1
|
Sravanraju N, Beulah P, Jaldhani V, Nagaraju P, HariPrasad AS, Brajendra P, Sunitha N, Sundaram RM, Senguttuvel P. Genetic enhancement of reproductive stage drought tolerance in RPHR-1005R and derivative rice hybrids through marker-assisted backcross breeding in rice (Oryza sativa L.). Mol Biol Rep 2024; 51:426. [PMID: 38498081 DOI: 10.1007/s11033-024-09351-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 02/14/2024] [Indexed: 03/19/2024]
Abstract
BACKGROUND Drought stress is considered as one of the major production constraints in rice. RPHR-1005R is a restorer line (R-Line) with a popular, medium-slender grain type, and is the male parent of the popular Indian rice hybrid, DRR-H3. However, both the hybrid and its restorer are highly vulnerable to the drought stress, which limits the adoption of the hybrid. Therefore, the selection of the restorer line RPHR-1005R has been made with the objective of enhancing drought tolerance. METHODS AND RESULTS In this study, we have introgressed a major QTL for grain yield under drought (qDTY 1.1) from Nagina22 through a marker-assisted backcross breeding (MABB) strategy. PCR based SSR markers linked to grain yield under drought (qDTY1.1 - RM431, RM11943), fertility restorer genes (Rf3-DRRM-Rf3-10, Rf4-RM6100) and wide compatibility (S5n allele) were deployed for foreground selection. At BC2F1, a single plant (RPHR6339-4-16-14) with target QTL in heterozygous condition and with the highest recurrent parent genome recovery (85.41%) and phenotypically like RPHR-1005R was identified and selfed to generate BC2F2. Fifty-eight homozygous lines were advanced to BC2F4 and six promising restorer lines and a hybrid combination (APMS6A/RPHR6339-4-16-14-3) were identified. CONCLUSIONS In summary, the six improved restorer lines could be employed for developing heterotic hybrids possessing reproductive stage drought tolerance. The hybrid combination (APMS6A/RPHR6339-4-16-14-3) was estimated to ensure stable yields in drought-prone irrigated lowlands as well as in directly seeded aerobic and upland areas of India.
Collapse
Affiliation(s)
- N Sravanraju
- Crop Improvement Section, ICAR-Indian Institute of Rice Research, Hyderabad, 500030, India
- Biotechnology Department, Jawaharlal Nehru Technological University (JNTU-H), Hyderabad, 500085, India
| | - P Beulah
- Crop Improvement Section, ICAR-Indian Institute of Rice Research, Hyderabad, 500030, India
| | - V Jaldhani
- Crop Improvement Section, ICAR-Indian Institute of Rice Research, Hyderabad, 500030, India
| | - P Nagaraju
- Crop Improvement Section, ICAR-Indian Institute of Rice Research, Hyderabad, 500030, India
| | - A S HariPrasad
- Crop Improvement Section, ICAR-Indian Institute of Rice Research, Hyderabad, 500030, India
| | - P Brajendra
- Crop Improvement Section, ICAR-Indian Institute of Rice Research, Hyderabad, 500030, India
| | - N Sunitha
- Biotechnology Department, Jawaharlal Nehru Technological University (JNTU-H), Hyderabad, 500085, India
| | - R M Sundaram
- Crop Improvement Section, ICAR-Indian Institute of Rice Research, Hyderabad, 500030, India.
| | - P Senguttuvel
- Crop Improvement Section, ICAR-Indian Institute of Rice Research, Hyderabad, 500030, India.
| |
Collapse
|
2
|
Senguttuvel P, G P, C J, D SR, CN N, V J, P B, R G, J AK, SV SP, LV SR, AS H, K S, D S, RM S, Govindaraj M. Rice biofortification: breeding and genomic approaches for genetic enhancement of grain zinc and iron contents. FRONTIERS IN PLANT SCIENCE 2023; 14:1138408. [PMID: 37332714 PMCID: PMC10272457 DOI: 10.3389/fpls.2023.1138408] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 04/25/2023] [Indexed: 06/20/2023]
Abstract
Rice is a highly consumed staple cereal cultivated predominantly in Asian countries, which share 90% of global rice production. Rice is a primary calorie provider for more than 3.5 billion people across the world. Preference and consumption of polished rice have increased manifold, which resulted in the loss of inherent nutrition. The prevalence of micronutrient deficiencies (Zn and Fe) are major human health challenges in the 21st century. Biofortification of staples is a sustainable approach to alleviating malnutrition. Globally, significant progress has been made in rice for enhancing grain Zn, Fe, and protein. To date, 37 biofortified Fe, Zn, Protein and Provitamin A rich rice varieties are available for commercial cultivation (16 from India and 21 from the rest of the world; Fe > 10 mg/kg, Zn > 24 mg/kg, protein > 10% in polished rice as India target while Zn > 28 mg/kg in polished rice as international target). However, understanding the micronutrient genetics, mechanisms of uptake, translocation, and bioavailability are the prime areas that need to be strengthened. The successful development of these lines through integrated-genomic technologies can accelerate deployment and scaling in future breeding programs to address the key challenges of malnutrition and hidden hunger.
Collapse
Affiliation(s)
- P. Senguttuvel
- Crop Improvement Section, ICAR - Indian Institute of Rice Research (ICAR - IIRR), Hyderabad, India
| | - Padmavathi G
- Crop Improvement Section, ICAR - Indian Institute of Rice Research (ICAR - IIRR), Hyderabad, India
| | - Jasmine C
- Crop Improvement Section, ICAR - Indian Institute of Rice Research (ICAR - IIRR), Hyderabad, India
- Genetics and Plant Breeding, Professor Jayashankar Telangana State Agricultural University (PJTSAU), Hyderabad, India
| | - Sanjeeva Rao D
- Crop Improvement Section, ICAR - Indian Institute of Rice Research (ICAR - IIRR), Hyderabad, India
| | - Neeraja CN
- Crop Improvement Section, ICAR - Indian Institute of Rice Research (ICAR - IIRR), Hyderabad, India
| | - Jaldhani V
- Crop Improvement Section, ICAR - Indian Institute of Rice Research (ICAR - IIRR), Hyderabad, India
| | - Beulah P
- Crop Improvement Section, ICAR - Indian Institute of Rice Research (ICAR - IIRR), Hyderabad, India
| | - Gobinath R
- Crop Improvement Section, ICAR - Indian Institute of Rice Research (ICAR - IIRR), Hyderabad, India
| | - Aravind Kumar J
- Crop Improvement Section, ICAR - Indian Institute of Rice Research (ICAR - IIRR), Hyderabad, India
| | - Sai Prasad SV
- Crop Improvement Section, ICAR - Indian Institute of Rice Research (ICAR - IIRR), Hyderabad, India
| | - Subba Rao LV
- Crop Improvement Section, ICAR - Indian Institute of Rice Research (ICAR - IIRR), Hyderabad, India
| | - Hariprasad AS
- Crop Improvement Section, ICAR - Indian Institute of Rice Research (ICAR - IIRR), Hyderabad, India
| | - Sruthi K
- Crop Improvement Section, ICAR - Indian Institute of Rice Research (ICAR - IIRR), Hyderabad, India
| | - Shivani D
- Genetics and Plant Breeding, Professor Jayashankar Telangana State Agricultural University (PJTSAU), Hyderabad, India
| | - Sundaram RM
- Crop Improvement Section, ICAR - Indian Institute of Rice Research (ICAR - IIRR), Hyderabad, India
| | - Mahalingam Govindaraj
- HarvestPlus, Alliance of Bioversity International and the International Center for Tropical Agriculture (CIAT), Cali, Colombia
| |
Collapse
|
3
|
Sultana S, Khatun HA, Faruquee M, Islam MMU, Tonny HJ, Islam MR. Comparison between Acid Digestion (ICP-OES) and X-ray Fluorescence (XRF) Spectrometry for Zinc Concentration Determination in Rice ( Oryza sativa L.). Foods 2023; 12:foods12051044. [PMID: 36900565 PMCID: PMC10001123 DOI: 10.3390/foods12051044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/11/2022] [Accepted: 12/13/2022] [Indexed: 03/06/2023] Open
Abstract
The determination of mineral concentrations in rice grain samples is crucial for analyzing their nutritional content. Most mineral content analysis techniques depend on inductively coupled plasma (ICP) spectrometry and are often complicated, expensive, time-consuming, and laborious. Recently, the handheld X-ray fluorescence (XRF) spectrometer has been randomly used in earth sciences; however, it is hardly practiced in quantifying mineral content in rice samples. In this research, the reliability of XRF results was compared with that of the ICP-OES to determine zinc (Zn) concentration in rice (Oryza sativa L.). Approximately 200 dehusked rice samples and four known high-Zn samples were analyzed using both XRF and ICP-OES techniques. The concentrations of Zn were recorded using the XRF technique and then correlated with the ICP-OES results. The results indicated a high positive relationship between two methods, with R2 = 0.83, p = 0.000, and the Pearson correlation value of 0.91 at the level of 0.05. This work demonstrates the potential of XRF as a reliable and low-cost as well as an alternative technique to ICP-OES methods for determining Zn content in rice as it allows the analysis of a greater number of samples in a short period at a considerably low price.
Collapse
Affiliation(s)
- Sharmin Sultana
- Correspondence: or (S.S.); (M.R.I.); Tel.: +88-01880-860318 (S.S.); +88-01720-654497 (M.R.I.)
| | | | | | | | | | - Md Rafiqul Islam
- Correspondence: or (S.S.); (M.R.I.); Tel.: +88-01880-860318 (S.S.); +88-01720-654497 (M.R.I.)
| |
Collapse
|
4
|
Gaoh BSB, Gangashetty PI, Mohammed R, Ango IK, Dzidzienyo DK, Tongoona P, Govindaraj M. Combining ability studies of grain Fe and Zn contents of pearl millet ( Pennisetum glaucum L.) in West Africa. FRONTIERS IN PLANT SCIENCE 2023; 13:1027279. [PMID: 36684795 PMCID: PMC9854276 DOI: 10.3389/fpls.2022.1027279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 10/14/2022] [Indexed: 06/17/2023]
Abstract
Micronutrient malnutrition is a major challenge in Africa, where half a million children die each year because of lack of micronutrients in their food. Pearl millet is an important food and fodder crop for the people living in the Semi-Arid regions of West Africa. The present study was conducted to determine the stability, combining ability, and gene action conditions of the high level of Fe and Zn content in grain and selected agronomic traits. Hence, eight genotypes were selected based on the availability of grain Fe and Zn contents and crossed in a full diallel mating design. Progenies from an 8 × 8 diallel mating along with the parents were evaluated in an alpha lattice design with three replications in three locations for two years. The parental lines Jirani, LCIC 9702 and MORO, had positive significant general combining ability (GCA) effects for grain Fe concentration, while Jirani and MORO had positive significant GCA effects for grain Zn concentration. For the specific combining ability (SCA), among the 56 hybrids evaluated, only the hybrids LCIC 9702 × Jirani and MORO × ZANGO had positive significant SCA effects for grain Fe concentration across locations, and for grain Zn concentration, the hybrids Gamoji × MORO, LCIC 9702 × Jirani, and ICMV 167006 × Jirani had positive significant SCA effects. The reciprocal effects were significant for grain Zn concentration, grain yield, flowering time, plant height, test weight, and downy mildew incidence, suggesting that the choice of a female or male parent is critical in hybrid production. Grain Fe and Zn concentration, flowering time, plant height, panicle length, panicle girth, panicle compactness, and downy mildew incidence were found to be predominantly under additive gene action, while grain yield and test weight were predominantly under non-additive gene action. A highly positive correlation was found between grain Fe and Zn concentrations, which implies that improving grain Fe trait automatically improves the grain Zn content. The stability analysis revealed that the hybrid ICMV 167006 × Jirani was the most stable and high-yielding with a high level of grain Fe and Zn micronutrients.
Collapse
Affiliation(s)
- Bassirou Sani Boubacar Gaoh
- Pearl Millet Breeding, International Crops Research Institute for the Semi-Arid Tropics, Niamey, Niger
- West African Centre for Crop Improvement, College of Basic and Applied Sciences, University of Ghana, Legon, Ghana
| | - Prakash I. Gangashetty
- Pearl Millet Breeding, International Crops Research Institute for the Semi-Arid Tropics, Niamey, Niger
- Pigeon Pea Breeding, International Crops Research Institute for the Semi-Arid Tropics, Patancheru, India
| | - Riyazaddin Mohammed
- Pearl Millet Breeding, International Crops Research Institute for the Semi-Arid Tropics, Niamey, Niger
| | - Issoufou Kassari Ango
- Department of Rainfed Crop Production (DCP), Institute National de la Recherche Agronomique du Niger, Maradi, Niger
| | - Daniel Kwadjo Dzidzienyo
- West African Centre for Crop Improvement, College of Basic and Applied Sciences, University of Ghana, Legon, Ghana
| | - Pangirayi Tongoona
- West African Centre for Crop Improvement, College of Basic and Applied Sciences, University of Ghana, Legon, Ghana
| | - Mahalingam Govindaraj
- Pigeon Pea Breeding, International Crops Research Institute for the Semi-Arid Tropics, Patancheru, India
- HarvestPlus, Alliance of Bioversity International and the International Center for Tropical Agriculture (CIAT), Cali, Colombia
| |
Collapse
|
5
|
Wairich A, Ricachenevsky FK, Lee S. A tale of two metals: Biofortification of rice grains with iron and zinc. FRONTIERS IN PLANT SCIENCE 2022; 13:944624. [PMID: 36420033 PMCID: PMC9677123 DOI: 10.3389/fpls.2022.944624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 10/11/2022] [Indexed: 06/16/2023]
Abstract
Iron (Fe) and zinc (Zn) are essential micronutrients needed by virtually all living organisms, including plants and humans, for proper growth and development. Due to its capacity to easily exchange electrons, Fe is important for electron transport in mitochondria and chloroplasts. Fe is also necessary for chlorophyll synthesis. Zn is a cofactor for several proteins, including Zn-finger transcription factors and redox metabolism enzymes such as copper/Zn superoxide dismutases. In humans, Fe participates in oxygen transport, electron transport, and cell division whereas Zn is involved in nucleic acid metabolism, apoptosis, immunity, and reproduction. Rice (Oryza sativa L.) is one of the major staple food crops, feeding over half of the world's population. However, Fe and Zn concentrations are low in rice grains, especially in the endosperm, which is consumed as white rice. Populations relying heavily on rice and other cereals are prone to Fe and Zn deficiency. One of the most cost-effective solutions to this problem is biofortification, which increases the nutritional value of crops, mainly in their edible organs, without yield reductions. In recent years, several approaches were applied to enhance the accumulation of Fe and Zn in rice seeds, especially in the endosperm. Here, we summarize these attempts involving transgenics and mutant lines, which resulted in Fe and/or Zn biofortification in rice grains. We review rice plant manipulations using ferritin genes, metal transporters, changes in the nicotianamine/phytosiderophore pathway (including biosynthetic genes and transporters), regulators of Fe deficiency responses, and other mutants/overexpressing lines used in gene characterization that resulted in Fe/Zn concentration changes in seeds. This review also discusses research gaps and proposes possible future directions that could be important to increase the concentration and bioavailability of Fe and Zn in rice seeds without the accumulation of deleterious elements. We also emphasize the need for a better understanding of metal homeostasis in rice, the importance of evaluating yield components of plants containing transgenes/mutations under field conditions, and the potential of identifying genes that can be manipulated by gene editing and other nontransgenic approaches.
Collapse
Affiliation(s)
- Andriele Wairich
- Graduate Program in Molecular and Cellular Biology, Biotechnology Center, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Felipe K. Ricachenevsky
- Graduate Program in Molecular and Cellular Biology, Biotechnology Center, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
- Department of Botany, Institute of Biosciences, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Sichul Lee
- Center for Plant Aging Research, Institute for Basic Science (IBS), Daegu, South Korea
- Department of Agricultural Biotechnology, National Institute of Agricultural Science, Jeonju, South Korea
| |
Collapse
|
6
|
Sun P, Isner JC, Coupel-Ledru A, Zhang Q, Pridgeon AJ, He Y, Menguer PK, Miller AJ, Sanders D, Mcgrath SP, Noothong F, Liang YK, Hetherington AM. Countering elevated CO 2 induced Fe and Zn reduction in Arabidopsis seeds. THE NEW PHYTOLOGIST 2022; 235:1796-1806. [PMID: 35637611 DOI: 10.1111/nph.18290] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 05/17/2022] [Indexed: 05/27/2023]
Abstract
Growth at increased concentrations of CO2 induces a reduction in seed zinc (Zn) and iron (Fe). Using Arabidopsis thaliana, we investigated whether this could be mitigated by reducing the elevated CO2 -induced decrease in transpiration. We used an infrared imaging-based screen to isolate mutants in At1g08080 that encodes ALPHA CARBONIC ANHYDRASE 7 (ACA7). aca7 mutant alleles display wild-type (WT) responses to abscisic acid (ABA) and light but are compromised in their response to elevated CO2 . ACA7 is expressed in guard cells. When aca7 mutants are grown at 1000 ppm CO2 they exhibit higher transpiration and higher seed Fe and Zn content than WT grown under the same conditions. Our data show that by increasing transpiration it is possible to partially mitigate the reduction in seed Fe and Zn content when Arabidopsis is grown at elevated CO2 .
Collapse
Affiliation(s)
- Peng Sun
- Department of Plant Sciences, College of Life Sciences, State Key Laboratory of Hybrid Rice, Wuhan University, Wuhan, 430072, China
- School of Biological Sciences, University of Bristol, Life Sciences Building, 24 Tyndall Avenue, Bristol, BS8 1TQ, UK
| | - Jean-Charles Isner
- School of Biological Sciences, University of Bristol, Life Sciences Building, 24 Tyndall Avenue, Bristol, BS8 1TQ, UK
| | - Aude Coupel-Ledru
- School of Biological Sciences, University of Bristol, Life Sciences Building, 24 Tyndall Avenue, Bristol, BS8 1TQ, UK
- Institut Agro, LEPSE, INRAE, University of Montpellier, Montpellier, 75338 Cedex 07, France
| | - Qi Zhang
- Department of Plant Sciences, College of Life Sciences, State Key Laboratory of Hybrid Rice, Wuhan University, Wuhan, 430072, China
| | - Ashley J Pridgeon
- School of Biological Sciences, University of Bristol, Life Sciences Building, 24 Tyndall Avenue, Bristol, BS8 1TQ, UK
| | - Yaqian He
- Department of Plant Sciences, College of Life Sciences, State Key Laboratory of Hybrid Rice, Wuhan University, Wuhan, 430072, China
| | - Paloma K Menguer
- Centro de Biotechnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, 91501970, Brazil
- John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | | | - Dale Sanders
- John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Steve P Mcgrath
- Rothamsted Research, West Common, Harpenden, Hertfordshire, AL5 2JQ, UK
| | - Fonthip Noothong
- School of Biological Sciences, University of Bristol, Life Sciences Building, 24 Tyndall Avenue, Bristol, BS8 1TQ, UK
| | - Yun-Kuan Liang
- Department of Plant Sciences, College of Life Sciences, State Key Laboratory of Hybrid Rice, Wuhan University, Wuhan, 430072, China
| | - Alistair M Hetherington
- School of Biological Sciences, University of Bristol, Life Sciences Building, 24 Tyndall Avenue, Bristol, BS8 1TQ, UK
| |
Collapse
|
7
|
Effects of Fermented Seaweed Fertilizer Treatment on Paddy Amino Acid Content and Rhizosphere Microbiome Community. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8090420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Seaweed has often been reported on for it potential bioresources for fertilizers to improve crop productivity and reduce the use of chemical fertilizers (CF). However, little is known about the nutritional status of the crop grown with the implementation of seaweed fertilizers (SF). In this study, the amino acid content of rice produced by SF implementation was evaluated. Furthermore, the rhizosphere bacterial community was also investigated. The paddy seedlings were divided into five groups, control (C0), chemical fertilizer (CF), seaweed fertilizer (SF), chemical and seaweed fertilizer combination 25:75 (CFSF1), and chemical and fertilizer combination 50:50 (CFSF2). The CFSF2 group shown significantly better growth characteristics compared to other groups. Based on the concentration of macronutrients (N, P, K) in paddy leaf, CFSF2 also shown the best results. This also correlates with the abundant amino acid composition in CFSF2 in almost all tested amino acids, namely, serine, phenylalanine, isoleucine, valine, glycine, tyrosine, proline, threonine, histidine, and arginine. Interestingly, beneficial bacteria Rhizobiales were significantly higher in CFSF2-treated soil (58%) compared to CF (29%). Another important group, Vicinamibacterales, was also significantly higher in CFSF2 (58%) compared to CF (7%). Hence, these potentially contributed to the high rice amino acid content and yield in the CFSF2-treated paddy. However, further field-scale studies are needed to confirm the bioindustrial application of seaweed in agricultural systems.
Collapse
|
8
|
Understanding Gene Action, Combining Ability, and Heterosis to Identify Superior Aromatic Rice Hybrids Using Artificial Neural Network. J FOOD QUALITY 2022. [DOI: 10.1155/2022/9282733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The aromatic rice represents a smaller but independent rice collection, the quality of which is considered to be highly acceptable. Farmers are interested in growing aromatic rice due to high premium market price. The prime objective of this study was to enhance genetic improvement of aromatic rice. Combining ability analysis (GCA and SCA) and gene action are studied in a set of 7 × 7 half-diallel crosses. Twenty-one hybrids along with their seven parents were assessed in randomized complete block design. Different quantitative characters were used to estimate the magnitude of heterosis. GCA and SCA significance for all traits revealed the importance of both additive and nonadditive genetic components. Several genes determine quantitative traits, with each gene having very little impacts and being easily influenced by environmental factors. Pusa Basmati-1 and Govindobhog were the best combiners among the seven parents. In terms of per se performance, heterosis, and SCA effects on seed yield per plant and important yield qualities, the crosses BM-24 Deharadun Pahari, Baskota × Tulaipanji, and Pusa Basmati-1 × Tulaipanji may be of interest. Because of its interconnected processing properties, ANN can play a critical role in this experiment. As a result, the current study was carried out to collect data and validate it using an artificial neural network (ANN) on the combining ability, gene action, and heterosis involved in the expression of diverse fragrant rice features. Using ANN, the validation of the result was done and it was found that the overall efficiency was approximately 99%.
Collapse
|
9
|
Sakran RM, Ghazy MI, Rehan M, Alsohim AS, Mansour E. Molecular Genetic Diversity and Combining Ability for Some Physiological and Agronomic Traits in Rice under Well-Watered and Water-Deficit Conditions. PLANTS (BASEL, SWITZERLAND) 2022; 11:702. [PMID: 35270172 PMCID: PMC8912379 DOI: 10.3390/plants11050702] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/28/2022] [Accepted: 03/02/2022] [Indexed: 05/09/2023]
Abstract
Water deficit is a pivotal abiotic stress that detrimentally constrains rice growth and production. Thereupon, the development of high-yielding and drought-tolerant rice genotypes is imperative in order to sustain rice production and ensure global food security. The present study aimed to evaluate diverse exotic and local parental rice genotypes and their corresponding cross combinations under water-deficit versus well-watered conditions, determining general and specific combining ability effects, heterosis, and the gene action controlling important traits through half-diallel analysis. In addition, the research aimed to assess parental genetic distance (GD) employing simple sequence repeat (SSR) markers, and to determine its association with hybrid performance, heterosis, and specific combining ability (SCA) effects. Six diverse rice genotypes (exotic and local) and their 15 F1 hybrids were assessed for two years under water-deficit and well-watered conditions. The results revealed that water-deficit stress substantially declined days to heading, plant height, chlorophyll content, relative water content, grain yield, and yield attributes. Contrarily, leaf rolling and the sterility percentage were considerably increased compared to well-watered conditions. Genotypes differed significantly for all the studied characteristics under water-deficit and well-watered conditions. Both additive and non-additive gene actions were involved in governing the inheritance of all the studied traits; however, additive gene action was predominant for most traits. The parental genotypes P1 and P2 were identified as excellent combiners for earliness and the breeding of short stature genotypes. Moreover, P3, P4, and P6 were identified as excellent combiners to increase grain yield and its attributes under water-deficit conditions. The hybrid combinations; P1 × P4, P2 × P5, P3 × P4, and P4 × P6 were found to be good specific combiners for grain yield and its contributed traits under water-deficit conditions. The parental genetic distance (GD) ranged from 0.38 to 0.89, with an average of 0.70. It showed lower association with hybrid performance, heterosis, and combining ability effects for all the studied traits. Nevertheless, SCA revealed a significant association with hybrid performance and heterosis, which suggests that SCA is a good predictor for hybrid performance and heterosis under water-deficit conditions. Strong positive relationships were identified between grain yield and each of relative water content, chlorophyll content, number of panicles/plant, number of filled grains/panicle, and 1000-grain weight. This suggests that these traits could be exploited as important indirect selection criteria for improving rice grain yield under water-deficit conditions.
Collapse
Affiliation(s)
- Raghda M. Sakran
- Rice Research Department, Field Crops Research Institute, Agricultural Research Center, Giza 12619, Egypt; (R.M.S.); (M.I.G.)
| | - Mohamed I. Ghazy
- Rice Research Department, Field Crops Research Institute, Agricultural Research Center, Giza 12619, Egypt; (R.M.S.); (M.I.G.)
| | - Medhat Rehan
- Department of Plant Production and Protection, College of Agriculture and Veterinary Medicine, Qassim University, Burydah 51452, Saudi Arabia;
- Department of Genetics, College of Agriculture, Kafrelsheikh University, Kafr El-Sheikh 33516, Egypt
| | - Abdullah S. Alsohim
- Department of Plant Production and Protection, College of Agriculture and Veterinary Medicine, Qassim University, Burydah 51452, Saudi Arabia;
| | - Elsayed Mansour
- Agronomy Department, Faculty of Agriculture, Zagazig University, Zagazig 44519, Egypt
| |
Collapse
|