1
|
Rostami M, Ahmadian MT. Numerical simulation of nanoneedle-cell membrane collision: minimum magnetic force and initial kinetic energy for penetration. Biomed Phys Eng Express 2024; 10:045057. [PMID: 38788696 DOI: 10.1088/2057-1976/ad5019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 05/24/2024] [Indexed: 05/26/2024]
Abstract
Aims and objectives: This research aims to develop a kinetic model that accurately captures the dynamics of nanoparticle impact and penetration into cell membranes, specifically in magnetically-driven drug delivery. The primary objective is to determine the minimum initial kinetic energy and constant external magnetic force necessary for successful penetration of the cell membrane.Model Development: Built upon our previous research on quasi-static nanoneedle penetration, the current model development is based on continuum mechanics. The modeling approach incorporates a finite element method and explicit dynamic solver to accurately represent the rapid dynamics involved in the phenomenon. Within the model, the cell is modeled as an isotropic elastic shell with a hemiellipsoidal geometry and a thickness of 200 nm, reflecting the properties of the lipid membrane and actin cortex. The surrounding cytoplasm is treated as a fluid-like Eulerian body.Scenarios and Results: This study explores three distinct scenarios to investigate the penetration of nanoneedles into cell membranes. Firstly, we examine two scenarios in which the particles are solely subjected to either a constant external force or an initial velocity. Secondly, we explore a scenario that considers the combined effects of both parameters simultaneously. In each scenario, we analyze the critical values required to induce membrane puncture and present comprehensive diagrams illustrating the results.Findings and significance: The findings of this research provide valuable insights into the mechanics of nanoneedle penetration into cell membranes and offer guidelines for optimizing magnetically-driven drug delivery systems, supporting the design of efficient and targeted drug delivery strategies.
Collapse
Affiliation(s)
- M Rostami
- Mechanical Engineering Department, Sharif University of Technology, Tehran, Azadi Ave, P932+FM4, Iran
| | - M T Ahmadian
- Mechanical Engineering Department, Sharif University of Technology, Tehran, Azadi Ave, P932+FM4, Iran
| |
Collapse
|
2
|
Park W, Kim EM, Jeon Y, Lee J, Yi J, Jeong J, Kim B, Jeong BG, Kim DR, Kong H, Lee CH. Transparent Intracellular Sensing Platform with Si Needles for Simultaneous Live Imaging. ACS NANO 2023; 17:25014-25026. [PMID: 38059775 DOI: 10.1021/acsnano.3c07527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/08/2023]
Abstract
Vertically ordered Si needles are of particular interest for long-term intracellular recording owing to their capacity to infiltrate living cells with negligible damage and minimal toxicity. Such intracellular recordings could greatly benefit from simultaneous live cell imaging without disrupting their culture, contributing to an in-depth understanding of cellular function and activity. However, the use of standard live imaging techniques, such as inverted and confocal microscopy, is currently impeded by the opacity of Si wafers, typically employed for fabricating vertical Si needles. Here, we introduce a transparent intracellular sensing platform that combines vertical Si needles with a percolated network of Au-Ag nanowires on a transparent elastomeric substrate. This sensing platform meets all prerequisites for simultaneous intracellular recording and imaging, including electrochemical impedance, optical transparency, mechanical compliance, and cell viability. Proof-of-concept demonstrations of this sensing platform include monitoring electrical potentials in cardiomyocyte cells and in three-dimensionally engineered cardiovascular tissue, all while conducting live imaging with inverted and confocal microscopes. This sensing platform holds wide-ranging potential applications for intracellular research across various disciplines such as neuroscience, cardiology, muscle physiology, and drug screening.
Collapse
Affiliation(s)
- Woohyun Park
- School of Mechanical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Eun Mi Kim
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Yale Jeon
- School of Mechanical Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Junsang Lee
- School of Mechanical Engineering, Hanyang University, Seoul 04763, Republic of Korea
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Jonghun Yi
- School of Mechanical Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Jinheon Jeong
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Bongjoong Kim
- School of Mechanical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
- Department of Mechanical and System Design Engineering, Hongik University, Seoul 04066, Republic of Korea
| | - Byeong Guk Jeong
- School of Mechanical Engineering, Hanyang University, Seoul 04763, Republic of Korea
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Dong Rip Kim
- School of Mechanical Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Hyunjoon Kong
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Chi Hwan Lee
- School of Mechanical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
- Department of Materials Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
3
|
Ichikawa T, Alam MS, Penedo M, Matsumoto K, Fujita S, Miyazawa K, Furusho H, Miyata K, Nakamura C, Fukuma T. Protocol for live imaging of intracellular nanoscale structures using atomic force microscopy with nanoneedle probes. STAR Protoc 2023; 4:102468. [PMID: 37481726 PMCID: PMC10374873 DOI: 10.1016/j.xpro.2023.102468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 06/18/2023] [Accepted: 06/28/2023] [Indexed: 07/25/2023] Open
Abstract
Atomic force microscopy (AFM) is capable of nanoscale imaging but has so far only been used on cell surfaces when applied to a living cell. Here, we describe a step-by-step protocol for nanoendoscopy-AFM, which enables the imaging of nanoscale structures inside living cells. The protocol consists of cell staining, fabrication of the nanoneedle probes, observation inside living cells using 2D and 3D nanoendoscopy-AFM, and visualization of the 3D data. For complete details on the use and execution of this protocol, please refer to Penedo et al. (2021)1 and Penedo et al. (2021).2.
Collapse
Affiliation(s)
- Takehiko Ichikawa
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan.
| | - Mohammad Shahidul Alam
- Division of Nano Life Science, Graduate School of Frontier Science Initiative, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Marcos Penedo
- École Polytechnique Fédérale de Lausanne, Institute for Bioengineering, Laboratory for Bio and Nanoinstrumentation, Lausanne, CH 1015, Switzerland
| | - Kyosuke Matsumoto
- Faculty of Frontier Engineering, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Sou Fujita
- Faculty of Frontier Engineering, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Keisuke Miyazawa
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan; Faculty of Frontier Engineering, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Hirotoshi Furusho
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Kazuki Miyata
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan; Division of Nano Life Science, Graduate School of Frontier Science Initiative, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan; Faculty of Frontier Engineering, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Chikashi Nakamura
- AIST-INDIA Diverse Assets and Applications International Laboratory (DAILAB), Cellular and Molecular Biotechnology Research Institute (CMB), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8565, Japan
| | - Takeshi Fukuma
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan; Division of Nano Life Science, Graduate School of Frontier Science Initiative, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan; Faculty of Frontier Engineering, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan.
| |
Collapse
|
4
|
Seetasang S, Xu Y. Recent progress and perspectives in applications of 2-methacryloyloxyethyl phosphorylcholine polymers in biodevices at small scales. J Mater Chem B 2022; 10:2323-2337. [DOI: 10.1039/d1tb02675e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Bioinspired materials have attracted attention in a wide range of fields. Among these materials, a polymer family containing 2-methacryloyloxyethyl phosphorylcholine (MPC), which has a zwitterionic phosphorylcholine headgroup inspired by the...
Collapse
|
5
|
Hall D, Foster AS. Practical considerations for feature assignment in high-speed AFM of live cell membranes. Biophys Physicobiol 2022; 19:1-21. [PMID: 35797405 PMCID: PMC9173863 DOI: 10.2142/biophysico.bppb-v19.0016] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 04/13/2022] [Indexed: 12/01/2022] Open
Affiliation(s)
- Damien Hall
- WPI Nano Life Science Institute, Kanazawa University
| | | |
Collapse
|
6
|
Penedo M, Miyazawa K, Okano N, Furusho H, Ichikawa T, Alam MS, Miyata K, Nakamura C, Fukuma T. Visualizing intracellular nanostructures of living cells by nanoendoscopy-AFM. SCIENCE ADVANCES 2021; 7:eabj4990. [PMID: 34936434 PMCID: PMC10954033 DOI: 10.1126/sciadv.abj4990] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 11/10/2021] [Indexed: 06/14/2023]
Abstract
Atomic force microscopy (AFM) is the only technique that allows label-free imaging of nanoscale biomolecular dynamics, playing a crucial role in solving biological questions that cannot be addressed by other major bioimaging tools (fluorescence or electron microscopy). However, such imaging is possible only for systems either extracted from cells or reconstructed on solid substrates. Thus, nanodynamics inside living cells largely remain inaccessible with the current nanoimaging techniques. Here, we overcome this limitation by nanoendoscopy-AFM, where a needle-like nanoprobe is inserted into a living cell, presenting actin fiber three-dimensional (3D) maps, and 2D nanodynamics of the membrane inner scaffold, resulting in undetectable changes in cell viability. Unlike previous AFM methods, the nanoprobe directly accesses the target intracellular components, exploiting all the AFM capabilities, such as high-resolution imaging, nanomechanical mapping, and molecular recognition. These features should greatly expand the range of intracellular structures observable in living cells.
Collapse
Affiliation(s)
- Marcos Penedo
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa 920-1192, Japan
| | - Keisuke Miyazawa
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa 920-1192, Japan
- Division of Electric Engineering and Computer Science, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
- Faculty of Frontier Engineering, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Naoko Okano
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa 920-1192, Japan
| | - Hirotoshi Furusho
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa 920-1192, Japan
| | - Takehiko Ichikawa
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa 920-1192, Japan
| | - Mohammad Shahidul Alam
- Division of Nano Life Science, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Kazuki Miyata
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa 920-1192, Japan
- Division of Electric Engineering and Computer Science, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
- Faculty of Frontier Engineering, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
- Division of Nano Life Science, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Chikashi Nakamura
- AIST-INDIA Diverse Assets and Applications International Laboratory (DAILAB), Cellular and Molecular Biotechnology Research Institute (CMB), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8565, Japan
| | - Takeshi Fukuma
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa 920-1192, Japan
- Division of Electric Engineering and Computer Science, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
- Faculty of Frontier Engineering, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
- Division of Nano Life Science, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| |
Collapse
|