarajan
- Department of Pathology & Laboratory Medicine, Mediclinic City Hospital, Dubai, United Arab Emirates
| | - Elke Müller
- Department of Optical Molecular Diagnostics and System Technology, Leibniz Institute of Photonic Technology (IPHT), Jena, Germany.,InfectoGnostics Research Campus, Jena, Germany
| | - Ralf Ehricht
- Department of Optical Molecular Diagnostics and System Technology, Leibniz Institute of Photonic Technology (IPHT), Jena, Germany.,InfectoGnostics Research Campus, Jena, Germany.,Institute of Physical Chemistry, Friedrich-Schiller University, Jena, Germany
| |
Collapse
|