1
|
Ohguro H, Watanabe M, Sato T, Nishikiori N, Umetsu A, Higashide M, Yano T, Suzuki H, Miyazaki A, Takada K, Uhara H, Furuhashi M, Hikage F. Application of Single Cell Type-Derived Spheroids Generated by Using a Hanging Drop Culture Technique in Various In Vitro Disease Models: A Narrow Review. Cells 2024; 13:1549. [PMID: 39329734 PMCID: PMC11430518 DOI: 10.3390/cells13181549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/21/2024] [Accepted: 08/23/2024] [Indexed: 09/28/2024] Open
Abstract
Cell culture methods are indispensable strategies for studies in biological sciences and for drug discovery and testing. Most cell cultures have been developed using two-dimensional (2D) culture methods, but three-dimensional (3D) culture techniques enable the establishment of in vitro models that replicate various pathogenic conditions and they provide valuable insights into the pathophysiology of various diseases as well as more precise results in tests for drug efficacy. However, one difficulty in the use of 3D cultures is selection of the appropriate 3D cell culture technique for the study purpose among the various techniques ranging from the simplest single cell type-derived spheroid culture to the more sophisticated organoid cultures. In the simplest single cell type-derived spheroid cultures, there are also various scaffold-assisted methods such as hydrogel-assisted cultures, biofilm-assisted cultures, particle-assisted cultures, and magnet particle-assisted cultures, as well as non-assisted methods, such as static suspension cultures, floating cultures, and hanging drop cultures. Since each method can be differently influenced by various factors such as gravity force, buoyant force, centrifugal force, and magnetic force, in addition to non-physiological scaffolds, each method has its own advantages and disadvantages, and the methods have different suitable applications. We have been focusing on the use of a hanging drop culture method for modeling various non-cancerous and cancerous diseases because this technique is affected only by gravity force and buoyant force and is thus the simplest method among the various single cell type-derived spheroid culture methods. We have found that the biological natures of spheroids generated even by the simplest method of hanging drop cultures are completely different from those of 2D cultured cells. In this review, we focus on the biological aspects of single cell type-derived spheroid culture and its applications in in vitro models for various diseases.
Collapse
Affiliation(s)
- Hiroshi Ohguro
- Departments of Ophthalmology, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan; (M.W.); (N.N.); (A.U.); (M.H.)
| | - Megumi Watanabe
- Departments of Ophthalmology, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan; (M.W.); (N.N.); (A.U.); (M.H.)
| | - Tatsuya Sato
- Departments of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan; (T.S.); (T.Y.); (M.F.)
- Departments of Cellular Physiology and Signal Transduction, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan
| | - Nami Nishikiori
- Departments of Ophthalmology, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan; (M.W.); (N.N.); (A.U.); (M.H.)
| | - Araya Umetsu
- Departments of Ophthalmology, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan; (M.W.); (N.N.); (A.U.); (M.H.)
| | - Megumi Higashide
- Departments of Ophthalmology, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan; (M.W.); (N.N.); (A.U.); (M.H.)
| | - Toshiyuki Yano
- Departments of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan; (T.S.); (T.Y.); (M.F.)
| | - Hiromu Suzuki
- Departments of Molecular Biology, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan;
| | - Akihiro Miyazaki
- Departments of Oral Surgery, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan;
| | - Kohichi Takada
- Departments of Medical Oncology, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan;
| | - Hisashi Uhara
- Departments of Dermatology, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan;
| | - Masato Furuhashi
- Departments of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan; (T.S.); (T.Y.); (M.F.)
| | - Fumihito Hikage
- Departments of Ophthalmology, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan; (M.W.); (N.N.); (A.U.); (M.H.)
| |
Collapse
|
2
|
Ohguro H, Umetsu A, Sato T, Furuhashi M, Watanabe M. Lipid Metabolism Regulators Are the Possible Determinant for Characteristics of Myopic Human Scleral Stroma Fibroblasts (HSSFs). Int J Mol Sci 2023; 25:501. [PMID: 38203671 PMCID: PMC10778967 DOI: 10.3390/ijms25010501] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/25/2023] [Accepted: 12/26/2023] [Indexed: 01/12/2024] Open
Abstract
The purpose of the current investigation was to elucidate what kinds of responsible mechanisms induce elongation of the sclera in myopic eyes. To do this, two-dimensional (2D) cultures of human scleral stromal fibroblasts (HSSFs) obtained from eyes with two different axial length (AL) groups, <26 mm (low AL group, n = 2) and >27 mm (high AL group, n = 3), were subjected to (1) measurements of Seahorse mitochondrial and glycolytic indices to evaluate biological aspects and (2) analysis by RNA sequencing. Extracellular flux analysis revealed that metabolic indices related to mitochondrial and glycolytic functions were higher in the low AL group than in the high AL group, suggesting that metabolic activities of HSSF cells are different depending the degree of AL. Based upon RNA sequencing of these low and high AL groups, the bioinformatic analyses using gene ontology (GO) enrichment analysis and ingenuity pathway analysis (IPA) of differentially expressed genes (DEGs) identified that sterol regulatory element-binding transcription factor 2 (SREBF2) is both a possible upstream regulator and a causal network regulator. Furthermore, SREBF1, insulin-induced gene 1 (INSIG1), and insulin-like growth factor 1 (IGF1) were detected as upstream regulators, and protein tyrosine phosphatase receptor type O (PTPRO) was detected as a causal network regulator. Since those possible regulators were all pivotally involved in lipid metabolisms including fatty acid (FA), triglyceride (TG) and cholesterol (Chol) biosynthesis, the findings reported here indicate that FA, TG and Chol biosynthesis regulation may be responsible mechanisms inducing AL elongation via HSSF.
Collapse
Affiliation(s)
- Hiroshi Ohguro
- Department of Ophthalmology, School of Medicine, Sapporo Medical University, Sapporo 060-8556, Hokkaido, Japan; (H.O.); (A.U.)
| | - Araya Umetsu
- Department of Ophthalmology, School of Medicine, Sapporo Medical University, Sapporo 060-8556, Hokkaido, Japan; (H.O.); (A.U.)
| | - Tatsuya Sato
- Department of Cardiovascular, Renal and Metabolic Medicine, School of Medicine, Sapporo Medical University, Sapporo 060-8556, Hokkaido, Japan
- Department of Cellular Physiology and Signal Transduction, School of Medicine, Sapporo Medical University, Sapporo 060-8556, Hokkaido, Japan
| | - Masato Furuhashi
- Department of Cardiovascular, Renal and Metabolic Medicine, School of Medicine, Sapporo Medical University, Sapporo 060-8556, Hokkaido, Japan
| | - Megumi Watanabe
- Department of Ophthalmology, School of Medicine, Sapporo Medical University, Sapporo 060-8556, Hokkaido, Japan; (H.O.); (A.U.)
| |
Collapse
|
3
|
Hedengran A, Kolko M. The molecular aspect of anti-glaucomatous eye drops - are we harming our patients? Mol Aspects Med 2023; 93:101195. [PMID: 37459821 DOI: 10.1016/j.mam.2023.101195] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/26/2023] [Accepted: 06/28/2023] [Indexed: 08/14/2023]
Abstract
Glaucoma is one of the leading causes of irreversible blindness. Progression is halted with a reduction in intraocular pressure (IOP), which is most often achieved with eye drops. A major challenge in the topical treatment of glaucoma patients is the many side effects and the resulting reduced adherence. Side effects may of course be due to the molecular properties of the active pharmaceutical ingredients (APIs). There are currently six different APIs available: prostaglandin analogues, β-adrenergic inhibitors, α-adrenergic agonists, carbonic anhydrase inhibitors, rho-kinase inhibitors and muscarinic 3 agonists. But the additives used in eye drops are also known to cause damage to the ocular surface and to some extent also to the deeper tissues. Said additives are considered inactive molecular components and are added to secure for instance viscosity and pH value, and to prevent contamination. There has been an increasing focus on the harmful effects of preservatives, with the most commonly used preservative benzalkonium chloride (BAK) being particularly controversial. BAK has long been recognized as a toxin that increases the risk of ocular discomfort. This can affect the adherence and ultimately result in lack of disease control. Other issues include the addition of certain buffers, such as phosphates, and varying pH values. This review will address the different molecular components of the IOP-lowering eye drops and what to be aware of when prescribing topical glaucoma treatment.
Collapse
Affiliation(s)
- Anne Hedengran
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, 2200, Copenhagen N, Denmark; Department of Ophthalmology, Copenhagen University Hospital, Rigshospitalet, Valdemar Hansens Vej 1-23, 2600, Glostrup, Denmark.
| | - Miriam Kolko
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, 2200, Copenhagen N, Denmark; Department of Ophthalmology, Copenhagen University Hospital, Rigshospitalet, Valdemar Hansens Vej 1-23, 2600, Glostrup, Denmark.
| |
Collapse
|
4
|
Hikage F, Watanabe M, Sato T, Umetsu A, Tsugeno Y, Furuhashi M, Ohguro H. Simultaneous Effects of a Selective EP2 Agonist, Omidenepag, and a Rho-Associated Coiled-Coil Containing Protein Kinase Inhibitor, Ripasudil, on Human Orbital Fibroblasts. J Ocul Pharmacol Ther 2023; 39:439-448. [PMID: 37352418 DOI: 10.1089/jop.2023.0025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/25/2023] Open
Abstract
Purpose: To assess the combined effects of omidenepag (OMD), a selective EP2 agonist, and ripasudil (Rip), an inhibitor of rho-associated coiled-coil containing protein kinases, on the human orbital adipose tissue, two-dimensional (2D) or three-dimensional (3D) cultures of human orbital fibroblasts (HOFs) were employed. Methods: Cellular metabolic functions (2D), physical (3D), lipid staining (3D), and quantitative polymerase chain reaction for adipogenesis-related genes, PPARγ and AP2, and extracellular matrix (ECM) molecules, including collagen (COL)1, 4, and 6, and fibronectin (FN) (3D) were evaluated in the presence of OMD (100 nM) and/or Rip (10 μM). Results: Real-time metabolic analyses revealed that the adipogenic differentiation (DIF+) with OMD significantly shifted an energetic state toward energetic, whereas DIF+ with Rip significantly shifted that toward quiescent. In the case of both drugs upon DIF+, the metabolic effect of OMD was predominant. DIF+ induced enlargement and stiffed 3D spheroid with increased lipid staining and mRNA expression of adipogenesis-related genes, COL4 and COL6, and decreased the expression of COL1. In the presence of OMD and/or Rip to DIF+, (1) the sizes were further increased by Rip and the stiffness was significantly decreased by OMD or Rip and (2) COL4 or AP2 expression was substantially increased by OMD or Rip, respectively. Conclusion: The results presented herein indicate that the metabolic effects of OMD and Rip exerted opposing effects and the effects of OMD toward Ap2 and ECM expressions were distinct from those of Rip, but the effects of OMD toward the physical aspects and adipogenesis of the 3D cultured HOFs were similar to the effects of Rip.
Collapse
Affiliation(s)
- Fumihito Hikage
- Department of Ophthalmology, School of Medicine, Sapporo Medical University, Sapporo, Japan
| | - Megumi Watanabe
- Department of Ophthalmology, School of Medicine, Sapporo Medical University, Sapporo, Japan
| | - Tatsuya Sato
- Department of Cardiovascular, Renal and Metabolic Medicine, and School of Medicine, Sapporo Medical University, Sapporo, Japan
- Department of Cellular Physiology and Signal Transduction, School of Medicine, Sapporo Medical University, Sapporo, Japan
| | - Araya Umetsu
- Department of Ophthalmology, School of Medicine, Sapporo Medical University, Sapporo, Japan
| | - Yuri Tsugeno
- Department of Ophthalmology, School of Medicine, Sapporo Medical University, Sapporo, Japan
| | - Masato Furuhashi
- Department of Cardiovascular, Renal and Metabolic Medicine, and School of Medicine, Sapporo Medical University, Sapporo, Japan
| | - Hiroshi Ohguro
- Department of Ophthalmology, School of Medicine, Sapporo Medical University, Sapporo, Japan
| |
Collapse
|
5
|
Tsugeno Y, Sato T, Watanabe M, Furuhashi M, Ohguro H. Prostanoid FP and EP2 Receptor Agonists Induce Epithelial and Subepithelial Fibrogenetic Changes in Human Conjunctival Fibroblasts in Different Manners. J Ocul Pharmacol Ther 2023; 39:404-414. [PMID: 37459581 DOI: 10.1089/jop.2023.0011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2023] Open
Abstract
Purpose: To examine the effects of prostanoid FP and EP2 receptor agonists, PGF2α and Omidenepag (OMD), respectively, on the transforming growth factor beta (TGF-β2) induced conjunctival fibrogenesis. Methods: Two-dimension (2D) and three-dimension (3D) cultures of these fibroblasts were subjected to following analyses: (1) planar proliferation evaluated by transendothelial electron resistance (TEER) measurements, (2) real-time metabolic analyses, (3) subepithelial proliferation evaluated by 3D spheroid' size and stiffness measurements, and (4) the mRNA expression of extracellular matrix (ECM) molecules and their modulators. Results: TGF-β2 induced increase in the planar proliferation was significantly decreased or enhanced by PGF2α or OMD, respectively. The proportion of oxygen consumption required to drive ATP synthesis compared with that driving proton leakage was increased by PGF2α and OMD independently with TGF-β2. In contrast, maximal mitochondrial respiration was decreased by PGF2α and OMD, and the OMD-induced effect was further enhanced by the presence of TGF-β2. In addition, the TGF-β2 dependent increase in the glycolytic capacity was cancelled by PGF2α and/or OMD. Alternatively, subepithelial proliferation, as evidenced by the stiffness of the 3D spheroids, was substantially increased by both PGF2α and OMD, and these were differently modulated by TGF-β2. The expression of several related factors as above fluctuated among the conditions for both 2D and 3D and TGF-β2 untreated or treated cultures. Conclusion: The present findings indicate that the prostanoid FP or the EP2 receptor agonist may solely and differently induce the planar and subepithelial proliferation of HconF cells and these were also modulated by TGF-β2.
Collapse
Affiliation(s)
- Yuri Tsugeno
- Department of Ophthalmology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Tatsuya Sato
- Department of Cardiovascular, Renal and Metabolic Medicine, and Sapporo Medical University School of Medicine, Sapporo, Japan
- Department of Cellular Physiology and Signal Transduction, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Megumi Watanabe
- Department of Ophthalmology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Masato Furuhashi
- Department of Cardiovascular, Renal and Metabolic Medicine, and Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Hiroshi Ohguro
- Department of Ophthalmology, Sapporo Medical University School of Medicine, Sapporo, Japan
| |
Collapse
|
6
|
Addition of ROCK Inhibitors Alleviates Prostaglandin-Induced Inhibition of Adipogenesis in 3T3L-1 Spheroids. Bioengineering (Basel) 2022; 9:bioengineering9110702. [DOI: 10.3390/bioengineering9110702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 11/05/2022] [Accepted: 11/07/2022] [Indexed: 11/19/2022] Open
Abstract
To elucidate the additive effects of the ROCK inhibitors (ROCK-i), ripasudil (Rip) and Y27632 on bimatoprost acid (BIM-A), a prostaglandin analog (PG), on adipose tissue, two- and three-dimensional (2D or 3D) cultures of 3T3-L1 cells, the most well characterized cells in the field of lipid research, were used. The cells were subjected to a variety of analyses including lipid staining, real-time cellular metabolic analysis, the mRNA expressions of genes related to adipogenesis and extracellular matrices (ECMs) as well as the sizes and physical properties of the 3D spheroids by a micro-squeezer. BIM-A induced strong inhibitory effects on most of the adipogenesis-related changes in the 2D and 3D cultured 3T3-L1 cells, including (1) the enlargement and softening of the 3D spheroids, (2) a dramatic enhancement in lipid staining and the expression of adipogenesis-related genes, and (3) a decrease in mitochondrial and glycolytic metabolic function. By adding ROCK-i to the BIM-A, most of these BIM-A-induced effects were cancelled. The collective findings reported herein suggest that ROCK-i eliminated the PG-induced suppression of adipogenesis in the 3T3-L1 cells, accompanied by the formation of enlarged 3D spheroids. Such effects of adding ROCK-i to a PG in preadipocytes on cellular properties appear to be associated with the suppression of PG-induced adverse effects, and provide additional insight into our understanding of lipid-related research.
Collapse
|
7
|
FGF-2 enhances fibrogenetic changes in TGF-β2 treated human conjunctival fibroblasts. Sci Rep 2022; 12:16006. [PMID: 36163231 PMCID: PMC9512844 DOI: 10.1038/s41598-022-20036-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 09/07/2022] [Indexed: 11/12/2022] Open
Abstract
The objective of the current study was to examine the effects of fibroblast growth factor-2 (FGF-2) on conjunctival fibrogenesis that was induced by the presence of transforming growth factor-β2 (TGF-β2). Two-dimension (2D) and three-dimension (3D) cultured human conjunctival fibroblasts (HconF) were used for this purpose. The 2D and 3D cultured HconF were characterized by transendothelial electrical resistance (TEER) and FITC dextran permeability measurements (2D), real-time metabolic analyses (2D), size and stiffness measurements (3D), and the mRNA expression of extracellular matrix molecules, their modulators, Tissue inhibitor of metalloproteinases and matrix metalloproteinases and ER-stress related genes (2D and 3D). FGF-2 significantly increased planar proliferation, as evidenced by TEER values and FITC dextran permeability, and shifted glucose metabolism to the energetic phenotype of 2D HconF cells, and the stiffness of the 3D spheroids, and these effects were further enhanced in the presence of TGF-β2. Analyses of the expression of possible candidate molecules involved in cell architecture and stress indicated that some additive effects caused by both factors were also recognized in some of these molecules. The findings reported herein indicate that the FGF-2, either along or additively with TGF- β2 increased the fibrogenetic changes on the plane as well as in the spatial space of HconF cells.
Collapse
|
8
|
Tsugeno Y, Sato T, Watanabe M, Higashide M, Furuhashi M, Umetsu A, Suzuki S, Ida Y, Hikage F, Ohguro H. All Trans-Retinoic Acids Facilitate the Remodeling of 2D and 3D Cultured Human Conjunctival Fibroblasts. BIOENGINEERING (BASEL, SWITZERLAND) 2022; 9:bioengineering9090463. [PMID: 36135009 PMCID: PMC9495389 DOI: 10.3390/bioengineering9090463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/26/2022] [Accepted: 09/08/2022] [Indexed: 11/16/2022]
Abstract
Vitamin A derivative, all-trans-retinoic acid (ATRA), is known to be a potent regulator of the growth and differentiation of various types of cells. In the present study, the unidentified effects of ATRA on superficial and vertical spreading conjunctival scarring were examined. The study involved the use of two-dimensional (2D) and three-dimensional (3D) cultures of human conjunctival fibroblast (HconF) cells in the presence or absence of TGF-β2. The effects of ATRA (1 μM) on superficial or vertical spreading conjunctival scarring were evaluated by the barrier function by trans-endothelial electrical resistance (TEER) and FITC dextran permeability measurements and real-time metabolic analysis, as well as the physical properties, namely, the size and stiffness, of 3D spheroids, respectively. In addition, the expressions of several related molecules, including extracellular matrix (ECM) molecules, ECM modulators including a tissue inhibitor of metalloproteinases (TIMPs), matrix metalloproteinases (MMPs), and ER stress-related factors, were examined. ATRA significantly induced (1) an increase in TEER values and a decrease in FITC dextran permeability, respectively, in the 2D monolayers, and (2) relatively and substantially increased the size and stiffness, respectively, of the 3D spheroids. These ATRA-induced effects were further enhanced in the TGF-β2-treated cells, whereas the TGF-β2-induced enhancement in glycolytic capacity was canceled by the presence of ATRA. Consistent with these physical and morphological effects, the mRNA expressions of several molecules were significantly but differently induced between 2D and 3D cultures by ATRA, although the presence of TGF-β2 did not substantially affect these gene expression levels. The findings reported in this study indicate that ATRA may exacerbate both superficial and vertical conjunctival fibrosis spreading independently of TGF-β2-induced changes.
Collapse
Affiliation(s)
- Yuri Tsugeno
- Departments of Ophthalmology, School of Medicine, Sapporo Medical University, Sapporo 060-8556, Japan
| | - Tatsuya Sato
- Departments of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University, Sapporo 060-8556, Japan
- Departments of Cellular Physiology and Signal Transduction, Sapporo Medical University, Sapporo 060-8556, Japan
| | - Megumi Watanabe
- Departments of Ophthalmology, School of Medicine, Sapporo Medical University, Sapporo 060-8556, Japan
| | - Megumi Higashide
- Departments of Ophthalmology, School of Medicine, Sapporo Medical University, Sapporo 060-8556, Japan
| | - Masato Furuhashi
- Departments of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University, Sapporo 060-8556, Japan
| | - Araya Umetsu
- Departments of Ophthalmology, School of Medicine, Sapporo Medical University, Sapporo 060-8556, Japan
| | - Soma Suzuki
- Departments of Ophthalmology, School of Medicine, Sapporo Medical University, Sapporo 060-8556, Japan
| | - Yosuke Ida
- Departments of Ophthalmology, School of Medicine, Sapporo Medical University, Sapporo 060-8556, Japan
| | - Fumihito Hikage
- Departments of Ophthalmology, School of Medicine, Sapporo Medical University, Sapporo 060-8556, Japan
| | - Hiroshi Ohguro
- Departments of Ophthalmology, School of Medicine, Sapporo Medical University, Sapporo 060-8556, Japan
- Correspondence: ; Tel.: +81-116-112-111; Fax: +81-116-136-575
| |
Collapse
|
9
|
Brimonidine Modulates the ROCK1 Signaling Effects on Adipogenic Differentiation in 2D and 3D 3T3-L1 Cells. Bioengineering (Basel) 2022; 9:bioengineering9070327. [PMID: 35877378 PMCID: PMC9311963 DOI: 10.3390/bioengineering9070327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 07/11/2022] [Accepted: 07/15/2022] [Indexed: 11/19/2022] Open
Abstract
The additive effects of an α2-adrenergic agonist, brimonidine (BRI), on the pan-ROCK inhibitor (ROCK-i), ripasudil (Rip), and the ROCK2-I, KD025, on adipogenic differentiation (DIF+) were examined using two- or three-dimension (2D or 3D) cultures of 3T3-L1 cells. The following analyses were carried out: (1) lipid staining (2D and 3D), (2) real-time measurements of cellular metabolism (2D), (3) mRNA expression of DIF+ related genes and extracellular matrix molecules (ECMs) including collagen (Col)-1, -4, and -6, and fibronectin (Fn), and (4) the sizes and physical properties of the 3D spheroids. The findings indicate that DIF+ induced (1) a substantial enhancement in lipid staining and enhanced expression of the Pparγ and Fabp4 genes, (2) significantly larger and softer 3D spheroids, and (3) down-regulation of Col1 and Fn and up-regulation of Col4 and Col6 genes. Treatment with Rip alone caused a significant enhancement in adipogenesis of both the 2D and 3D cultured 3T3-L1 cells and in the physical properties of the 3D spheroids; these effects were substantially inhibited by BRI, and the effects induced by BRI or KD025 were not insignificant. These collective findings indicate that the addition of BRI inhibited the Rip-induced enhancement of DIF+ in 3T3-L1 cells, presumably by modulating ROCK1 signaling.
Collapse
|
10
|
Suzuki S, Sato T, Watanabe M, Higashide M, Tsugeno Y, Umetsu A, Furuhashi M, Ida Y, Hikage F, Ohguro H. Hypoxia Differently Affects TGF-β2-Induced Epithelial Mesenchymal Transitions in the 2D and 3D Culture of the Human Retinal Pigment Epithelium Cells. Int J Mol Sci 2022; 23:ijms23105473. [PMID: 35628282 PMCID: PMC9143417 DOI: 10.3390/ijms23105473] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 04/27/2022] [Accepted: 05/11/2022] [Indexed: 02/04/2023] Open
Abstract
The hypoxia associated with the transforming growth factor-β2 (TGF-β2)-induced epithelial mesenchymal transition (EMT) of human retinal pigment epithelium (HRPE) cells is well recognized as the essential underlying mechanism responsible for the development of proliferative retinal diseases. In vitro, three-dimensional (3D) models associated with spontaneous O2 gradients can be used to recapitulate the pathological levels of hypoxia to study the effect of hypoxia on the TGF-β2-induced EMT of HRPE cells in detail, we used two-dimensional-(2D) and 3D-cultured HRPE cells. TGF-β2 and hypoxia significantly and synergistically increased the barrier function of the 2D HRPE monolayers, as evidenced by TEER measurements, the downsizing and stiffening of the 3D HRPE spheroids and the mRNA expression of most of the ECM proteins. A real-time metabolic analysis indicated that TGF-β2 caused a decrease in the maximal capacity of mitochondrial oxidative phosphorylation in the 2D HRPE cells, whereas, in the case of 3D HRPE spheroids, TGF-β2 increased proton leakage. The findings reported herein indicate that the TGF-β2-induced EMT of both the 2D and 3D cultured HRPE cells were greatly modified by hypoxia, but during these EMT processes, the metabolic plasticity was different between 2D and 3D HRPE cells, suggesting that the mechanisms responsible for the EMT of the HRPE cells may be variable during their spatial spreading.
Collapse
Affiliation(s)
- Soma Suzuki
- Department of Ophthalmology, School of Medicine, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan; (S.S.); (M.W.); (M.H.); (Y.T.); (A.U.); (Y.I.); (F.H.)
| | - Tatsuya Sato
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan; (T.S.); (M.F.)
- Department of Cellular Physiology and Signal Transduction, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan
| | - Megumi Watanabe
- Department of Ophthalmology, School of Medicine, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan; (S.S.); (M.W.); (M.H.); (Y.T.); (A.U.); (Y.I.); (F.H.)
| | - Megumi Higashide
- Department of Ophthalmology, School of Medicine, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan; (S.S.); (M.W.); (M.H.); (Y.T.); (A.U.); (Y.I.); (F.H.)
| | - Yuri Tsugeno
- Department of Ophthalmology, School of Medicine, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan; (S.S.); (M.W.); (M.H.); (Y.T.); (A.U.); (Y.I.); (F.H.)
| | - Araya Umetsu
- Department of Ophthalmology, School of Medicine, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan; (S.S.); (M.W.); (M.H.); (Y.T.); (A.U.); (Y.I.); (F.H.)
| | - Masato Furuhashi
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan; (T.S.); (M.F.)
| | - Yosuke Ida
- Department of Ophthalmology, School of Medicine, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan; (S.S.); (M.W.); (M.H.); (Y.T.); (A.U.); (Y.I.); (F.H.)
| | - Fumihito Hikage
- Department of Ophthalmology, School of Medicine, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan; (S.S.); (M.W.); (M.H.); (Y.T.); (A.U.); (Y.I.); (F.H.)
| | - Hiroshi Ohguro
- Department of Ophthalmology, School of Medicine, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan; (S.S.); (M.W.); (M.H.); (Y.T.); (A.U.); (Y.I.); (F.H.)
- Correspondence: ; Tel.: +81-611-2111
| |
Collapse
|
11
|
Comparison of the Drug-Induced Efficacies between Omidenepag Isopropyl, an EP2 Agonist and PGF2α toward TGF-β2-Modulated Human Trabecular Meshwork (HTM) Cells. J Clin Med 2022; 11:jcm11061652. [PMID: 35329980 PMCID: PMC8954773 DOI: 10.3390/jcm11061652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/27/2022] [Accepted: 03/13/2022] [Indexed: 11/17/2022] Open
Abstract
To compare the drug-induced efficacies between omidenepag (OMD), an EP2 agonist, and prostaglandin F2α (PGF2α) on glaucomatous trabecular meshwork (TM) cells, two- and three-dimensional (2D and 3D) cultures of TGF-β2-modulated human trabecular meshwork (HTM) cells were used. The following analyses were performed: (1) transendothelial electrical resistance (TEER) and FITC-dextran permeability measurements (2D), (2) the size and stiffness of the 3D spheroids, and (3) the expression (both 2D and 3D) by several extracellular matrix (ECM) molecules including collagen (COL) 1, 4 and 6, and fibronectin (FN), and α smooth muscle actin (αSMA), tight junction (TJ)-related molecules, claudin11 (Cldn11) and ZO1, the tissue inhibitor of metalloproteinase (TIMP) 1–4, matrix metalloproteinase (MMP) 2, 9 and 14, connective tissue growth factor (CTGF), and several endoplasmic reticulum (ER) stress-related factors. TGF-β2 significantly increased the TEER values and decreased FITC-dextran permeability, respectively, in the 2D HTM monolayers, and induced the formation of downsized and stiffer 3D HTM spheroids. TGF-β2-induced changes in TEER levels and FITC-dextran permeability were remarkably inhibited by PGF2α. PGF2α induced increases in the sizes and stiffness of the TGF-β2-treated 3D spheroids, but OMD enhanced only spheroid size. Upon exposure to TGF-β2, the expression of most of the molecules that were evaluated were significantly up-regulated, except some of ER stress-related factors were down-regulated. TJ-related molecules or ER stress-related factors were significantly up-regulated (2D) or down-regulated (3D), and down-regulated (2D) by PGF2α and OMD, while both drugs altered the expression of some of the other genes in the 3D spheroids in a different manner. The findings presented herein suggest that PGF2α and OMD differently modulate the permeability of the TGFβ2-modulated 2D monolayers and the physical properties of the 3D HTM spheroids.
Collapse
|
12
|
Autotaxin May Have Lysophosphatidic Acid-Unrelated Effects on Three-Dimension (3D) Cultured Human Trabecular Meshwork (HTM) Cells. Int J Mol Sci 2021; 22:ijms222112039. [PMID: 34769470 PMCID: PMC8584821 DOI: 10.3390/ijms222112039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/03/2021] [Accepted: 11/05/2021] [Indexed: 01/25/2023] Open
Abstract
PURPOSE The objective of the current study was to evaluate the effects of the autotaxin (ATX)-lysophosphatidic acid (LPA) signaling axis on the human trabecular meshwork (HTM) in two-dimensional (2D) and three-dimensional (3D) cultures of HTM cells. METHODS The effects were characterized by transendothelial electrical resistance (TEER) and FITC-dextran permeability (2D), measurements of size and stiffness (3D), and the expression of several genes, including extracellular matrix (ECM) molecules, their modulators, and endoplasmic reticulum (ER) stress-related factors. RESULTS A one-day exposure to 200 nM LPA induced significant down-sizing effects of the 3D HTM spheroids, and these effects were enhanced slightly on longer exposure. The TEER and FITC-dextran permeability data indicate that LPA induced an increase in the barrier function of the 2D HTM monolayers. A one-day exposure to a 2 mg/L solution of ATX also resulted in a significant decrease in the sizes of the 3D HTM spheroids, and an increase in stiffness was also observed. The gene expression of several ECMs, their regulators and ER-stress related factors by the 3D HTM spheroids were altered by both ATX and LPA, but in different manners. CONCLUSIONS The findings presented herein suggest that ATX may have additional roles in the human TM, in addition to the ATX-LPA signaling axis.
Collapse
|
13
|
Modulation of the Physical Properties of 3D Spheroids Derived from Human Scleral Stroma Fibroblasts (HSSFs) with Different Axial Lengths Obtained from Surgical Patients. Curr Issues Mol Biol 2021; 43:1715-1725. [PMID: 34698138 PMCID: PMC8929070 DOI: 10.3390/cimb43030121] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 10/21/2021] [Accepted: 10/21/2021] [Indexed: 12/23/2022] Open
Abstract
In the current study, to elucidate the pathological characteristics of myopic scleral stroma, three-dimensional (3D) cultures of human scleral stroma fibroblasts (HSSFs) with several axial lengths (AL, 22.80–30.63 mm) that were obtained from patients (n = 7) were examined. Among the three groups of ALs, <25 mm (n = 2), 25–30 mm (n = 2), and >30 mm (n = 3), the physical properties of the 3D HSSFs spheroids with respect to size and stiffness, the expressions of extracellular matrix (ECM) molecules, including collagen (COL) 1, 4, and 6 and fibronectin (FN) by qPCR and immunohistochemistry (IHC), and the mRNA expression of ECM metabolism modulators including hypoxia-inducible factor 1A (HIF 1A), HIF 2A, lysyl oxidase (LOX), tissue inhibitor of metalloproteinase (TIMP) 1–4, and matrix metalloproteinase (MMP) 2, 9, and 14 as well as several endoplasmic reticulum (ER) stress-related factors were compared. In the largest AL group (>30 mm), the 3D HSSFs spheroids were (1) significantly down-sized and less stiff compared to the other groups, and (2) significant changes were detected in the expression of some ECMs (qPCR; the up-regulation of COL1 and COL4, and the down-regulation of FN, IHC; the up-regulation of COL1 and FN, and down-regulation of COL4). The mRNA expressions of ECM modulators and ER stress-related genes were also altered with increasing AL length (up-regulation of HIF2A, MMP2, XBP1, and MMP14, down-regulation of LOX, TIMP 2 and 3, GRP78, GRP94, IRE1, and ATF6). In addition, a substantial down-regulation of some ER stress-related genes (ATF4, sXPB1 and CHOP) was observed in the 25–30 mm AL group. The findings presented herein suggest that small and stiffer 3D HSSFs spheroids in the largest AL group may accurately replicate the pathological significance of scleral thinning and weakening in myopic eyes. In addition, the modulation of several related factors among the different AL groups may also provide significant insights into our understanding of the molecular mechanisms responsible for causing myopic changes in the sclera.
Collapse
|
14
|
Hikage F, Ichioka H, Watanabe M, Umetsu A, Ohguro H, Ida Y. ROCK inhibitors modulate the physical properties and adipogenesis of 3D spheroids of human orbital fibroblasts in different manners. FASEB Bioadv 2021; 3:866-872. [PMID: 34632320 PMCID: PMC8493964 DOI: 10.1096/fba.2021-00037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 07/10/2021] [Accepted: 07/12/2021] [Indexed: 01/01/2023] Open
Abstract
To elucidate the pharmacological effects of Rho-associated coiled-coil containing protein kinase inhibitors (ROCK-is), ripasudil (Rip), Y27632, and KD025, on human orbital fatty tissue, the human orbital fibroblasts (HOFs) were three-dimensional (3D) cultured for 12 days. The effects of ROCK-is on the physical properties of the 3D-cultured HOF spheroids, including their sizes and physical stiffness, their adipogenesis by lipid staining, and the mRNA expression of adipogenesis-related genes, PPARγ and AP2, and extracellular matrix (ECM) including collagen (COL) 1, 4, and 6, and fibronectin were analyzed. A significant increase in the sizes, physical stiffness, lipid staining, and mRNA expression of adipogenesis-related genes, COL4 and COL6, and a decrease in COL1 expression were observed with adipogenesis (DIF+). In the presence of ROCK-is, such DIF+-induced effects were differently modulated as follows: (1) the sizes were not affected or significantly enhanced by Rip, Y27632, or KD025, (2) the physical stiffness was significantly decreased in Rip and Y27632, but was substantially increased in KD025, (3) the lipid staining was further enhanced or significantly suppressed by Rip, Y27632, or KD025, and both PPARγ and AP2 expression were significantly downregulated or upregulated by KD025 or Rip, and (4) Rip upregulated the expression of COL4, Y27632 upregulated the expression of COL1, COL4, and COL6, and KD025 upregulated the expression of COL1 and COL4. This study indicates that ROCK-is significantly and differently modulate physical properties of the 3D HOF spheroids as well as their adipogenesis.
Collapse
Affiliation(s)
- Fumihito Hikage
- Departments of OphthalmologySapporo Medical University School of MedicineSapporoJapan
| | - Hanae Ichioka
- Departments of OphthalmologySapporo Medical University School of MedicineSapporoJapan
| | - Megumi Watanabe
- Departments of OphthalmologySapporo Medical University School of MedicineSapporoJapan
| | - Araya Umetsu
- Departments of OphthalmologySapporo Medical University School of MedicineSapporoJapan
| | - Hiroshi Ohguro
- Departments of OphthalmologySapporo Medical University School of MedicineSapporoJapan
| | - Yosuke Ida
- Departments of OphthalmologySapporo Medical University School of MedicineSapporoJapan
| |
Collapse
|
15
|
Hikage F, Ichioka H, Watanabe M, Umetsu A, Ohguro H, Ida Y. Addition of ROCK inhibitors to prostaglandin derivative (PG) synergistically affects adipogenesis of the 3D spheroids of human orbital fibroblasts (HOFs). Hum Cell 2021; 35:125-132. [PMID: 34591280 DOI: 10.1007/s13577-021-00623-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 09/27/2021] [Indexed: 11/30/2022]
Abstract
To study the additive effects of Rho-associated coiled-coil containing protein kinase inhibitors, ripasudil (Rip) to bimatoprost acid (BIM-A) on orbital adipose tissue, three-dimensional (3D) cultures of human orbital fibroblasts (HOFs) were prepared and the physical properties including the 3D spheroid size and stiffness, lipid staining by BODIPY and the mRNA expression of adipogenesis-related genes, PPARγ and AP2, and extracellular matrix (ECM) including collagen (COL)1, 4 and 6, and fibronectin (FN) were analyzed. Adipogenesis (DIF+) induced (1) enlargement and increasing stiffness of the 3D HOFs spheroid, (2) increased lipid staining, the expression of adipogenesis-related gene expressions, and (3) the down-regulation of COL1 and FN and up-regulation of COL4 and COL6. In the presence of BIM-A, (1) such DIF+-induced changes in 3D spheroid size and stiffness were significantly inhibited or enhanced, respectively, (2) the lipid staining and its related gene expressions were significantly down-regulated, and (3) the expression of COL1 and COL6 were up-regulated. By the addition of Rip to BIM-A, the above BIM-A-induced effects were all inhibited, except for the up-regulation of COL6 and FN expression, that is, enlarging and decreasing stiffness, enhancement of lipid staining and its related gene expression, and down-regulation of COL1 expression. Our present study indicates that Rip significantly suppressed BIM-A-induced effects toward 3D HOFs spheroids.
Collapse
Affiliation(s)
- Fumihito Hikage
- Departments of Ophthalmology, Sapporo Medical University School of Medicine, Sapporo, Hokkaido, Japan
| | - Hanae Ichioka
- Departments of Ophthalmology, Sapporo Medical University School of Medicine, Sapporo, Hokkaido, Japan
| | - Megumi Watanabe
- Departments of Ophthalmology, Sapporo Medical University School of Medicine, Sapporo, Hokkaido, Japan
| | - Araya Umetsu
- Departments of Ophthalmology, Sapporo Medical University School of Medicine, Sapporo, Hokkaido, Japan
| | - Hiroshi Ohguro
- Departments of Ophthalmology, Sapporo Medical University School of Medicine, Sapporo, Hokkaido, Japan
| | - Yosuke Ida
- Departments of Ophthalmology, Sapporo Medical University School of Medicine, Sapporo, Hokkaido, Japan.
| |
Collapse
|