1
|
Wang ZY, Cho JY, Hong YK. Brain and Subjective Responses to Indoor Environments Related to Concentration and Creativity. SENSORS (BASEL, SWITZERLAND) 2024; 24:7838. [PMID: 39686375 DOI: 10.3390/s24237838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 11/18/2024] [Accepted: 12/04/2024] [Indexed: 12/18/2024]
Abstract
Electroencephalograms (EEGs) can be used to study the influence of environmental elements on human emotions, cognition, and behavior. EEGs can reveal unconscious responses and fill in the gaps left by subjective responses provided in survey questionnaires or interviews. EEG research on the impact of classroom design elements on concentration and creativity is scarce; the design elements studied have not been diverse enough. In addition, no researchers have examined the brain and subjective responses to multiple indoor environmental elements regarding concentration and creativity. Thus, the purpose of this study was to explore how the human brain responds to different indoor environmental elements as shown by objective EEG signals related to concentration and creativity, and their similarities and differences to subjective self-reported responses. The experimental stimuli included 16 images combining four indoor environmental elements-classroom space shape, furniture arrangement, ceiling height, and color-along with images of white walls, a full-window wall with a view of nature, and a windowless scenario, totaling 19 images. The brainwaves of 20 people collected from eight channels were analyzed to determine the concentration index (CI) for concentration and relative theta (RT) for creativity. As a subjective response, participants were asked to choose the stimuli in which they felt they could best concentrate and be most creative in a self-report format. The results showed the following tendencies: (a) More brainwaves in the parietal and occipital lobes than in the prefrontal or frontal lobes; (b) a higher CI with rectilinear shapes, traditional frontal furniture arrangements, and red walls; (c) a higher RT with curvilinear shapes, collaborative furniture arrangements, white walls, and a full view of nature; and (d) participants selected white walls and a front-facing furniture layout as supportive of concentration and a full view of nature, curvilinear shape, and collaborative furniture layout for creative thinking. The results showed that similarities in brain and subjective responses were related to furniture layout and shape, whereas differences existed in color. This study contributes to the understanding of the characteristics of indoor environments that appear to enhance the manifestation of concentration and creativity.
Collapse
Affiliation(s)
- Ze-Yu Wang
- Department of Housing & Interior Design (AgeTech-Service Convergence Major), Kyung Hee University, Seoul 02447, Republic of Korea
| | - Ji Young Cho
- Department of Housing & Interior Design (AgeTech-Service Convergence Major), Kyung Hee University, Seoul 02447, Republic of Korea
| | - Yi-Kyung Hong
- Department of Housing & Interior Design (AgeTech-Service Convergence Major), Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
2
|
van Limpt-Broers HAT, Postma M, van Weelden E, Pratesi S, Louwerse MM. Neurophysiological evidence for the overview effect: a virtual reality journey into space. VIRTUAL REALITY 2024; 28:140. [DOI: 10.1007/s10055-024-01035-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 07/05/2024] [Indexed: 01/06/2025]
Abstract
AbstractThe Overview Effect is a complex experience reported by astronauts after viewing Earth from space. Numerous accounts suggest that it leads to increased interconnectedness to other human beings and environmental awareness, comparable to self-transcendence. It can cause fundamental changes in mental models of the world, improved well-being, and stronger appreciation of, and responsibility for Earth. From a cognitive perspective, it is closely linked to the emotion of awe, possibly triggered by the overwhelming perceived vastness of the universe. Given that most research in the domain focuses on self-reports, little is known about potential neurophysiological markers of the Overview Effect. In the experiment reported here, participants viewed an immersive Virtual Reality simulation of a space journey while their brain activity was recorded using electroencephalography (EEG). Post-experimental self-reports confirmed they were able to experience the Overview Effect in the simulated environment. EEG recordings revealed lower spectral power in beta and gamma frequency bands during the defining moments of the Overview Effect. The decrease in spectral power can be associated with reduced mental processing, and a disruption of known mental structures in this context, thereby providing more evidence for the cognitive effects of the experience.
Collapse
|
3
|
Hernández-Mustieles MA, Lima-Carmona YE, Pacheco-Ramírez MA, Mendoza-Armenta AA, Romero-Gómez JE, Cruz-Gómez CF, Rodríguez-Alvarado DC, Arceo A, Cruz-Garza JG, Ramírez-Moreno MA, Lozoya-Santos JDJ. Wearable Biosensor Technology in Education: A Systematic Review. SENSORS (BASEL, SWITZERLAND) 2024; 24:2437. [PMID: 38676053 PMCID: PMC11054421 DOI: 10.3390/s24082437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 03/31/2024] [Accepted: 04/02/2024] [Indexed: 04/28/2024]
Abstract
Wearable Biosensor Technology (WBT) has emerged as a transformative tool in the educational system over the past decade. This systematic review encompasses a comprehensive analysis of WBT utilization in educational settings over a 10-year span (2012-2022), highlighting the evolution of this field to address challenges in education by integrating technology to solve specific educational challenges, such as enhancing student engagement, monitoring stress and cognitive load, improving learning experiences, and providing real-time feedback for both students and educators. By exploring these aspects, this review sheds light on the potential implications of WBT on the future of learning. A rigorous and systematic search of major academic databases, including Google Scholar and Scopus, was conducted in accordance with the PRISMA guidelines. Relevant studies were selected based on predefined inclusion and exclusion criteria. The articles selected were assessed for methodological quality and bias using established tools. The process of data extraction and synthesis followed a structured framework. Key findings include the shift from theoretical exploration to practical implementation, with EEG being the predominant measurement, aiming to explore mental states, physiological constructs, and teaching effectiveness. Wearable biosensors are significantly impacting the educational field, serving as an important resource for educators and a tool for students. Their application has the potential to transform and optimize academic practices through sensors that capture biometric data, enabling the implementation of metrics and models to understand the development and performance of students and professors in an academic environment, as well as to gain insights into the learning process.
Collapse
Affiliation(s)
- María A. Hernández-Mustieles
- Mechatronics Department, School of Engineering and Sciences, Monterrey Campus, Tecnologico de Monterrey, Monterrey 64700, Mexico; (M.A.H.-M.); (Y.E.L.-C.); (M.A.P.-R.); (A.A.M.-A.); (C.F.C.-G.); (D.C.R.-A.); (A.A.); (M.A.R.-M.)
| | - Yoshua E. Lima-Carmona
- Mechatronics Department, School of Engineering and Sciences, Monterrey Campus, Tecnologico de Monterrey, Monterrey 64700, Mexico; (M.A.H.-M.); (Y.E.L.-C.); (M.A.P.-R.); (A.A.M.-A.); (C.F.C.-G.); (D.C.R.-A.); (A.A.); (M.A.R.-M.)
| | - Maxine A. Pacheco-Ramírez
- Mechatronics Department, School of Engineering and Sciences, Monterrey Campus, Tecnologico de Monterrey, Monterrey 64700, Mexico; (M.A.H.-M.); (Y.E.L.-C.); (M.A.P.-R.); (A.A.M.-A.); (C.F.C.-G.); (D.C.R.-A.); (A.A.); (M.A.R.-M.)
| | - Axel A. Mendoza-Armenta
- Mechatronics Department, School of Engineering and Sciences, Monterrey Campus, Tecnologico de Monterrey, Monterrey 64700, Mexico; (M.A.H.-M.); (Y.E.L.-C.); (M.A.P.-R.); (A.A.M.-A.); (C.F.C.-G.); (D.C.R.-A.); (A.A.); (M.A.R.-M.)
| | - José Esteban Romero-Gómez
- Mechatronics Department, School of Engineering and Sciences, Guadalajara Campus, Tecnologico de Monterrey, Guadalajara 45201, Mexico;
| | - César F. Cruz-Gómez
- Mechatronics Department, School of Engineering and Sciences, Monterrey Campus, Tecnologico de Monterrey, Monterrey 64700, Mexico; (M.A.H.-M.); (Y.E.L.-C.); (M.A.P.-R.); (A.A.M.-A.); (C.F.C.-G.); (D.C.R.-A.); (A.A.); (M.A.R.-M.)
| | - Diana C. Rodríguez-Alvarado
- Mechatronics Department, School of Engineering and Sciences, Monterrey Campus, Tecnologico de Monterrey, Monterrey 64700, Mexico; (M.A.H.-M.); (Y.E.L.-C.); (M.A.P.-R.); (A.A.M.-A.); (C.F.C.-G.); (D.C.R.-A.); (A.A.); (M.A.R.-M.)
| | - Alejandro Arceo
- Mechatronics Department, School of Engineering and Sciences, Monterrey Campus, Tecnologico de Monterrey, Monterrey 64700, Mexico; (M.A.H.-M.); (Y.E.L.-C.); (M.A.P.-R.); (A.A.M.-A.); (C.F.C.-G.); (D.C.R.-A.); (A.A.); (M.A.R.-M.)
| | - Jesús G. Cruz-Garza
- Department of Neurosurgery, Houston Methodist Research Institute, Houston, TX 77030, USA;
| | - Mauricio A. Ramírez-Moreno
- Mechatronics Department, School of Engineering and Sciences, Monterrey Campus, Tecnologico de Monterrey, Monterrey 64700, Mexico; (M.A.H.-M.); (Y.E.L.-C.); (M.A.P.-R.); (A.A.M.-A.); (C.F.C.-G.); (D.C.R.-A.); (A.A.); (M.A.R.-M.)
| | - Jorge de J. Lozoya-Santos
- Mechatronics Department, School of Engineering and Sciences, Monterrey Campus, Tecnologico de Monterrey, Monterrey 64700, Mexico; (M.A.H.-M.); (Y.E.L.-C.); (M.A.P.-R.); (A.A.M.-A.); (C.F.C.-G.); (D.C.R.-A.); (A.A.); (M.A.R.-M.)
| |
Collapse
|
4
|
Kodithuwakku Arachchige SNK, Chander H, Shojaei A, Knight AC, Brown C, Freeman HR, Burch V RF, Chen CC. Effects of virtual heights, dual-tasking, and training on static postural stability. APPLIED ERGONOMICS 2024; 114:104145. [PMID: 37837914 DOI: 10.1016/j.apergo.2023.104145] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 09/13/2023] [Accepted: 09/27/2023] [Indexed: 10/16/2023]
Abstract
Working at altitudes, dual-tasking (DT), and lack of experience cause falls. This study aimed to investigate the impact of virtual heights, DT, and training on static postural stability. Twenty-eight volunteers' balance at seven virtual environments [VE; ground (G), altitude 1 (A1), edge 1 (E1), altitude 2 (A2), edge 2 (E2), altitude 3 (A3), and edge 3 (E3)] were recorded during single-tasking (ST) and DT over three days. Independent variables were analyzed using a 7 (VE) x 3 (DAY) x 2 (TASK) factorial repeated measures ANOVA. Greater postural sway was observed in A3 and E1, on DAY 1, and during DT. The study demonstrated static postural stability deteriorates at higher virtual altitudes and during DT and improves with training. The findings of the study suggest that virtual reality is a great altitude simulator, which could be used as a potential balance training tool in ergonomic settings.
Collapse
Affiliation(s)
- Sachini N K Kodithuwakku Arachchige
- Human Performance Laboratory, Department of Exercise and Nutrition Sciences, Weber State University, Dept 2805, 1435 Village Dr, Ogden, UT, 84408-5150, USA.
| | - Harish Chander
- Neuromechanics Laboratory, Department of Kinesiology, Mississippi State University, PO Box 6186 216, McCarthy Gym, Mississippi State, MS, 39762, USA; Human Factors & Athlete Engineering, Center for Advanced Vehicular Systems, Mississippi State University, 200 Research Blvd, Starkville, MS, 39759, USA.
| | - Alireza Shojaei
- Myers-Lawson School of Construction, Virginia Tech, 1345 Perry St, Blacksburg, VA, 24061, USA.
| | - Adam C Knight
- Neuromechanics Laboratory, Department of Kinesiology, Mississippi State University, PO Box 6186 216, McCarthy Gym, Mississippi State, MS, 39762, USA.
| | - Caitlyn Brown
- Neuromechanics Laboratory, Department of Kinesiology, Mississippi State University, PO Box 6186 216, McCarthy Gym, Mississippi State, MS, 39762, USA.
| | - Hannah R Freeman
- Department of Occupational Therapy, School of Health Professions, University of Alabama at Birmingham, 1716 9th Ave S, Birmingham, AL, 35233, USA.
| | - Reuben F Burch V
- Human Factors & Athlete Engineering, Center for Advanced Vehicular Systems, Mississippi State University, 200 Research Blvd, Starkville, MS, 39759, USA; Department of Industrial & Systems Engineering, Mississippi State University, 479-2 Hardy Road, 260McCain Hall, Box 9542, Mississippi State, MS, 39762, USA.
| | - Chih-Chia Chen
- Cognitive and Motor Control Laboratory, Department of Kinesiology, Mississippi State University, PO Box 6186, 216 McCarthy Gym, Mississippi State, MS, 39762, USA.
| |
Collapse
|
5
|
de Vargas LDS, Jantsch J, Fontoura JR, Dorneles GP, Peres A, Guedes RP. Effects of Zinc Supplementation on Inflammatory and Cognitive Parameters in Middle-Aged Women with Overweight or Obesity. Nutrients 2023; 15:4396. [PMID: 37892471 PMCID: PMC10609714 DOI: 10.3390/nu15204396] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/03/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023] Open
Abstract
Obesity has been linked to cognitive decline and adverse effects on brain health. Zinc (Zn) is a mineral with important metabolic functions that can modulate obesity-related neurological impairment. Thus, the present study aimed to evaluate the effects of 12 weeks of Zn supplementation on the inflammatory profile, cognitive function, and mood of overweight or obese women through a double-blind, placebo-controlled study. The study included 42 women aged between 40 and 60, randomly divided into two groups: Zn supplementation (30 mg/day) or placebo for 12 weeks. Data regarding sociodemographic, anthropometric, dietary, and physical activity were collected. Mini-mental state examination (MMSE), verbal fluency test, clock drawing test, and Stroop test were performed. Anxiety and depression symptoms were assessed using the Beck anxiety inventory and the BDI-II, respectively. Saliva samples were collected to evaluate IL-1β, IL-6, TNF-α, insulin, nitrite, and Zn levels. Of the 42 participants (mean age 49.58 ± 6.46 years), 32 were included in the study analyses. Changes in body weight and macronutrient consumption were not different between placebo and Zn supplementation groups. Cognitive scores on the MMSE and Stroop tests were higher in the Zn supplementation group than in the placebo group. Salivary levels of IL-1b and Zn increased in the Zn group compared to placebo. There was no significant change in the adjusted means of the BDI-II and BECK scores between the zinc vs. placebo groups. Twelve weeks of Zn supplementation was able to partially improve the cognitive scores assessed in overweight or obese women, regardless of weight loss. These findings suggest that Zn supplementation can be considered an adjunct strategy to enhance cognitive health in overweight or obese women.
Collapse
Affiliation(s)
- Liziane da Silva de Vargas
- Programa de Pós-Graduação em Biociências, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Rua Sarmento Leite, 245, Porto Alegre 90050-170, Brazil; (L.d.S.d.V.); (J.J.); (A.P.)
| | - Jeferson Jantsch
- Programa de Pós-Graduação em Biociências, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Rua Sarmento Leite, 245, Porto Alegre 90050-170, Brazil; (L.d.S.d.V.); (J.J.); (A.P.)
| | - Juliana Ribeiro Fontoura
- Graduação em Nutrição, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Rua Sarmento Leite, 245, Porto Alegre 90050-170, Brazil
| | - Gilson Pires Dorneles
- Hospital Moinhos de Vento, Rua Ramiro Barcelos, 910, Porto Alegre 90035-000, Brazil;
| | - Alessandra Peres
- Programa de Pós-Graduação em Biociências, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Rua Sarmento Leite, 245, Porto Alegre 90050-170, Brazil; (L.d.S.d.V.); (J.J.); (A.P.)
- Graduação em Nutrição, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Rua Sarmento Leite, 245, Porto Alegre 90050-170, Brazil
- Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Rua Sarmento Leite, 245, Porto Alegre 90050-170, Brazil
| | - Renata Padilha Guedes
- Programa de Pós-Graduação em Biociências, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Rua Sarmento Leite, 245, Porto Alegre 90050-170, Brazil; (L.d.S.d.V.); (J.J.); (A.P.)
- Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Rua Sarmento Leite, 245, Porto Alegre 90050-170, Brazil
| |
Collapse
|
6
|
Djebbara Z, Kalantari S. Affordances and curvature preference: The case of real objects and spaces. Ann N Y Acad Sci 2023; 1527:14-19. [PMID: 37429830 DOI: 10.1111/nyas.15038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2023]
Abstract
Chuquichambi and colleagues recently questioned the prevailing belief that a universal human visual preference exists for curved shapes and lines. Their comprehensive meta-analysis demonstrated that while curvature preference is widespread, it is not universally constant or invariant. By revisiting their dataset, we made an intriguing discovery: a negative relationship between curvature preference and an object's "affordances." Taking an embodiment perspective into account, we propose an explanation for this phenomenon, suggesting that the diminished curvature preference in objects with abundant affordances can be understood through the lens of embodied cognition.
Collapse
Affiliation(s)
- Zakaria Djebbara
- Department of Architecture, Design, Media, and Technology, Aalborg University, Aalborg, Denmark
- Biological Psychology and Neuroergonomics, Technical University of Berlin, Berlin, Germany
| | - Saleh Kalantari
- Department of Human Centered Design, College of Human Ecology, Cornell University, Ithaca, New York, USA
| |
Collapse
|
7
|
Yadav H, Maini S. Electroencephalogram based brain-computer interface: Applications, challenges, and opportunities. MULTIMEDIA TOOLS AND APPLICATIONS 2023:1-45. [PMID: 37362726 PMCID: PMC10157593 DOI: 10.1007/s11042-023-15653-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 07/17/2022] [Accepted: 04/22/2023] [Indexed: 06/28/2023]
Abstract
Brain-Computer Interfaces (BCI) is an exciting and emerging research area for researchers and scientists. It is a suitable combination of software and hardware to operate any device mentally. This review emphasizes the significant stages in the BCI domain, current problems, and state-of-the-art findings. This article also covers how current results can contribute to new knowledge about BCI, an overview of BCI from its early developments to recent advancements, BCI applications, challenges, and future directions. The authors pointed to unresolved issues and expressed how BCI is valuable for analyzing the human brain. Humans' dependence on machines has led humankind into a new future where BCI can play an essential role in improving this modern world.
Collapse
Affiliation(s)
- Hitesh Yadav
- Department of Electrical and Instrumentation Engineering, Sant Longowal Institute of Engineering & Technology, Longowal, Punjab India
| | - Surita Maini
- Department of Electrical and Instrumentation Engineering, Sant Longowal Institute of Engineering & Technology, Longowal, Punjab India
| |
Collapse
|
8
|
Cheng B, Lin E, Wunderlich A, Gramann K, Fabrikant SI. Using spontaneous eye blink-related brain activity to investigate cognitive load during mobile map-assisted navigation. Front Neurosci 2023; 17:1024583. [PMID: 36866330 PMCID: PMC9971562 DOI: 10.3389/fnins.2023.1024583] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 01/26/2023] [Indexed: 02/16/2023] Open
Abstract
The continuous assessment of pedestrians' cognitive load during a naturalistic mobile map-assisted navigation task is challenging because of limited experimental control over stimulus presentation, human-map-interactions, and other participant responses. To overcome this challenge, the present study takes advantage of navigators' spontaneous eye blinks during navigation to serve as event markers in continuously recorded electroencephalography (EEG) data to assess cognitive load in a mobile map-assisted navigation task. We examined if and how displaying different numbers of landmarks (3 vs. 5 vs. 7) on mobile maps along a given route would influence navigators' cognitive load during navigation in virtual urban environments. Cognitive load was assessed by the peak amplitudes of the blink-related fronto-central N2 and parieto-occipital P3. Our results show increased parieto-occipital P3 amplitude indicating higher cognitive load in the 7-landmark condition, compared to showing 3 or 5 landmarks. Our prior research already demonstrated that participants acquire more spatial knowledge in the 5- and 7-landmark conditions compared to the 3-landmark condition. Together with the current study, we find that showing 5 landmarks, compared to 3 or 7 landmarks, improved spatial learning without overtaxing cognitive load during navigation in different urban environments. Our findings also indicate a possible cognitive load spillover effect during map-assisted wayfinding whereby cognitive load during map viewing might have affected cognitive load during goal-directed locomotion in the environment or vice versa. Our research demonstrates that users' cognitive load and spatial learning should be considered together when designing the display of future navigation aids and that navigators' eye blinks can serve as useful event makers to parse continuous human brain dynamics reflecting cognitive load in naturalistic settings.
Collapse
Affiliation(s)
- Bingjie Cheng
- Department of Geography and Digital Society Initiative, University of Zurich, Zurich, Switzerland,*Correspondence: Bingjie Cheng,
| | - Enru Lin
- Department of Geography and Digital Society Initiative, University of Zurich, Zurich, Switzerland
| | - Anna Wunderlich
- Department of Biopsychology and Neuroergonomics, Technical University of Berlin, Berlin, Germany
| | - Klaus Gramann
- Department of Biopsychology and Neuroergonomics, Technical University of Berlin, Berlin, Germany
| | - Sara I. Fabrikant
- Department of Geography and Digital Society Initiative, University of Zurich, Zurich, Switzerland
| |
Collapse
|
9
|
Valentine C. Health Implications of Virtual Architecture: An Interdisciplinary Exploration of the Transferability of Findings from Neuroarchitecture. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:2735. [PMID: 36768106 PMCID: PMC9915076 DOI: 10.3390/ijerph20032735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/26/2023] [Accepted: 02/01/2023] [Indexed: 06/18/2023]
Abstract
Virtual architecture has been increasingly relied on to evaluate the health impacts of physical architecture. In this health research, exposure to virtual architecture has been used as a proxy for exposure to physical architecture. Despite the growing body of research on the health implications of physical architecture, there is a paucity of research examining the long-term health impacts of prolonged exposure to virtual architecture. In response, this paper considers: what can proxy studies, which use virtual architecture to assess the physiological response to physical architecture, tell us about the impact of extended exposure to virtual architecture on human health? The paper goes on to suggest that the applicability of these findings to virtual architecture may be limited by certain confounding variables when virtual architecture is experienced for a prolonged period of time. This paper explores the potential impact of two of these confounding variables: multisensory integration and gravitational perception. This paper advises that these confounding variables are unique to extended virtual architecture exposure and may not be captured by proxy studies that aim to capture the impact of physical architecture on human health through acute exposure to virtual architecture. While proxy studies may be suitable for measuring some aspects of the impact of both physical and virtual architecture on human health, this paper argues that they may be insufficient to fully capture the unintended consequences of extended exposure to virtual architecture on human health. Therefore, in the face of the increasing use of virtual architectural environments, the author calls for the establishment of a subfield of neuroarchitectural health research that empirically examines the physiological impacts of extended exposure to virtual architecture in its own right.
Collapse
Affiliation(s)
- Cleo Valentine
- Department of Architecture, University of Cambridge, Cambridge CB2 1PX, UK
| |
Collapse
|
10
|
Multimodal Assessment of Changes in Physiological Indicators when Presenting a Video Fragment on Screen (2D) versus a VR (3D) Environment. Behav Neurol 2022; 2022:5346128. [PMID: 36479230 PMCID: PMC9722301 DOI: 10.1155/2022/5346128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/11/2022] [Accepted: 11/12/2022] [Indexed: 11/29/2022] Open
Abstract
The increasing role of virtual environments in society, especially in the context of the pandemic and evolving metaverse technologies, requires a closer study of the physiological state of humans using virtual reality (VR) for entertainment, work, or learning. Despite the fact that many physiological reactions to the content presented in various modalities under VR conditions have already been described, often these studies do not reflect the full range of changes in the physiological reactions that occur to a person during their immersion in the virtual world. This study was designed to find and compare the most sensitive physiological indicators that change when viewing an emotionally intense video fragment in standard format on screen and in virtual reality conditions (in a VR helmet). The research methodology involved randomly presenting a group of subjects with visual content-a short video clip-first on screen (2D) and then in a virtual reality helmet (3D). A special feature of this study is the use of multimodal physiological state assessment throughout the content presentation, in conjunction with psychological testing of the study participants before and after the start of the study. It has been discovered that the most informative physiological indicators reflecting the subjects' condition under virtual reality conditions were changes in theta rhythm amplitude, skin conductance, standard deviation of normal RR-intervals (SDRR), and changes in photoplethysmogram (PPG). The study results suggest that in the process of immersion in a virtual environment, the participants develop a complex functional state, different from the state when watching on screen, which is characterised by the restructuring of autonomic regulation and activation of emotion structures of the brain.
Collapse
|
11
|
Bower IS, Hill AT, Enticott PG. Functional brain connectivity during exposure to the scale and color of interior built environments. Hum Brain Mapp 2022; 44:447-457. [PMID: 36053213 PMCID: PMC9842925 DOI: 10.1002/hbm.26061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 07/29/2022] [Accepted: 08/07/2022] [Indexed: 01/25/2023] Open
Abstract
Understanding brain activity linked to built environment exposure is important, as it may affect underlying cognitive, perceptual, and emotional processes, which have a critical influence in our daily life. As our time spent inside buildings is rising, and mental health problems have become more prevalent, it is important we investigate how design characteristics of the built environment impact brain function. In this study, we utilized electroencephalography to understand whether the design elements of scale and color of interior built environments modulate functional brain connectivity (i.e., brain network communication). Using a Cave Automatic Virtual Environment, while controlling indoor environmental quality responsible for physiological comfort, healthy adult participants aged 18-55 years (66 for scale, subset of 18 for color), were exposed to context-neutral indoor room scenes presented for two-minutes each. Our results show that both enlarging and reducing scale enhanced theta connectivity across the left temporoparietal region and right frontal region. We also found when reducing the built environment scale, there was a network exhibiting greater high-gamma connectivity, over the right frontoparietal region. For color, the condition (blue) contrasted to our achromatic control (white) increased theta connectivity in the frontal hemispheres. These findings identify a link between theta and gamma oscillations during exposure to the scale and color of the built environment, showing that design characteristics of the built environment could affect our cognitive processes and mental health. This suggests that, through the design of buildings, we may be able to mediate performance and health outcomes, which could lead to major health and economic benefits for society.
Collapse
Affiliation(s)
- Isabella S. Bower
- Cognitive Neuroscience Unit, School of Psychology, Faculty of HealthDeakin UniversityGeelongVictoriaAustralia,School of Architecture and Built Environment, Faculty of Science, Engineering and Built EnvironmentDeakin UniversityGeelongVictoriaAustralia
| | - Aron T. Hill
- Cognitive Neuroscience Unit, School of Psychology, Faculty of HealthDeakin UniversityGeelongVictoriaAustralia
| | - Peter G. Enticott
- Cognitive Neuroscience Unit, School of Psychology, Faculty of HealthDeakin UniversityGeelongVictoriaAustralia
| |
Collapse
|
12
|
Kalantari S, Xu TB, Mostafavi A, Lee A, Barankevich R, Boot WR, Czaja SJ. Using a Nature-based Virtual Reality Environment for Improving Mood States and Cognitive Engagement in Older Adults: A Mixed-method Feasibility Study. Innov Aging 2022; 6:igac015. [PMID: 35592668 PMCID: PMC9113189 DOI: 10.1093/geroni/igac015] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Indexed: 11/29/2022] Open
Abstract
Background and Objectives Exposure to nature and nature-based imagery has been shown to improve mood states and stave off cognitive decline in older adults. Even “micro-doses” of natural scenery can provide beneficial effects in situations where more extensive interactions with nature are not feasible. In the current study, we evaluated the use of virtual reality (VR) for delivering interactive nature-based content with the goal of prompting active engagement and improving mood states in older adults. Research Design and Methods The researchers developed a novel VR environment that combined 360-degree videos of natural areas and botanical gardens with interactive digital features that allowed users to engage with aspects of the environment. We recruited 50 older adults to try out this VR environment and measured changes in mood states and attitudes toward VR from before versus after the sessions. We controlled for variables such as age, education level, and exposure to nature in everyday life, and we looked for differences in responses to the VR among participants with cognitive impairments (CIs) versus without, and participants with physical disabilities versus without. Results The findings indicated significant improvements in “good” mood and “calm” mood dimensions after exposure to the VR, as well as improvements in attitudes toward the technology. These positive outcomes were significantly greater for participants with physical disabilities compared to those without disabilities. No differences were found in the responses of participants with CIs versus those without. Exit interviews provided a variety of helpful suggestions about ways to improve the VR equipment design and content to meet the needs of an older adult population. Discussion and Implications The study demonstrates that VR can provide a cost-effective, noninvasive, and nonpharmaceutical approach for improving the lives of older adults in both clinical and recreational settings, particularly when real-world access to nature is limited.
Collapse
Affiliation(s)
- Saleh Kalantari
- Department of Human Centered Design, Cornell University, Ithaca, NY, USA
| | - Tong Bill Xu
- Department of Human Centered Design, Cornell University, Ithaca, NY, USA
| | - Armin Mostafavi
- Department of Human Centered Design, Cornell University, Ithaca, NY, USA
| | - Angella Lee
- Department of Human Centered Design, Cornell University, Ithaca, NY, USA
| | - Ruth Barankevich
- Department of Human Centered Design, Cornell University, Ithaca, NY, USA
| | - Walter R Boot
- Department of Psychology, Florida State University, Tallahassee, FL, USA
| | - Sara J Czaja
- Division of Geriatrics and Palliative Medicine, Center on Aging and Behavioral Research, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
13
|
Darfler M, Cruz-Garza JG, Kalantari S. An EEG-Based Investigation of the Effect of Perceived Observation on Visual Memory in Virtual Environments. Brain Sci 2022; 12:brainsci12020269. [PMID: 35204033 PMCID: PMC8870655 DOI: 10.3390/brainsci12020269] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 02/01/2022] [Accepted: 02/08/2022] [Indexed: 11/16/2022] Open
Abstract
The presence of external observers has been shown to affect performance on cognitive tasks, but the parameters of this impact for different types of tasks and the underlying neural dynamics are less understood. The current study examined the behavioral and brain activity effects of perceived observation on participants’ visual working memory (VWM) in a virtual reality (VR) classroom setting, using the task format as a moderating variable. Participants (n = 21) were equipped with a 57-channel EEG cap, and neural data were collected as they completed two VWM tasks under two observation conditions (observed and not observed) in a within-subjects experimental design. The “observation” condition was operationalized through the addition of a static human avatar in the VR classroom. The avatar’s presence was associated with a significant effect on extending the task response time, but no effect was found on task accuracy. This outcome may have been due to a ceiling effect, as the mean participant task scores were quite high. EEG data analysis supported the behavioral findings by showing consistent differences between the no-observation and observation conditions for one of the VWM tasks only. These neural differences were identified in the dorsolateral prefrontal cortex (dlPFC) and the occipital cortex (OC) regions, with higher theta-band activity occurring in the dlPFC during stimulus encoding and in the OC during response selection when the “observing” avatar was present. These findings provide evidence that perceived observation can inhibit performance during visual tasks by altering attentional focus, even in virtual contexts.
Collapse
|
14
|
Zhu C, Fu Z, Liu L, Shi X, Li Y. Health risk assessment of PM 2.5 on walking trips. Sci Rep 2021; 11:19249. [PMID: 34584180 PMCID: PMC8478890 DOI: 10.1038/s41598-021-98844-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 09/13/2021] [Indexed: 12/31/2022] Open
Abstract
PM2.5 has an impact on residents' physical health during travelling, especially walking completely exposed to the environment. In order to obtain the specific impact of PM2.5 on walking, 368 healthy volunteers were selected and they were grouped according to gender and age. In the experiment, the heart rate change rate (HR%) is taken as test variable. According to receiver operating characteristic (ROC) curve, the travel is divided into two states: safety and risk. Based on this, a binary logit model considering Body Mass Index (BMI) is established to determine the contribution of PM2.5 concentration and body characteristics to travel risk. The experiment was conducted on Chang'an Middle Road in Xi'an City. The analysis results show that the threshold of HR% for safety and risk ranges from 31.1 to 40.1%, and that of PM2.5 concentration ranges from 81 to 168 μg/m3. The probability of risk rises 5.8% and 11.4%, respectively, for every unit increase in PM2.5 concentration and HR%. Under same conditions, the probability of risk for male is 76.8% of that for female. The probability of risk for youth is 67.5% of that for middle-aged people, and the probability of risk for people with BMI in healthy range is 72.1% of that for non-healthy range. The research evaluates risk characteristics of walking in particular polluted weather, which can improve residents' health level and provide suggestions for travel decision while walking.
Collapse
Affiliation(s)
- Caihua Zhu
- College of Transportation Engineering, Chang'an University, Middle section of south 2nd Ring Road, Xi'an, 710064, Shaanxi Province, China
| | - Zekun Fu
- College of Transportation Engineering, Chang'an University, Middle section of south 2nd Ring Road, Xi'an, 710064, Shaanxi Province, China
| | - Linjian Liu
- College of Transportation Engineering, Chang'an University, Middle section of south 2nd Ring Road, Xi'an, 710064, Shaanxi Province, China
| | - Xuan Shi
- College of Transportation Engineering, Chang'an University, Middle section of south 2nd Ring Road, Xi'an, 710064, Shaanxi Province, China
| | - Yan Li
- College of Transportation Engineering, Chang'an University, Middle section of south 2nd Ring Road, Xi'an, 710064, Shaanxi Province, China.
| |
Collapse
|