1
|
Nishisue K, Sugiura R, Nakano R, Shibuya K, Fukuda S. Measuring the Flight Trajectory of a Free-Flying Moth on the Basis of Noise-Reduced 3D Point Cloud Time Series Data. INSECTS 2024; 15:373. [PMID: 38921088 PMCID: PMC11203875 DOI: 10.3390/insects15060373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/17/2024] [Accepted: 05/08/2024] [Indexed: 06/27/2024]
Abstract
Pest control is crucial in crop production; however, the use of chemical pesticides, the primary method of pest control, poses environmental issues and leads to insecticide resistance in pests. To overcome these issues, laser zapping has been studied as a clean pest control technology against the nocturnal cotton leafworm, Spodoptera litura, which has high fecundity and causes severe damage to various crops. For better sighting during laser zapping, it is important to measure the coordinates and speed of moths under low-light conditions. To achieve this, we developed an automatic detection pipeline based on point cloud time series data from stereoscopic images. We obtained 3D point cloud data from disparity images recorded under infrared and low-light conditions. To identify S. litura, we removed noise from the data using multiple filters and a support vector machine. We then computed the size of the outline box and directional angle of the 3D point cloud time series to determine the noisy point clouds. We visually inspected the flight trajectories and found that the size of the outline box and the movement direction were good indicators of noisy data. After removing noisy data, we obtained 68 flight trajectories, and the average flight speed of free-flying S. litura was 1.81 m/s.
Collapse
Affiliation(s)
- Koji Nishisue
- Institute of Agriculture, Tokyo University of Agriculture and Technology (TUAT), 3-5-8 Saiwai-cho, Fuchu-shi 183-8509, Tokyo, Japan;
| | - Ryo Sugiura
- The Research Center for Agricultural Information Technology (RCAIT), National Agriculture and Food Research Organization (NARO), 2-1-9 Kannondai, Tsukuba-shi 305-0856, Ibaraki, Japan;
| | - Ryo Nakano
- Institute for Plant Protection (NIPP), National Agriculture and Food Research Organization (NARO), 2-1-18 Kannondai, Tsukuba-shi 305-8666, Ibaraki, Japan; (R.N.); (K.S.)
| | - Kazuki Shibuya
- Institute for Plant Protection (NIPP), National Agriculture and Food Research Organization (NARO), 2-1-18 Kannondai, Tsukuba-shi 305-8666, Ibaraki, Japan; (R.N.); (K.S.)
| | - Shinji Fukuda
- Institute of Agriculture, Tokyo University of Agriculture and Technology (TUAT), 3-5-8 Saiwai-cho, Fuchu-shi 183-8509, Tokyo, Japan;
- The Research Center for Agricultural Information Technology (RCAIT), National Agriculture and Food Research Organization (NARO), 2-1-9 Kannondai, Tsukuba-shi 305-0856, Ibaraki, Japan;
| |
Collapse
|
2
|
Saha T, Genoud AP, Park JH, Thomas BP. Temperature Dependency of Insect's Wingbeat Frequencies: An Empirical Approach to Temperature Correction. INSECTS 2024; 15:342. [PMID: 38786898 PMCID: PMC11121811 DOI: 10.3390/insects15050342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/06/2024] [Accepted: 05/09/2024] [Indexed: 05/25/2024]
Abstract
This study examines the relationship between the wingbeat frequency of flying insects and ambient temperature, leveraging data from over 302,000 insect observations obtained using a near-infrared optical sensor during an eight-month field experiment. By measuring the wingbeat frequency as well as wing and body optical cross-sections of each insect in conjunction with the ambient temperature, we identified five clusters of insects and analyzed how their average wingbeat frequencies evolved over temperatures ranging from 10 °C to 38 °C. Our findings reveal a positive correlation between temperature and wingbeat frequency, with a more pronounced increase observed at higher wingbeat frequencies. Frequencies increased on average by 2.02 Hz/°C at 50 Hz, and up to 9.63 Hz/°C at 525 Hz, and a general model is proposed. This model offers a valuable tool for correcting wingbeat frequencies with temperature, enhancing the accuracy of insect clustering by optical and acoustic sensors. While this approach does not account for species-specific responses to temperature changes, our research provides a general insight, based on all species present during the field experiment, into the intricate dynamics of insect flight behavior in relation to environmental factors.
Collapse
Affiliation(s)
- Topu Saha
- Department of Physics, New Jersey Institute of Technology, University Heights, Newark, NJ 07102, USA;
| | - Adrien P. Genoud
- Institut Lumière Matière, UMR 5306, Université Claude Bernard Lyon 1, CNRS, F-69100 Villeurbanne, France;
| | - Jung H. Park
- Department of Data Science, New Jersey Institute of Technology, University Heights, Newark, NJ 07102, USA;
| | - Benjamin P. Thomas
- Department of Physics, New Jersey Institute of Technology, University Heights, Newark, NJ 07102, USA;
| |
Collapse
|
3
|
Patt JM, Makagon A, Norton B, Marvit M, Rutschman P, Neligeorge M, Salesin J. An optical system to detect, surveil, and kill flying insect vectors of human and crop pathogens. Sci Rep 2024; 14:8174. [PMID: 38589427 PMCID: PMC11002038 DOI: 10.1038/s41598-024-57804-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 03/21/2024] [Indexed: 04/10/2024] Open
Abstract
Sustainable and effective means to control flying insect vectors are critically needed, especially with widespread insecticide resistance and global climate change. Understanding and controlling vectors requires accurate information about their movement and activity, which is often lacking. The Photonic Fence (PF) is an optical system that uses machine vision, infrared light, and lasers to identify, track, and interdict vectors in flight. The PF examines an insect's outline, flight speed, and other flight parameters and if these match those of a targeted vector species, then a low-power, retina-safe laser kills it. We report on proof-of-concept tests of a large, field-sized PF (30 mL × 3 mH) conducted with Aedes aegypti, a mosquito that transmits dangerous arboviruses, and Diaphorina citri, a psyllid which transmits the fatal huanglongbing disease of citrus. In tests with the laser engaged, < 1% and 3% of A. aegypti and D. citri, respectfully, were recovered versus a 38% and 19% recovery when the lacer was silenced. The PF tracked, but did not intercept the orchid bee, Euglossa dilemma. The system effectively intercepted flying vectors, but not bees, at a distance of 30 m, heralding the use of photonic energy, rather than chemicals, to control flying vectors.
Collapse
Affiliation(s)
- Joseph M Patt
- United States Department of Agriculture, Agricultural Research Service, Fort Pierce, FL, 34945, USA.
| | - Arty Makagon
- Global Health Labs (Formerly Global Good Fund I, LLC), Bellevue, WA, 98007, USA
| | - Bryan Norton
- Global Health Labs (Formerly Global Good Fund I, LLC), Bellevue, WA, 98007, USA
| | - Maclen Marvit
- Global Health Labs (Formerly Global Good Fund I, LLC), Bellevue, WA, 98007, USA
| | - Phillip Rutschman
- Global Health Labs (Formerly Global Good Fund I, LLC), Bellevue, WA, 98007, USA
| | - Matt Neligeorge
- Global Health Labs (Formerly Global Good Fund I, LLC), Bellevue, WA, 98007, USA
| | - Jeremy Salesin
- Global Health Labs (Formerly Global Good Fund I, LLC), Bellevue, WA, 98007, USA
| |
Collapse
|
4
|
Musset O, Balourdet A, Perrot-Minnot MJ. Laser-based killing of a macroparasite inside its live invertebrate host. CURRENT RESEARCH IN PARASITOLOGY & VECTOR-BORNE DISEASES 2023; 4:100135. [PMID: 37583436 PMCID: PMC10424119 DOI: 10.1016/j.crpvbd.2023.100135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 07/19/2023] [Accepted: 07/21/2023] [Indexed: 08/17/2023]
Abstract
Clearing infection is an essential step to address many issues in host-parasite interactions but is challenging when dealing with endoparasites of large size relative to that of their host. Here, we took advantage of the lethality, contactless and versatility of high-energy laser beam to achieve it, using thorny-headed worms (Acanthocephala) and their amphipod intermediate host as a model system. We show that laser-based de-parasitization can be achieved using 450 nm Blue Diode Laser targeting carotenoid pigments in the bird acanthocephalan Polymorphus minutus. Using proboscis evagination failure and DNA degradation to establish parasite death, we found that 80% P. minutus died from within-host exposure to 5 pulses of 50 ms duration, 1.4 W power. Survival of infected gammarids 11 days after laser treatment was 60%. Preliminary tests were also performed with Nanosecond-Green Laser targeting lipids in Pomphorhynchus tereticollis, another acanthocephalan parasite. We discuss the efficiency and side-effect of laser treatment in this host-parasite system and highlight the perspectives that this technology more generally offers in parasitology.
Collapse
Affiliation(s)
- Olivier Musset
- Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR 6303 CNRS, Université Bourgogne Franche-Comté, 9 Avenue Alain Savary, 21078, Dijon, France
| | - Aude Balourdet
- Biogéosciences, UMR 6282 CNRS, Université de Bourgogne, 6 Boulevard Gabriel, 21000, Dijon, France
| | | |
Collapse
|
5
|
Gala JL, Rebane O, Ambroise J, Babichenko S, Nyabi O, Hance T. Acaricidal efficacy of ultraviolet-C irradiation of Tetranychus urticae adults and eggs using a pulsed krypton fluoride excimer laser. Parasit Vectors 2021; 14:578. [PMID: 34789326 PMCID: PMC8596343 DOI: 10.1186/s13071-021-05085-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 11/01/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Pulsed ultraviolet (UV)-C light sources, such as excimer lasers, are used in emerging non-thermal food-decontamination methods and also have high potential for use in a wide range of microbial decontamination applications. The acaricidal effect of an experimental UV-C irradiation device was assessed using female adults and eggs of a model organism, the two-spotted spider mite Tetranychus urticae. METHODS UV-C light was generated by a pulsed krypton fluoride excimer laser operating at 248-nm emission wavelength. The pulse energy and pulse repetition rate were 5 mJ and up to 100 Hz, respectively. The distance from the light source to the target was 150 mm; the target surface area was 2.16 cm2. The exposure time for the mites and fresh eggs varied from 1 to 4 min at 5-300 mW, which corresponded to UV doses of 5-80 kJ/m2. Post-irradiation acaricidal effects (mite mortality) were assessed immediately and also measured at 24 h. The effects of UV-C irradiation on the hatchability of eggs were observed daily for up to 12 days post-irradiation. RESULTS The mortality of mites at 5 and 40 kJ/m2 was 26% and 92%, respectively. Mite mortality reached 98% at 80 kJ/m2. The effect of exposure duration on mortality was minimal. The effect of irradiation on egg hatchability was even more significant than that on adult mite mortality, i.e. about 100% egg mortality at an accumulated dose of as little as 5 kJ/m2 for each exposure time. CONCLUSIONS A high rate of mite mortality and lethal egg damage were observed after less than 1 min of exposure to 5 mJ UV-C pulsed irradiation at 60 Hz. Pending further developments (such as beam steering, beam shaping and miniaturisation) and feasibility studies (such as testing with mites in real-life situations), the reported results and characteristics of the UV-C generator (modulation of energy output and adaptability to varying spot sizes) open up the use of this technology for a vast field of acaricidal applications that require long-range radiation.
Collapse
Affiliation(s)
- Jean-Luc Gala
- Centre for Applied Molecular Technologies, Institute of Clinical and Experimental Research, Université catholique de Louvain, Tour Claude Bernard, Avenue Hippocrate 54-55, First floor, B1.54.01, 1200 Brussels, Belgium
| | - Ott Rebane
- LDI Innovation OÜ, Sära 7, Peetri, Estonia
| | - Jérôme Ambroise
- Centre for Applied Molecular Technologies, Institute of Clinical and Experimental Research, Université catholique de Louvain, Tour Claude Bernard, Avenue Hippocrate 54-55, First floor, B1.54.01, 1200 Brussels, Belgium
| | | | - Omar Nyabi
- Centre for Applied Molecular Technologies, Institute of Clinical and Experimental Research, Université catholique de Louvain, Tour Claude Bernard, Avenue Hippocrate 54-55, First floor, B1.54.01, 1200 Brussels, Belgium
| | - Thierry Hance
- Biodiversity Research Centre, Earth and Life Institute, Université catholique de Louvain, Croix du sud 4-5, 1348 Louvain-la-Neuve, Belgium
| |
Collapse
|