1
|
Bahman F, Al-Roub A, Akhter N, Al Madhoun A, Wilson A, Almansour N, Al-Rashed F, Sindhu S, Al-Mulla F, Ahmad R. TNF-α/Stearate Induced H3K9/18 Histone Acetylation Amplifies IL-6 Expression in 3T3-L1 Mouse Adipocytes. Int J Mol Sci 2024; 25:6776. [PMID: 38928498 PMCID: PMC11203872 DOI: 10.3390/ijms25126776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/11/2024] [Accepted: 06/15/2024] [Indexed: 06/28/2024] Open
Abstract
Extensive evidence supports the connection between obesity-induced inflammation and the heightened expression of IL-6 adipose tissues. However, the mechanism underlying the IL-6 exacerbation in the adipose tissue remains unclear. There is general agreement that TNF-α and stearate concentrations are mildly elevated in adipose tissue in the state of obesity. We hypothesize that TNF-α and stearate co-treatment induce the increased expression of IL-6 in mouse adipocytes. We therefore aimed to determine IL-6 gene expression and protein production by TNF-α/stearate treated adipocytes and investigated the mechanism involved. To test our hypothesis, 3T3-L1 mouse preadipocytes were treated with TNF-α, stearate, or TNF-α/stearate. IL-6 gene expression was assessed by quantitative real-time qPCR. IL-6 protein production secreted in the cell culture media was determined by ELISA. Acetylation of histone was analyzed by Western blotting. Il6 region-associated histone H3 lysine 9/18 acetylation (H3K9/18Ac) was determined by ChIP-qPCR. 3T3-L1 mouse preadipocytes were co-challenged with TNF-α and stearate for 24 h, which led to significantly increased IL-6 gene expression (81 ± 2.1 Fold) compared to controls stimulated with either TNF-α (38 ± 0.5 Fold; p = 0.002) or stearate (56 ± 2.0 Fold; p = 0.013). As expected, co-treatment of adipocytes with TNF-α and stearate significantly increased protein production (338 ± 11 pg/mL) compared to controls stimulated with either TNF-α (28 ± 0.60 pg/mL; p = 0.001) or stearate (53 ± 0.20 pg/mL, p = 0.0015). Inhibition of histone acetyltransferases (HATs) with anacardic acid or curcumin significantly reduced the IL-6 gene expression and protein production by adipocytes. Conversely, TSA-induced acetylation substituted the stimulatory effect of TNF-α or stearate in their synergistic interaction for driving IL-6 gene expression and protein production. Mechanistically, TNF-α/stearate co-stimulation increased the promoter-associated histone H3 lysine 9/18 acetylation (H3K9/18Ac), rendering a transcriptionally permissive state that favored IL-6 expression at the transcriptional and translational levels. Our data represent a TNF-α/stearate cooperativity model driving IL-6 expression in 3T3-L1 cells via the H3K9/18Ac-dependent mechanism, with implications for adipose IL-6 exacerbations in obesity.
Collapse
Affiliation(s)
- Fatemah Bahman
- Immunology & Microbiology Department, Dasman Diabetes Institute, Dasman 15462, Kuwait; (F.B.); (A.A.-R.); (N.A.); (A.W.); (N.A.); (F.A.-R.); (S.S.)
| | - Areej Al-Roub
- Immunology & Microbiology Department, Dasman Diabetes Institute, Dasman 15462, Kuwait; (F.B.); (A.A.-R.); (N.A.); (A.W.); (N.A.); (F.A.-R.); (S.S.)
| | - Nadeem Akhter
- Immunology & Microbiology Department, Dasman Diabetes Institute, Dasman 15462, Kuwait; (F.B.); (A.A.-R.); (N.A.); (A.W.); (N.A.); (F.A.-R.); (S.S.)
| | - Ashraf Al Madhoun
- Animal and Imaging Core Facilities, Dasman Diabetes Institute, Dasman 15462, Kuwait;
| | - Ajit Wilson
- Immunology & Microbiology Department, Dasman Diabetes Institute, Dasman 15462, Kuwait; (F.B.); (A.A.-R.); (N.A.); (A.W.); (N.A.); (F.A.-R.); (S.S.)
| | - Nourah Almansour
- Immunology & Microbiology Department, Dasman Diabetes Institute, Dasman 15462, Kuwait; (F.B.); (A.A.-R.); (N.A.); (A.W.); (N.A.); (F.A.-R.); (S.S.)
| | - Fatema Al-Rashed
- Immunology & Microbiology Department, Dasman Diabetes Institute, Dasman 15462, Kuwait; (F.B.); (A.A.-R.); (N.A.); (A.W.); (N.A.); (F.A.-R.); (S.S.)
| | - Sardar Sindhu
- Immunology & Microbiology Department, Dasman Diabetes Institute, Dasman 15462, Kuwait; (F.B.); (A.A.-R.); (N.A.); (A.W.); (N.A.); (F.A.-R.); (S.S.)
- Animal and Imaging Core Facilities, Dasman Diabetes Institute, Dasman 15462, Kuwait;
| | - Fahd Al-Mulla
- Translational Research Department, Dasman Diabetes Institute, Dasman 15462, Kuwait;
| | - Rasheed Ahmad
- Immunology & Microbiology Department, Dasman Diabetes Institute, Dasman 15462, Kuwait; (F.B.); (A.A.-R.); (N.A.); (A.W.); (N.A.); (F.A.-R.); (S.S.)
| |
Collapse
|
2
|
Arefanian H, Al Madhoun A, Al-Rashed F, Alzaid F, Bahman F, Nizam R, Alhusayan M, John S, Jacob S, Williams MR, Abukhalaf N, Shenouda S, Joseph S, AlSaeed H, Kochumon S, Mohammad A, Koti L, Sindhu S, Abu-Farha M, Abubaker J, Thanaraj TA, Ahmad R, Al-Mulla F. Unraveling Verapamil's Multidimensional Role in Diabetes Therapy: From β-Cell Regeneration to Cholecystokinin Induction in Zebrafish and MIN6 Cell-Line Models. Cells 2024; 13:949. [PMID: 38891081 PMCID: PMC11171639 DOI: 10.3390/cells13110949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/15/2024] [Accepted: 05/24/2024] [Indexed: 06/21/2024] Open
Abstract
This study unveils verapamil's compelling cytoprotective and proliferative effects on pancreatic β-cells amidst diabetic stressors, spotlighting its unforeseen role in augmenting cholecystokinin (CCK) expression. Through rigorous investigations employing MIN6 β-cells and zebrafish models under type 1 and type 2 diabetic conditions, we demonstrate verapamil's capacity to significantly boost β-cell proliferation, enhance glucose-stimulated insulin secretion, and fortify cellular resilience. A pivotal revelation of our research is verapamil's induction of CCK, a peptide hormone known for its role in nutrient digestion and insulin secretion, which signifies a novel pathway through which verapamil exerts its therapeutic effects. Furthermore, our mechanistic insights reveal that verapamil orchestrates a broad spectrum of gene and protein expressions pivotal for β-cell survival and adaptation to immune-metabolic challenges. In vivo validation in a zebrafish larvae model confirms verapamil's efficacy in fostering β-cell recovery post-metronidazole infliction. Collectively, our findings advocate for verapamil's reevaluation as a multifaceted agent in diabetes therapy, highlighting its novel function in CCK upregulation alongside enhancing β-cell proliferation, glucose sensing, and oxidative respiration. This research enriches the therapeutic landscape, proposing verapamil not only as a cytoprotector but also as a promoter of β-cell regeneration, thereby offering fresh avenues for diabetes management strategies aimed at preserving and augmenting β-cell functionality.
Collapse
Affiliation(s)
- Hossein Arefanian
- Department of Immunology & Microbiology, Dasman Diabetes Institute, Dasman 15462, Kuwait; (H.A.); (F.A.-R.); (F.B.); (S.S.); (H.A.); (S.K.); (S.S.); (R.A.)
| | - Ashraf Al Madhoun
- Department of Genetics and Bioinformatics, Dasman Diabetes Institute, Dasman 15462, Kuwait; (A.A.M.); (R.N.); (S.J.); (S.J.); (L.K.); (T.A.T.)
- Animal and Imaging Core Facility, Dasman Diabetes Institute, Dasman 15462, Kuwait;
| | - Fatema Al-Rashed
- Department of Immunology & Microbiology, Dasman Diabetes Institute, Dasman 15462, Kuwait; (H.A.); (F.A.-R.); (F.B.); (S.S.); (H.A.); (S.K.); (S.S.); (R.A.)
| | - Fawaz Alzaid
- Department of Bioenergetics & Neurometabolism, Dasman Diabetes Institute, Dasman 15462, Kuwait; (F.A.); (M.A.); (M.R.W.)
- Institut Necker Enfants Malades (INEM), French Institute of Health and Medical Research (INSERM), Immunity & Metabolism of Diabetes (IMMEDIAB), Université de Paris Cité, 75014 Paris, France
| | - Fatemah Bahman
- Department of Immunology & Microbiology, Dasman Diabetes Institute, Dasman 15462, Kuwait; (H.A.); (F.A.-R.); (F.B.); (S.S.); (H.A.); (S.K.); (S.S.); (R.A.)
| | - Rasheeba Nizam
- Department of Genetics and Bioinformatics, Dasman Diabetes Institute, Dasman 15462, Kuwait; (A.A.M.); (R.N.); (S.J.); (S.J.); (L.K.); (T.A.T.)
| | - Mohammed Alhusayan
- Department of Bioenergetics & Neurometabolism, Dasman Diabetes Institute, Dasman 15462, Kuwait; (F.A.); (M.A.); (M.R.W.)
| | - Sumi John
- Department of Genetics and Bioinformatics, Dasman Diabetes Institute, Dasman 15462, Kuwait; (A.A.M.); (R.N.); (S.J.); (S.J.); (L.K.); (T.A.T.)
| | - Sindhu Jacob
- Department of Genetics and Bioinformatics, Dasman Diabetes Institute, Dasman 15462, Kuwait; (A.A.M.); (R.N.); (S.J.); (S.J.); (L.K.); (T.A.T.)
| | - Michayla R. Williams
- Department of Bioenergetics & Neurometabolism, Dasman Diabetes Institute, Dasman 15462, Kuwait; (F.A.); (M.A.); (M.R.W.)
| | - Nermeen Abukhalaf
- Animal and Imaging Core Facility, Dasman Diabetes Institute, Dasman 15462, Kuwait;
| | - Steve Shenouda
- Department of Immunology & Microbiology, Dasman Diabetes Institute, Dasman 15462, Kuwait; (H.A.); (F.A.-R.); (F.B.); (S.S.); (H.A.); (S.K.); (S.S.); (R.A.)
| | - Shibu Joseph
- Special Services Facilities, Dasman Diabetes Institute, Dasman 15462, Kuwait;
| | - Halemah AlSaeed
- Department of Immunology & Microbiology, Dasman Diabetes Institute, Dasman 15462, Kuwait; (H.A.); (F.A.-R.); (F.B.); (S.S.); (H.A.); (S.K.); (S.S.); (R.A.)
| | - Shihab Kochumon
- Department of Immunology & Microbiology, Dasman Diabetes Institute, Dasman 15462, Kuwait; (H.A.); (F.A.-R.); (F.B.); (S.S.); (H.A.); (S.K.); (S.S.); (R.A.)
| | - Anwar Mohammad
- Department of Biochemistry and Molecular Biology, Dasman Diabetes Institute, Dasman 15462, Kuwait; (A.M.); (M.A.-F.); (J.A.)
| | - Lubaina Koti
- Department of Genetics and Bioinformatics, Dasman Diabetes Institute, Dasman 15462, Kuwait; (A.A.M.); (R.N.); (S.J.); (S.J.); (L.K.); (T.A.T.)
| | - Sardar Sindhu
- Department of Immunology & Microbiology, Dasman Diabetes Institute, Dasman 15462, Kuwait; (H.A.); (F.A.-R.); (F.B.); (S.S.); (H.A.); (S.K.); (S.S.); (R.A.)
- Animal and Imaging Core Facility, Dasman Diabetes Institute, Dasman 15462, Kuwait;
| | - Mohamed Abu-Farha
- Department of Biochemistry and Molecular Biology, Dasman Diabetes Institute, Dasman 15462, Kuwait; (A.M.); (M.A.-F.); (J.A.)
- Department of Translational Research, Dasman Diabetes Institute, Dasman 15462, Kuwait
| | - Jehad Abubaker
- Department of Biochemistry and Molecular Biology, Dasman Diabetes Institute, Dasman 15462, Kuwait; (A.M.); (M.A.-F.); (J.A.)
| | - Thangavel Alphonse Thanaraj
- Department of Genetics and Bioinformatics, Dasman Diabetes Institute, Dasman 15462, Kuwait; (A.A.M.); (R.N.); (S.J.); (S.J.); (L.K.); (T.A.T.)
| | - Rasheed Ahmad
- Department of Immunology & Microbiology, Dasman Diabetes Institute, Dasman 15462, Kuwait; (H.A.); (F.A.-R.); (F.B.); (S.S.); (H.A.); (S.K.); (S.S.); (R.A.)
| | - Fahd Al-Mulla
- Department of Genetics and Bioinformatics, Dasman Diabetes Institute, Dasman 15462, Kuwait; (A.A.M.); (R.N.); (S.J.); (S.J.); (L.K.); (T.A.T.)
| |
Collapse
|
3
|
Farmaki E, Nath A, Emond R, Karimi KL, Grolmusz VK, Cosgrove PA, Bild AH. ONC201/TIC10 enhances durability of mTOR inhibitor everolimus in metastatic ER+ breast cancer. eLife 2023; 12:e85898. [PMID: 37772709 PMCID: PMC10541180 DOI: 10.7554/elife.85898] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 08/17/2023] [Indexed: 09/30/2023] Open
Abstract
The mTOR inhibitor, everolimus, is an important clinical management component of metastatic ER+ breast cancer (BC). However, most patients develop resistance and progress on therapy, highlighting the need to discover strategies that increase mTOR inhibitor effectiveness. We developed ER+ BC cell lines, sensitive or resistant to everolimus, and discovered that combination treatment of ONC201/TIC10 with everolimus inhibited cell growth in 2D/3D in vitro studies. We confirmed increased therapeutic response in primary patient cells progressing on everolimus, supporting clinical relevance. We show that ONC201/TIC10 mechanism in metastatic ER+ BC cells involves oxidative phosphorylation inhibition and stress response activation. Transcriptomic analysis in everolimus resistant breast patient tumors and mitochondrial functional assays in resistant cell lines demonstrated increased mitochondrial respiration dependency, contributing to ONC201/TIC10 sensitivity. We propose that ONC201/TIC10 and modulation of mitochondrial function may provide an effective add-on therapy strategy for patients with metastatic ER+ BCs resistant to mTOR inhibitors.
Collapse
Affiliation(s)
- Elena Farmaki
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical CenterDuarteUnited States
| | - Aritro Nath
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical CenterDuarteUnited States
| | - Rena Emond
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical CenterDuarteUnited States
| | - Kimya L Karimi
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical CenterDuarteUnited States
| | - Vince K Grolmusz
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical CenterDuarteUnited States
| | - Patrick A Cosgrove
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical CenterDuarteUnited States
| | - Andrea H Bild
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical CenterDuarteUnited States
| |
Collapse
|
4
|
Munawar N, Bitar MS, Masocha W. Activation of 5-HT1A Receptors Normalizes the Overexpression of Presynaptic 5-HT1A Receptors and Alleviates Diabetic Neuropathic Pain. Int J Mol Sci 2023; 24:14334. [PMID: 37762636 PMCID: PMC10532078 DOI: 10.3390/ijms241814334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/11/2023] [Accepted: 08/23/2023] [Indexed: 09/29/2023] Open
Abstract
Neuropathic pain is a well-documented phenomenon in experimental and clinical diabetes; however, current treatment is unsatisfactory. Serotoninergic-containing neurons are key components of the descending autoinhibitory pathway, and a decrease in their activity may contribute at least in part to diabetic neuropathic pain (DNP). A streptozotocin (STZ)-treated rat was used as a model for type 1 diabetes mellitus (T1DM). Pain transmission was evaluated using well-established nociceptive-based techniques, including the Hargreaves apparatus, cold plate and dynamic plantar aesthesiometer. Using qRT-PCR, Western blotting, immunohistochemistry, and HPLC-based techniques, we also measured in the central nervous system and peripheral nervous system of diabetic animals the expression and localization of 5-HT1A receptors (5-HT1AR), levels of key enzymes involved in the synthesis and degradation of tryptophan and 5-HT, including tryptophan hydroxylase-2 (Tph-2), tryptophan 2,3-dioxygenase (Tdo), indoleamine 2,3-dioxygenase 1 (Ido1) and Ido2. Moreover, spinal concentrations of 5-HT, 5-hydroxyindoleacetic acid (5-HIAA, a metabolite of 5-HT) and quinolinic acid (QA, a metabolite of tryptophan) were also quantified. Diabetic rats developed thermal hyperalgesia and cold/mechanical allodynia, and these behavioral abnormalities appear to be associated with the upregulation in the levels of expression of critical molecules related to the serotoninergic nervous system, including presynaptic 5-HT1AR and the enzymes Tph-2, Tdo, Ido1 and Ido2. Interestingly, the level of postsynaptic 5-HT1AR remains unaltered in STZ-induced T1DM. Chronic treatment of diabetic animals with 8-hydroxy-2-(dipropylamino)tetralin (8-OH-DPAT), a selective 5-HT1AR agonist, downregulated the upregulation of neuronal presynaptic 5-HT1AR, increased spinal release of 5-HT (↑ 5-HIAA/5-HT) and reduced the concentration of QA, decreased mRNA expression of Tdo, Ido1 and Ido2, arrested neuronal degeneration and ameliorated pain-related behavior as exemplified by thermal hyperalgesia and cold/mechanical allodynia. These data show that 8-OH-DPAT alleviates DNP and other components of the serotoninergic system, including the ratio of 5-HIAA/5-HT and 5-HT1AR, and could be a useful therapeutic agent for managing DNP.
Collapse
Affiliation(s)
- Neha Munawar
- Department of Pharmacology and Toxicology, College of Medicine, Kuwait University, Al-Jabriya 046302, Kuwait;
| | - Milad S. Bitar
- Department of Pharmacology and Toxicology, College of Medicine, Kuwait University, Al-Jabriya 046302, Kuwait;
| | - Willias Masocha
- Department of Pharmacology and Therapeutics, College of Pharmacy, Kuwait University, Al-Jabriya 046302, Kuwait;
| |
Collapse
|
5
|
Caveolin-1 rs1997623 Single Nucleotide Polymorphism Creates a New Binding Site for the Early B-Cell Factor 1 That Instigates Adipose Tissue CAV1 Protein Overexpression. Cells 2022; 11:cells11233937. [PMID: 36497195 PMCID: PMC9738758 DOI: 10.3390/cells11233937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 11/22/2022] [Accepted: 11/28/2022] [Indexed: 12/12/2022] Open
Abstract
Caveolin-1 (CAV1) is implicated in the pathophysiology of diabetes and obesity. Previously, we demonstrated an association between the CAV1 rs1997623 C > A variant and metabolic syndrome (MetS). Here, we decipher the functional role of rs1997623 in CAV1 gene regulation. A cohort of 38 patients participated in this study. The quantitative MetS scores (siMS) of the participants were computed. CAV1 transcript and protein expression were tested in subcutaneous adipose tissue using RT-PCR and immunohistochemistry. Chromatin immunoprecipitation assays were performed using primary preadipocytes isolated from individuals with different CAV1 rs1997623 genotypes (AA, AC, and CC). The regulatory region flanking the variant was cloned into a luciferase reporter plasmid and expressed in human preadipocytes. Additional knockdown and overexpression assays were carried out. We show a significant correlation between siMS and CAV1 transcript levels and protein levels in human adipose tissue collected from an Arab cohort. We found that the CAV1 rs1997623 A allele generates a transcriptionally active locus and a new transcription factor binding site for early B-cell factor 1 (EBF1), which enhanced CAV1 expression. Our in vivo and in vitro combined study implicates, for the first time, EBF1 in regulating CAV1 expression in individuals harboring the rs1997623 C > A variant.
Collapse
|
6
|
Munawar N, Nader J, Khadadah NH, Al Madhoun A, Al-Ali W, Varghese LA, Masocha W, Al-Mulla F, Bitar MS. Guanfacine Normalizes the Overexpression of Presynaptic α-2A Adrenoceptor Signaling and Ameliorates Neuropathic Pain in a Chronic Animal Model of Type 1 Diabetes. Pharmaceutics 2022; 14:pharmaceutics14102146. [PMID: 36297581 PMCID: PMC9609777 DOI: 10.3390/pharmaceutics14102146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 10/01/2022] [Accepted: 10/03/2022] [Indexed: 11/25/2022] Open
Abstract
Background: Diabetes is associated with several complications, including neuropathic pain, which is difficult to manage with currently available drugs. Descending noradrenergic neurons possess antinociceptive activity; however, their involvement in diabetic neuropathic pain remains to be explored. Methods: To infer the regulatory role of this system, we examined as a function of diabetes, the expression and localization of alpha-2A adrenoceptors (α2-AR) in the dorsal root ganglia and key regions of the central nervous system, including pons and lumbar segment of the spinal cord using qRT-PCR, Western blotting, and immunofluorescence-based techniques. Results: The data revealed that presynaptic synaptosomal-associated protein-25 labeled α2-AR in the central and peripheral nervous system of streptozotocin diabetic rats was upregulated both at the mRNA and protein levels. Interestingly, the levels of postsynaptic density protein-95 labeled postsynaptic neuronal α2-AR remained unaltered as a function of diabetes. These biochemical abnormalities in the noradrenergic system of diabetic animals were associated with increased pain sensitivity as typified by the presence of thermal hyperalgesia and cold/mechanical allodynia. The pain-related behaviors were assessed using Hargreaves apparatus, cold-plate and dynamic plantar aesthesiometer. Chronically administered guanfacine, a selective α2-AR agonist, to diabetic animals downregulated the upregulation of neuronal presynaptic α2-AR and ameliorated the hyperalgesia and the cold/mechanical allodynia in these animals. Conclusion: Together, these findings demonstrate that guanfacine may function as a potent analgesic and highlight α2-AR, a key component of the descending neuronal autoinhibitory pathway, as a potential therapeutic target in the treatment of diabetic neuropathic pain.
Collapse
Affiliation(s)
- Neha Munawar
- Department of Pharmacology and Toxicology, Faculty of Medicine, Kuwait University, Al-Jabriya 046302, Kuwait
| | - Joelle Nader
- Department of Mathematics and Natural Sciences, American University of Kuwait, Salmiya 20002, Kuwait
| | - Najat H. Khadadah
- Department of Pharmacology and Toxicology, Faculty of Medicine, Kuwait University, Al-Jabriya 046302, Kuwait
| | - Ashraf Al Madhoun
- Department of Genetics and Bioinformatics, Dasman Diabetes Institute, Dasman 15400, Kuwait
- Department of Animal and Imaging Core Facilities, Dasman Diabetes Institute, Dasman 15400, Kuwait
| | - Waleed Al-Ali
- Department of Pathology, Faculty of Medicine, Kuwait University, Al-Jabriya 046302, Kuwait
| | - Linu A. Varghese
- Department of Pharmacology and Toxicology, Faculty of Medicine, Kuwait University, Al-Jabriya 046302, Kuwait
| | - Willias Masocha
- Department of Pharmacology and Therapeutics, College of Pharmacy, Kuwait University, Al-Jabriya 046302, Kuwait
| | - Fahd Al-Mulla
- Department of Genetics and Bioinformatics, Dasman Diabetes Institute, Dasman 15400, Kuwait
| | - Milad S. Bitar
- Department of Pharmacology and Toxicology, Faculty of Medicine, Kuwait University, Al-Jabriya 046302, Kuwait
- Correspondence:
| |
Collapse
|
7
|
Al-Roub A, Al Madhoun A, Akhter N, Thomas R, Miranda L, Jacob T, Al-Ozairi E, Al-Mulla F, Sindhu S, Ahmad R. IL-1β and TNFα Cooperativity in Regulating IL-6 Expression in Adipocytes Depends on CREB Binding and H3K14 Acetylation. Cells 2021; 10:3228. [PMID: 34831450 PMCID: PMC8619559 DOI: 10.3390/cells10113228] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 11/13/2021] [Accepted: 11/16/2021] [Indexed: 12/11/2022] Open
Abstract
IL-6 was found to be overexpressed in the adipose tissue of obese individuals, which may cause insulin resistance. However, the regulation of IL-6 in adipocytes in obesity setting remains to be explored. Since IL-1β and TNFα are increased in obese adipose tissue and promote inflammation, we investigated whether cooperation between IL-1β and TNFα influences the production of IL-6. Our data show that IL-1β and TNFα cooperatively enhance IL-6 expression in 3T3L-1 adipocytes. Similar results were seen in human adipocytes isolated from subcutaneous and visceral fat. Although adipocytes isolated from lean and obese adipose tissues showed similar responses for production of IL-6 when incubated with IL-1β/TNFα, secretion of IL-6 was higher in adipocytes from obese tissue. TNFα treatment enhanced CREB binding at CRE locus, which was further enhanced with IL-1β, and was associated with elevated histone acetylation at CRE locus. On the other hand, IL-1β treatments mediated C/EBPβ binding to NF-IL-6 consensus, but not sufficiently to mediate significant histone acetylation. Interestingly, treatment with both stimulatory factors amplifies CREB binding and H3K14 acetylation. Furthermore, histone acetylation inhibition by anacardic acid or curcumin reduces IL-6 production. Notably, inhibition of histone deacetylase (HDAC) activity by trichostatin A (TSA) resulted in the further elevation of IL-6 expression in response to combined treatment of adipocytes with IL-1β and TNFα. In conclusion, our results show that there is an additive interaction between IL-1β and TNFα that depends on CREB binding and H3K14 acetylation, and leads to the elevation of IL-6 expression in adipocytes, providing interesting pathophysiological connection among IL-1β, TNFα, and IL-6 in settings such as obesity.
Collapse
Affiliation(s)
- Areej Al-Roub
- Immunology & Microbiology Department, Dasman Diabetes Institute, Dasman 15462, Kuwait
| | - Ashraf Al Madhoun
- Genetics & Bioinformatics, Dasman Diabetes Institute, Dasman 15462, Kuwait
- Animal and Imaging Core Facilities, Dasman Diabetes Institute, Dasman 15462, Kuwait
| | - Nadeem Akhter
- Immunology & Microbiology Department, Dasman Diabetes Institute, Dasman 15462, Kuwait
| | - Reeby Thomas
- Immunology & Microbiology Department, Dasman Diabetes Institute, Dasman 15462, Kuwait
| | - Lavina Miranda
- Genetics & Bioinformatics, Dasman Diabetes Institute, Dasman 15462, Kuwait
- Animal and Imaging Core Facilities, Dasman Diabetes Institute, Dasman 15462, Kuwait
| | - Texy Jacob
- Immunology & Microbiology Department, Dasman Diabetes Institute, Dasman 15462, Kuwait
| | - Ebaa Al-Ozairi
- Medical Division, Dasman Diabetes Institute, Dasman 15462, Kuwait
| | - Fahd Al-Mulla
- Genetics & Bioinformatics, Dasman Diabetes Institute, Dasman 15462, Kuwait
| | - Sardar Sindhu
- Immunology & Microbiology Department, Dasman Diabetes Institute, Dasman 15462, Kuwait
- Animal and Imaging Core Facilities, Dasman Diabetes Institute, Dasman 15462, Kuwait
| | - Rasheed Ahmad
- Immunology & Microbiology Department, Dasman Diabetes Institute, Dasman 15462, Kuwait
| |
Collapse
|