1
|
Fjaervoll HK, Fjaervoll KA, Yang M, Reiten OK, Bair J, Lee C, Utheim TP, Dartt D. Purinergic agonists increase [Ca 2+] i in rat conjunctival goblet cells through ryanodine receptor type 3. Am J Physiol Cell Physiol 2024; 327:C830-C843. [PMID: 39099424 PMCID: PMC11427011 DOI: 10.1152/ajpcell.00291.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/08/2024] [Accepted: 07/24/2024] [Indexed: 08/06/2024]
Abstract
ATP and benzoylbenzoyl-ATP (BzATP) increase free cytosolic Ca2+ concentration ([Ca2+]i) in conjunctival goblet cells (CGCs) resulting in mucin secretion. The purpose of this study was to investigate the source of the Ca2+i mobilized by ATP and BzATP. First-passage cultured rat CGCs were incubated with Fura-2/AM, and [Ca2+]i was measured under several conditions with ATP and BzATP stimulation. The following conditions were used: 1) preincubation with the Ca2+ chelator EGTA, 2) preincubation with the SERCA inhibitor thapsigargin (10-6 M), which depletes ER Ca2+ stores, 3) preincubation with phospholipase C (PLC) or protein kinase A (PKA) inhibitor, or 4) preincubation with the voltage-gated calcium channel antagonist nifedipine (10-5 M) and the ryanodine receptor (RyR) antagonist dantrolene (10-5 M). Immunofluorescence microscopy (IF) and quantitative reverse transcription polymerase chain reaction (RT-qPCR) were used to investigate RyR presence in rat and human CGCs. ATP-stimulated peak [Ca2+]i was significantly lower after chelating Ca2+i with 2 mM EGTA in Ca2+-free buffer. The peak [Ca2+]i increase in CGCs preincubated with thapsigargin, the PKA inhibitor H89, nifedipine, and dantrolene, but not the PLC inhibitor, was reduced for ATP at 10-5 M and BzATP at 10-4 M. Incubating CGCs with dantrolene alone decreased [Ca2+]i and induced CGC cell death at a high concentration. RyR3 was detected in rat and human CGCs with IF and RT-qPCR. We conclude that ATP- and BzATP-induced Ca2+i increases originate from the ER and that RyR3 may be an essential regulator of CGC [Ca2+]i. This study contributes to the understanding of diseases arising from defective Ca2+ signaling in nonexcitable cells.NEW & NOTEWORTHY ATP and benzoylbenzoyl-ATP (BzATP) induce mucin secretion through an increase in free cytosolic calcium concentration ([Ca2+]i) in conjunctival goblet cells (CGCs). The mechanisms through which ATP and BzATP increase [Ca2+]i in CGCs are unclear. Ryanodine receptors (RyRs) are fundamental in [Ca2+]i regulation in excitable cells. Herein, we find that ATP and BzATP increase [Ca2+]i through the activation of protein kinase A, voltage-gated calcium channels, and RyRs, and that RyRs are crucial for nonexcitable CGCs' Ca2+i homeostasis.
Collapse
Affiliation(s)
- Haakon K Fjaervoll
- Division of Head, Neck and Reconstructive Surgery, Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Ophthalmology, Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, Massachusetts, United States
- Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway
- Department of Plastic and Reconstructive Surgery, Oslo University Hospital, Oslo, Norway
| | - Ketil A Fjaervoll
- Division of Head, Neck and Reconstructive Surgery, Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Ophthalmology, Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, Massachusetts, United States
- Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway
- Department of Plastic and Reconstructive Surgery, Oslo University Hospital, Oslo, Norway
| | - Menglu Yang
- Department of Ophthalmology, Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, Massachusetts, United States
| | - Ole K Reiten
- Department of Ophthalmology, Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, Massachusetts, United States
| | - Jeffrey Bair
- Department of Ophthalmology, Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, Massachusetts, United States
| | - Changrim Lee
- Department of Ophthalmology, Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, Massachusetts, United States
| | - Tor P Utheim
- Division of Head, Neck and Reconstructive Surgery, Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Ophthalmology, Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, Massachusetts, United States
- Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway
- Department of Plastic and Reconstructive Surgery, Oslo University Hospital, Oslo, Norway
| | - Darlene Dartt
- Department of Ophthalmology, Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, Massachusetts, United States
| |
Collapse
|
2
|
Berkowitz BA, Paruchuri A, Stanek J, Abdul-Nabi M, Podolsky RH, Bustos AH, Childers KL, Murphy GG, Stangis K, Roberts R. Biomarker evidence of early vision and rod energy-linked pathophysiology benefits from very low dose DMSO in 5xFAD mice. Acta Neuropathol Commun 2024; 12:85. [PMID: 38822433 PMCID: PMC11140992 DOI: 10.1186/s40478-024-01799-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 05/20/2024] [Indexed: 06/03/2024] Open
Abstract
Here, we test whether early visual and OCT rod energy-linked biomarkers indicating pathophysiology in nicotinamide nucleotide transhydrogenase (Nnt)-null 5xFAD mice also occur in Nnt-intact 5xFAD mice and whether these biomarkers can be pharmacologically treated. Four-month-old wild-type or 5xFAD C57BL/6 substrains with either a null (B6J) Nnt or intact Nnt gene (B6NTac) and 5xFAD B6J mice treated for one month with either R-carvedilol + vehicle or only vehicle (0.01% DMSO) were studied. The contrast sensitivity (CS), external limiting membrane-retinal pigment epithelium (ELM-RPE) thickness (a proxy for low pH-triggered water removal), profile shape of the hyperreflective band just posterior to the ELM (i.e., the mitochondrial configuration within photoreceptors per aspect ratio [MCP/AR]), and retinal laminar thickness were measured. Both wild-type substrains showed similar visual performance indices and dark-evoked ELM-RPE contraction. The lack of a light-dark change in B6NTac MCP/AR, unlike in B6J mice, is consistent with relatively greater mitochondrial efficiency. 5xFAD B6J mice, but not 5xFAD B6NTac mice, showed lower-than-WT CS. Light-adapted 5xFAD substrains both showed abnormal ELM-RPE contraction and greater-than-WT MCP/AR contraction. The inner retina and superior outer retina were thinner. Treating 5xFAD B6J mice with R-carvedilol + DMSO or DMSO alone corrected CS and ELM-RPE contraction but not supernormal MCP/AR contraction or laminar thinning. These results provide biomarker evidence for prodromal photoreceptor mitochondrial dysfunction/oxidative stress/oxidative damage, which is unrelated to visual performance, as well as the presence of the Nnt gene. This pathophysiology is druggable in 5xFAD mice.
Collapse
Affiliation(s)
- Bruce A Berkowitz
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, 540 E. Canfield, Detroit, MI, 48201, USA.
| | - Anuhya Paruchuri
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, 540 E. Canfield, Detroit, MI, 48201, USA
| | - Josh Stanek
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, 540 E. Canfield, Detroit, MI, 48201, USA
| | - Mura Abdul-Nabi
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, 540 E. Canfield, Detroit, MI, 48201, USA
| | - Robert H Podolsky
- Biostatistics and Study Methodology, Children's National Hospital, Silver Spring, MD, USA
| | | | | | - Geoffrey G Murphy
- Department of Molecular and Integrative Physiology, Molecular Behavioral Neuroscience Institute, University of Michigan Medical School, Ann Arbor, MI, USA
- Michigan Neuroscience Institute, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Katherine Stangis
- Michigan Neuroscience Institute, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Robin Roberts
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, 540 E. Canfield, Detroit, MI, 48201, USA
| |
Collapse
|
3
|
Nawata T, Honda T, Sakai H, Tsuji S, Otsuka M, Uchinoumi H, Kobayashi S, Yamamoto T, Asagiri M, Yano M. Dantrolene, a ryanodine receptor stabilizer, is a candidate immunomodulator for treating rheumatic disease. Scand J Rheumatol 2024; 53:217-219. [PMID: 38293969 DOI: 10.1080/03009742.2023.2297519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 12/18/2023] [Indexed: 02/01/2024]
Affiliation(s)
- T Nawata
- Department of Medicine and Clinical Science, Yamaguchi University Graduate School of Medicine, Ube, Japan
| | - T Honda
- Department of Pharmacology, Yamaguchi University Graduate School of Medicine, Ube, Japan
| | - H Sakai
- Department of Pharmacology, Yamaguchi University Graduate School of Medicine, Ube, Japan
| | - S Tsuji
- Department of Pharmacology, Yamaguchi University Graduate School of Medicine, Ube, Japan
| | - M Otsuka
- Department of Pharmacology, Yamaguchi University Graduate School of Medicine, Ube, Japan
| | - H Uchinoumi
- Department of Medicine and Clinical Science, Yamaguchi University Graduate School of Medicine, Ube, Japan
| | - S Kobayashi
- Department of Medicine and Clinical Science, Yamaguchi University Graduate School of Medicine, Ube, Japan
| | - T Yamamoto
- Faculty of Health Sciences, Yamaguchi University Graduate School of Medicine, Ube, Japan
| | - M Asagiri
- Department of Pharmacology, Yamaguchi University Graduate School of Medicine, Ube, Japan
| | - M Yano
- Department of Medicine and Clinical Science, Yamaguchi University Graduate School of Medicine, Ube, Japan
| |
Collapse
|
4
|
Yao J, Chen SRW. RyR2-dependent modulation of neuronal hyperactivity: A potential therapeutic target for treating Alzheimer's disease. J Physiol 2024; 602:1509-1518. [PMID: 36866974 DOI: 10.1113/jp283824] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 02/27/2023] [Indexed: 03/04/2023] Open
Abstract
Increasing evidence suggests that simply reducing β-amyloid (Aβ) plaques may not significantly affect the progression of Alzheimer's disease (AD). There is also increasing evidence indicating that AD progression is driven by a vicious cycle of soluble Aβ-induced neuronal hyperactivity. In support of this, it has recently been shown that genetically and pharmacologically limiting ryanodine receptor 2 (RyR2) open time prevents neuronal hyperactivity, memory impairment, dendritic spine loss and neuronal cell death in AD mouse models. By contrast, increased RyR2 open probability (Po) exacerbates the onset of familial AD-associated neuronal dysfunction and induces AD-like defects in the absence of AD-causing gene mutations. Thus, RyR2-dependent modulation of neuronal hyperactivity represents a promising new target for combating AD.
Collapse
Affiliation(s)
- Jinjing Yao
- Libin Cardiovascular Institute, Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - S R Wayne Chen
- Libin Cardiovascular Institute, Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
5
|
O’Day DH. The Complex Interplay between Toxic Hallmark Proteins, Calmodulin-Binding Proteins, Ion Channels, and Receptors Involved in Calcium Dyshomeostasis in Neurodegeneration. Biomolecules 2024; 14:173. [PMID: 38397410 PMCID: PMC10886625 DOI: 10.3390/biom14020173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 01/23/2024] [Accepted: 01/30/2024] [Indexed: 02/25/2024] Open
Abstract
Calcium dyshomeostasis is an early critical event in neurodegeneration as exemplified by Alzheimer's (AD), Huntington's (HD) and Parkinson's (PD) diseases. Neuronal calcium homeostasis is maintained by a diversity of ion channels, buffers, calcium-binding protein effectors, and intracellular storage in the endoplasmic reticulum, mitochondria, and lysosomes. The function of these components and compartments is impacted by the toxic hallmark proteins of AD (amyloid beta and Tau), HD (huntingtin) and PD (alpha-synuclein) as well as by interactions with downstream calcium-binding proteins, especially calmodulin. Each of the toxic hallmark proteins (amyloid beta, Tau, huntingtin, and alpha-synuclein) binds to calmodulin. Multiple channels and receptors involved in calcium homeostasis and dysregulation also bind to and are regulated by calmodulin. The primary goal of this review is to show the complexity of these interactions and how they can impact research and the search for therapies. A secondary goal is to suggest that therapeutic targets downstream from calcium dyshomeostasis may offer greater opportunities for success.
Collapse
Affiliation(s)
- Danton H. O’Day
- Department of Biology, University of Toronto Mississauga, Mississauga, ON L5L 1C6, Canada;
- Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada
| |
Collapse
|
6
|
Liu A, Fernandes BS, Citu C, Zhao Z. Unraveling the intercellular communication disruption and key pathways in Alzheimer's disease: an integrative study of single-nucleus transcriptomes and genetic association. Alzheimers Res Ther 2024; 16:3. [PMID: 38167548 PMCID: PMC10762817 DOI: 10.1186/s13195-023-01372-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 12/17/2023] [Indexed: 01/05/2024]
Abstract
BACKGROUND Recently, single-nucleus RNA-seq (snRNA-seq) analyses have revealed important cellular and functional features of Alzheimer's disease (AD), a prevalent neurodegenerative disease. However, our knowledge regarding intercellular communication mediated by dysregulated ligand-receptor (LR) interactions remains very limited in AD brains. METHODS We systematically assessed the intercellular communication networks by using a discovery snRNA-seq dataset comprising 69,499 nuclei from 48 human postmortem prefrontal cortex (PFC) samples. We replicated the findings using an independent snRNA-seq dataset of 56,440 nuclei from 18 PFC samples. By integrating genetic signals from AD genome-wide association studies (GWAS) summary statistics and whole genome sequencing (WGS) data, we prioritized AD-associated Gene Ontology (GO) terms containing dysregulated LR interactions. We further explored drug repurposing for the prioritized LR pairs using the Therapeutic Targets Database. RESULTS We identified 190 dysregulated LR interactions across six major cell types in AD PFC, of which 107 pairs were replicated. Among the replicated LR signals, we found globally downregulated communications in the astrocytes-to-neurons signaling axis, characterized, for instance, by the downregulation of APOE-related and Calmodulin (CALM)-related LR interactions and their potential regulatory connections to target genes. Pathway analyses revealed 44 GO terms significantly linked to AD, highlighting Biological Processes such as 'amyloid precursor protein processing' and 'ion transmembrane transport,' among others. We prioritized several drug repurposing candidates, such as cromoglicate, targeting the identified dysregulated LR pairs. CONCLUSIONS Our integrative analysis identified key dysregulated LR interactions in a cell type-specific manner and the associated GO terms in AD, offering novel insights into potential therapeutic targets involved in disrupted cell-cell communication in AD.
Collapse
Affiliation(s)
- Andi Liu
- Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, 7000 Fannin St., Suite 600, Houston, TX, 77030, USA
| | - Brisa S Fernandes
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, 7000 Fannin St., Suite 600, Houston, TX, 77030, USA
| | - Citu Citu
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, 7000 Fannin St., Suite 600, Houston, TX, 77030, USA
| | - Zhongming Zhao
- Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA.
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, 7000 Fannin St., Suite 600, Houston, TX, 77030, USA.
- Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA.
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN, 37203, USA.
| |
Collapse
|
7
|
Sharma B, Koren DT, Ghosh S. Nitric oxide modulates NMDA receptor through a negative feedback mechanism and regulates the dynamical behavior of neuronal postsynaptic components. Biophys Chem 2023; 303:107114. [PMID: 37832215 DOI: 10.1016/j.bpc.2023.107114] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 09/22/2023] [Accepted: 09/24/2023] [Indexed: 10/15/2023]
Abstract
Nitric oxide (NO) is known to be an important regulator of neurological processes in the central nervous system which acts directly on the presynaptic neuron and enhances the release of neurotransmitters like glutamate into the synaptic cleft. Calcium influx activates a cascade of biochemical reactions to influence the production of nitric oxide in the postsynaptic neuron. This has been modeled in the present work as a system of ordinary differential equations, to explore the dynamics of the interacting components and predict the dynamical behavior of the postsynaptic neuron. It has been hypothesized that nitric oxide modulates the NMDA receptor via a feedback mechanism and regulates the dynamic behavior of postsynaptic components. Results obtained by numerical analyses indicate that the biochemical system is stimulus-dependent and shows oscillations of calcium and other components within a limited range of concentration. Some of the parameters such as stimulus strength, extracellular calcium concentration, and rate of nitric oxide feedback are crucial for the dynamics of the components in the postsynaptic neuron.
Collapse
Affiliation(s)
- Bhanu Sharma
- Department of Biophysics, University of Delhi South Campus, New Delhi 110021, India
| | | | - Subhendu Ghosh
- Department of Biophysics, University of Delhi South Campus, New Delhi 110021, India.
| |
Collapse
|
8
|
Liu A, Fernandes BS, Citu C, Zhao Z. Unraveling the intercellular communication disruption and key pathways in Alzheimer's disease: An integrative study of single-nucleus transcriptomes and genetic association. RESEARCH SQUARE 2023:rs.3.rs-3335643. [PMID: 37790454 PMCID: PMC10543294 DOI: 10.21203/rs.3.rs-3335643/v1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Background Recently, single-nucleus RNA-seq (snRNA-seq) analyses have revealed important cellular and functional features of Alzheimer's disease (AD), a prevalent neurodegenerative disease. However, our knowledge regarding intercellular communication mediated by dysregulated ligand-receptor (LR) interactions remains very limited in AD brains. Methods We systematically assessed the intercellular communication networks by using a discovery snRNA-seq dataset comprising 69,499 nuclei from 48 human postmortem prefrontal cortex (PFC) samples. We replicated the findings using an independent snRNA-seq dataset of 56,440 nuclei from 18 PFC samples. By integrating genetic signals from AD genome-wide association studies (GWAS) summary statistics and whole genome sequencing (WGS) data, we prioritized AD-associated Gene Ontology (GO) terms containing dysregulated LR interactions. We further explored drug repurposing for the prioritized LR pairs using the Therapeutic Targets Database. Results We identified 316 dysregulated LR interactions across six major cell types in AD PFC, of which 210 pairs were replicated. Among the replicated LR signals, we found globally downregulated communications in astrocytes-to-neurons signaling axis, characterized, for instance, by the downregulation of APOE-related and Calmodulin (CALM)-related LR interactions and their potential regulatory connections to target genes. Pathway analyses revealed 60 GO terms significantly linked to AD, highlighting Biological Processes such as 'amyloid precursor protein processing' and 'ion transmembrane transport', among others. We prioritized several drug repurposing candidates, such as cromoglicate, targeting the identified dysregulated LR pairs. Conclusions Our integrative analysis identified key dysregulated LR interactions in a cell type-specific manner and the associated GO terms in AD, offering novel insights into potential therapeutic targets involved in disrupted cell-cell communication in AD.
Collapse
Affiliation(s)
- Andi Liu
- Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston
| | - Brisa S Fernandes
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston
| | - Citu Citu
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston
| | - Zhongming Zhao
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston
| |
Collapse
|
9
|
Zhang H, Bezprozvanny I. "Dirty Dancing" of Calcium and Autophagy in Alzheimer's Disease. Life (Basel) 2023; 13:life13051187. [PMID: 37240832 DOI: 10.3390/life13051187] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/09/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023] Open
Abstract
Alzheimer's disease (AD) is the most common cause of dementia. There is a growing body of evidence that dysregulation in neuronal calcium (Ca2+) signaling plays a major role in the initiation of AD pathogenesis. In particular, it is well established that Ryanodine receptor (RyanR) expression levels are increased in AD neurons and Ca2+ release via RyanRs is augmented in AD neurons. Autophagy is important for removing unnecessary or dysfunctional components and long-lived protein aggregates, and autophagy impairment in AD neurons has been extensively reported. In this review we discuss recent results that suggest a causal link between intracellular Ca2+ signaling and lysosomal/autophagic dysregulation. These new results offer novel mechanistic insight into AD pathogenesis and may potentially lead to identification of novel therapeutic targets for treating AD and possibly other neurodegenerative disorders.
Collapse
Affiliation(s)
- Hua Zhang
- Department of Physiology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Ilya Bezprozvanny
- Department of Physiology, UT Southwestern Medical Center, Dallas, TX 75390, USA
- Laboratory of Molecular Neurodegeneration, Peter the Great St. Petersburg State Polytechnical University, St. Petersburg 195251, Russia
| |
Collapse
|
10
|
Berkowitz BA, Podolsky RH, Childers KL, Roberts R, Waseem R. Multiple Bioenergy-Linked OCT Biomarkers Suggest Greater-Than-Normal Rod Mitochondria Activity Early in Experimental Alzheimer's Disease. Invest Ophthalmol Vis Sci 2023; 64:12. [PMID: 36867132 PMCID: PMC9988708 DOI: 10.1167/iovs.64.3.12] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023] Open
Abstract
Purpose In Alzheimer's disease, central brain neurons show evidence for early hyperactivity. It is unclear if this occurs in the retina, another disease target. Here, we tested for imaging biomarker manifestation of prodromal hyperactivity in rod mitochondria in vivo in experimental Alzheimer's disease. Methods Light- and dark-adapted 4-month-old 5xFAD and wild-type (WT) mice, both on a C57BL/6J background, were studied with optical coherence tomography (OCT). We measured the reflectivity profile shape of the inner segment ellipsoid zone (EZ) as a proxy for mitochondria distribution. Two additional indices responsive to mitochondria activity were also measured: the thickness of the external limiting membrane-retinal pigment epithelium (ELM-RPE) region and the signal magnitude of a hyporeflective band (HB) between photoreceptor tips and apical RPE. Retinal laminar thickness and visual performance were evaluated. Results In response to low energy demand (light), WT mice showed the expected elongation in EZ reflectivity profile shape, relatively thicker ELM-RPE, and greater HB signal. Under high energy demand (dark), the EZ reflectivity profile shape was rounder, the ELM-RPE was thinner, and the HB was reduced. These OCT biomarker patterns for light-adapted 5xFAD mice did not match those of light-adapted WT mice but rather that of dark-adapted WT mice. Dark-adapted 5xFAD and WT mice showed the same biomarker pattern. The 5xFAD mice exhibited modest nuclear layer thinning and lower-than-normal contrast sensitivity. Conclusions Results from three OCT bioenergy biomarkers raise the novel possibility of early rod hyperactivity in vivo in a common Alzheimer's disease model.
Collapse
Affiliation(s)
- Bruce A Berkowitz
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, Michigan, United States
| | - Robert H Podolsky
- Biostatistics and Study Methodology, Children's National Hospital, Silver Spring, Maryland, United States
| | - Karen L Childers
- Beaumont Research Institute, Beaumont Health, Royal Oak, Michigan, United States
| | - Robin Roberts
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, Michigan, United States
| | - Rida Waseem
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, Michigan, United States
| |
Collapse
|
11
|
Zhang H, Knight C, Chen SRW, Bezprozvanny I. A Gating Mutation in Ryanodine Receptor Type 2 Rescues Phenotypes of Alzheimer's Disease Mouse Models by Upregulating Neuronal Autophagy. J Neurosci 2023; 43:1441-1454. [PMID: 36627208 PMCID: PMC9987572 DOI: 10.1523/jneurosci.1820-22.2022] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/26/2022] [Accepted: 12/19/2022] [Indexed: 01/12/2023] Open
Abstract
It is well established that ryanodine receptors (RyanRs) are overactive in Alzheimer's disease (AD), and it has been suggested that inhibition of RyanR is potentially beneficial for AD treatment. In the present study, we explored a potential connection between basal RyanR activity and autophagy in neurons. Autophagy plays an important role in clearing damaged organelles and long-lived protein aggregates, and autophagy dysregulation occurs in both AD patients and AD animal models. Autophagy is known to be regulated by intracellular calcium (Ca2+) signals, and our results indicated that basal RyanR2 activity in hippocampal neurons inhibited autophagy through activation of calcineurin and the resulting inhibition of the AMPK (AMP-activated protein kinase)-ULK1 (unc-51-like autophagy-activating kinase 1) pathway. Thus, we hypothesized that increased basal RyanR2 activity in AD may lead to the inhibition of neuronal autophagy and accumulation of β-amyloid. To test this hypothesis, we took advantage of the RyanR2-E4872Q knock-in mouse model (EQ) in which basal RyanR2 activity is reduced because of shortened channel open time. We discovered that crossing EQ mice with the APPKI and APPPS1 mouse models of AD (both males and females) rescued amyloid accumulation and LTP impairment in these mice. Our results revealed that reduced basal activity of RyanR2-EQ channels disinhibited the autophagic pathway and led to increased amyloid clearance in these models. These data indicated a potential pathogenic outcome of RyanR2 overactivation in AD and also provided additional targets for therapeutic intervention in AD. Basal activity of ryanodine receptors controls neuronal autophagy and contributes to development of the AD phenotype.SIGNIFICANCE STATEMENT It is well established that neuronal autophagy is impaired in Alzheimer's disease (AD). Our results suggest that supranormal calcium (Ca2+) release from endoplasmic reticulum contributes to the inhibition of autophagy in AD and that reduction in basal activity of type 2 ryanodine receptors disinhibits the neuronal autophagic pathway and leads to increased amyloid clearance in AD models. Our findings directly link neuronal Ca2+ dysregulation with autophagy dysfunction in AD and point to additional targets for therapeutic intervention.
Collapse
Affiliation(s)
- Hua Zhang
- Department of Physiology, UT Southwestern Medical Center, Dallas, Texas 75390
| | - Caitlynn Knight
- Department of Physiology, UT Southwestern Medical Center, Dallas, Texas 75390
| | - S R Wayne Chen
- Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Ilya Bezprozvanny
- Department of Physiology, UT Southwestern Medical Center, Dallas, Texas 75390
- Laboratory of Molecular Neurodegeneration, St. Petersburg State Polytechnical Universty, St. Petersburg 195251, Russian Federation
| |
Collapse
|
12
|
Li Z, Cao Y, Pei H, Ma L, Yang Y, Li H. The contribution of mitochondria-associated endoplasmic reticulum membranes (MAMs) dysfunction in Alzheimer's disease and the potential countermeasure. Front Neurosci 2023; 17:1158204. [PMID: 36960176 PMCID: PMC10027904 DOI: 10.3389/fnins.2023.1158204] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 02/23/2023] [Indexed: 03/09/2023] Open
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disease. There are many studies targeting extracellular deposits of amyloid β-peptide (Aβ) and intracellular neurofibrillary tangles (NFTs), however, there are no effective treatments to halt the progression. Mitochondria-associated endoplasmic reticulum membranes (MAMs) have long been found to be associated with various pathogenesis hypotheses of AD, such as Aβ deposition, mitochondrial dysfunction, and calcium homeostasis. However, there is a lack of literature summarizing recent advances in the mechanism and treatment studies. Accordingly, this article reviews the latest research involving the roles of MAM structure and tethering proteins in the pathogenesis of AD and summarizes potential strategies targeting MAMs to dissect treatment perspectives for AD.
Collapse
Affiliation(s)
- Zehui Li
- Department of Geriatrics, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yu Cao
- Department of Geriatrics, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Hui Pei
- Department of Geriatrics, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Lina Ma
- Department of Geriatrics, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yang Yang
- Department of Geriatrics, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- *Correspondence: Yang Yang,
| | - Hao Li
- Department of Geriatrics, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Hao Li,
| |
Collapse
|
13
|
Berkowitz BA, Podolsky RH, Childers KL, Roberts R, Katz R, Waseem R, Robbings BM, Hass DT, Hurley JB, Sweet IR, Goodman C, Qian H, Alvisio B, Heaps S. Transducin-Deficient Rod Photoreceptors Evaluated With Optical Coherence Tomography and Oxygen Consumption Rate Energy Biomarkers. Invest Ophthalmol Vis Sci 2022; 63:22. [PMID: 36576748 PMCID: PMC9804021 DOI: 10.1167/iovs.63.13.22] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Purpose To test the hypothesis that rod energy biomarkers in light and dark are similar in mice without functional rod transducin (Gnat1rd17). Methods Gnat1rd17 and wildtype (WT) mice were studied in canonically low energy demand (light) and high energy demand (dark) conditions. We measured rod inner segment ellipsoid zone (ISez) profile shape, external limiting membrane-retinal pigment epithelium (ELM-RPE) thickness, and magnitude of a hyporeflective band (HB) intensity dip located between photoreceptor tips and apical RPE; antioxidants were given in a subset of mice. Oxygen consumption rate (OCR) and visual performance indexes were also measured. Results The lower energy demand expected in light-adapted wildtype retinas was associated with an elongated ISez, thicker ELM-RPE, and higher HB magnitude, and lower OCR compared to high energy demand conditions in the dark. Gnat1rd17 mice showed a wildtype-like ISez profile shape at 20 minutes of light that became rounder at 60 minutes; at both times, ELM-RPE was smaller than wildtype values, and the HB magnitude was unmeasurable. OCR was higher than in the dark. Light-adapted Gnat1rd17 mice biomarkers were unaffected by anti-oxidants. Gnat1rd17 mice showed modest outer nuclear layer thinning and no reduction in visual performance indexes. Conclusions Light-stimulated changes in all biomarkers in WT mice are consistent with the established light-induced decrease in net energy demand. In contrast, biomarker changes in Gnat1rd17 mice raise the possibility that light increases net energy demand in the absence of rod phototransduction.
Collapse
Affiliation(s)
- Bruce A Berkowitz
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, Michigan, United States
| | - Robert H Podolsky
- Biostatistics and Study Methodology, Children's National Hospital, Silver Spring, Maryland, United States
| | - Karen Lins Childers
- Beaumont Research Institute, Beaumont Health, Royal Oak, Michigan, United States
| | - Robin Roberts
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, Michigan, United States
| | - Ryan Katz
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, Michigan, United States
| | - Rida Waseem
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, Michigan, United States
| | - Brian M Robbings
- Department of Biochemistry, Department of Ophthalmology, University of Washington, Seattle, Washington, United States.,Department of Medicine, UW Medicine Diabetes Institute, University of Washington, Seattle, Washington, United States
| | - Daniel T Hass
- Department of Biochemistry, Department of Ophthalmology, University of Washington, Seattle, Washington, United States
| | - James B Hurley
- Department of Biochemistry, Department of Ophthalmology, University of Washington, Seattle, Washington, United States
| | - Ian R Sweet
- Department of Medicine, UW Medicine Diabetes Institute, University of Washington, Seattle, Washington, United States
| | - Cole Goodman
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, Michigan, United States
| | - Haohua Qian
- Visual Function Core, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Bruno Alvisio
- OSIO Bioinformatics Core, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Sam Heaps
- OSIO Bioinformatics Core, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| |
Collapse
|
14
|
Nawata T, Sakai H, Honda T, Otsuka M, Fujita H, Uchinoumi H, Kobayashi S, Yamamoto T, Asagiri M, Yano M. Dantrolene, a stabilizer of the ryanodine receptor, prevents collagen-induced arthritis. Biochem Biophys Res Commun 2022; 624:141-145. [PMID: 35940127 DOI: 10.1016/j.bbrc.2022.07.111] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 07/29/2022] [Indexed: 11/16/2022]
Abstract
Dantrolene inhibits Ca2+ leakage from destabilized ryanodine receptors and therefore may serve as a therapeutic agent against endoplasmic reticulum stress-associated diseases. However, its effectiveness in treating autoimmune diseases remains unclear. Here, we investigated the effect of dantrolene on collagen-induced arthritis (CIA) in mice. Oral administration of dantrolene resulted in significantly lower arthritic scores in both male and female CIA mice than in the control mice. Micro-computed tomographic and histological analyses showed that dantrolene suppressed bone and chondral destruction. The serum levels of anti-type II collagen (CII) IgG were positively correlated with the arthritic scores (r = 0.704, p < 0.01). In addition, the serum levels of anti-CII IgG were significantly lower in the dantrolene group than in the control group (p < 0.05). These results demonstrate that oral administration of dantrolene to CIA mice inhibits the production of serum anti-CII IgG and consequently prevents arthritis. Therefore, dantrolene may be a potential anti-rheumatic drug.
Collapse
Affiliation(s)
- Takashi Nawata
- Department of Medicine and Clinical Science, Yamaguchi University Graduate School of Medicine, 1-1-1 Minamikogushi, Ube, 755-8505, Japan.
| | - Hiroki Sakai
- Department of Pharmacology, Yamaguchi University Graduate School of Medicine, 1-1-1 Minamikogushi, Ube, 755-8505, Japan
| | - Takeshi Honda
- Department of Pharmacology, Yamaguchi University Graduate School of Medicine, 1-1-1 Minamikogushi, Ube, 755-8505, Japan
| | - Marina Otsuka
- Department of Pharmacology, Yamaguchi University Graduate School of Medicine, 1-1-1 Minamikogushi, Ube, 755-8505, Japan
| | - Hina Fujita
- Department of Medicine and Clinical Science, Yamaguchi University Graduate School of Medicine, 1-1-1 Minamikogushi, Ube, 755-8505, Japan
| | - Hitoshi Uchinoumi
- Department of Medicine and Clinical Science, Yamaguchi University Graduate School of Medicine, 1-1-1 Minamikogushi, Ube, 755-8505, Japan
| | - Shigeki Kobayashi
- Department of Medicine and Clinical Science, Yamaguchi University Graduate School of Medicine, 1-1-1 Minamikogushi, Ube, 755-8505, Japan
| | - Takeshi Yamamoto
- Faculty of Health Sciences, Yamaguchi University Graduate School of Medicine, 1-1-1 Minamikogushi, Ube, 755-8505, Japan
| | - Masataka Asagiri
- Department of Pharmacology, Yamaguchi University Graduate School of Medicine, 1-1-1 Minamikogushi, Ube, 755-8505, Japan
| | - Masafumi Yano
- Department of Medicine and Clinical Science, Yamaguchi University Graduate School of Medicine, 1-1-1 Minamikogushi, Ube, 755-8505, Japan
| |
Collapse
|
15
|
Endoplasmic reticulum stress promotes nuclear translocation of calmodulin, which activates phenotypic switching of vascular smooth muscle cells. Biochem Biophys Res Commun 2022; 628:155-162. [DOI: 10.1016/j.bbrc.2022.08.069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 08/23/2022] [Indexed: 11/22/2022]
|