1
|
Patel PB, Latt S, Ravi K, Razavi M. Clinical Applications of Micro/Nanobubble Technology in Neurological Diseases. Biomimetics (Basel) 2024; 9:645. [PMID: 39451851 PMCID: PMC11506587 DOI: 10.3390/biomimetics9100645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/11/2024] [Accepted: 10/18/2024] [Indexed: 10/26/2024] Open
Abstract
Nanomedicine, leveraging the unique properties of nanoparticles, has revolutionized the diagnosis and treatment of neurological diseases. Among various nanotechnological advancements, ultrasound-mediated drug delivery using micro- and nanobubbles offers promising solutions to overcome the blood-brain barrier (BBB), enhancing the precision and efficacy of therapeutic interventions. This review explores the principles, current clinical applications, challenges, and future directions of ultrasound-mediated drug delivery systems in treating stroke, brain tumors, neurodegenerative diseases, and neuroinflammatory disorders. Additionally, ongoing clinical trials and potential advancements in this field are discussed, providing a comprehensive overview of the impact of nanomedicine on neurological diseases.
Collapse
Affiliation(s)
- Parth B. Patel
- University of Central Florida College of Medicine, Orlando, FL 32827, USA; (P.B.P.); (K.R.)
| | - Sun Latt
- Biionix (Bionic Materials, Implants & Interfaces) Cluster, Department of Medicine, University of Central Florida College of Medicine, Orlando, FL 32827, USA;
- Burnett School of Biomedical Sciences, University of Central Florida College of Medicine, Orlando, FL 32827, USA
| | - Karan Ravi
- University of Central Florida College of Medicine, Orlando, FL 32827, USA; (P.B.P.); (K.R.)
| | - Mehdi Razavi
- Biionix (Bionic Materials, Implants & Interfaces) Cluster, Department of Medicine, University of Central Florida College of Medicine, Orlando, FL 32827, USA;
- Department of Material Sciences and Engineering, University of Central Florida, Orlando, FL 32816, USA
- Biomedical Engineering Program, Department of Mechanical and Aerospace Engineering, University of Central Florida, Orlando, FL 32816, USA
| |
Collapse
|
2
|
Chien CY, Xu L, Yuan J, Fadera S, Stark AH, Athiraman U, Leuthardt EC, Chen H. Quality assurance for focused ultrasound-induced blood-brain barrier opening procedure using passive acoustic detection. EBioMedicine 2024; 102:105066. [PMID: 38531173 PMCID: PMC10987799 DOI: 10.1016/j.ebiom.2024.105066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 03/01/2024] [Accepted: 03/04/2024] [Indexed: 03/28/2024] Open
Abstract
BACKGROUND Focused ultrasound (FUS) combined with microbubbles is a promising technique for noninvasive, reversible, and spatially targeted blood-brain barrier opening, with clinical trials currently ongoing. Despite the fast development of this technology, there is a lack of established quality assurance (QA) strategies to ensure procedure consistency and safety. To address this challenge, this study presents the development and clinical evaluation of a passive acoustic detection-based QA protocol for FUS-induced blood-brain barrier opening (FUS-BBBO) procedure. METHODS Ten glioma patients were recruited to a clinical trial for evaluating a neuronavigation-guided FUS device. An acoustic sensor was incorporated at the center of the FUS device to passively capture acoustic signals for accomplishing three QA functions: FUS device QA to ensure the device functions consistently, acoustic coupling QA to detect air bubbles trapped in the acoustic coupling gel and water bladder of the transducer, and FUS procedure QA to evaluate the consistency of the treatment procedure. FINDINGS The FUS device passed the device QA in 9/10 patient studies. 4/9 cases failed acoustic coupling QA on the first try. The acoustic coupling procedure was repeatedly performed until it passed QA in 3/4 cases. One case failed acoustic coupling QA due to time constraints. Realtime passive cavitation monitoring was performed for FUS procedure QA, which captured variations in FUS-induced microbubble cavitation dynamics among patients. INTERPRETATION This study demonstrated that the proposed passive acoustic detection could be integrated with a clinical FUS system for the QA of the FUS-BBBO procedure. FUNDING National Institutes of Health R01CA276174, R01MH116981, UG3MH126861, R01EB027223, R01EB030102, and R01NS128461.
Collapse
Affiliation(s)
- Chih-Yen Chien
- Department of Biomedical Engineering, Washington University in St. Louis, Saint Louis, MO, 63130, USA
| | - Lu Xu
- Department of Biomedical Engineering, Washington University in St. Louis, Saint Louis, MO, 63130, USA
| | - Jinyun Yuan
- Department of Biomedical Engineering, Washington University in St. Louis, Saint Louis, MO, 63130, USA
| | - Siaka Fadera
- Department of Biomedical Engineering, Washington University in St. Louis, Saint Louis, MO, 63130, USA
| | - Andrew H Stark
- Department of Biomedical Engineering, Washington University in St. Louis, Saint Louis, MO, 63130, USA
| | - Umeshkumar Athiraman
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, 63110
| | - Eric C Leuthardt
- Department of Biomedical Engineering, Washington University in St. Louis, Saint Louis, MO, 63130, USA; Department of Neurosurgery, Washington University School of Medicine, St. Louis, MO, 63110, USA; Center for Innovation in Neuroscience and Technology, Washington University School of Medicine, Saint Louis, MO, 63110, USA; Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, Saint Louis, MO, 63130, USA; Division of Neurotechnology, Department of Neurosurgery, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| | - Hong Chen
- Department of Biomedical Engineering, Washington University in St. Louis, Saint Louis, MO, 63130, USA; Department of Neurosurgery, Washington University School of Medicine, St. Louis, MO, 63110, USA; Division of Neurotechnology, Department of Neurosurgery, Washington University School of Medicine, Saint Louis, MO, 63110, USA; Mallinckrodt Institute of Radiology, Washington University School of Medicine, Saint Louis, MO, 63110, USA; Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, 63110, USA.
| |
Collapse
|
3
|
Manuel TJ, Sigona MK, Phipps MA, Kusunose J, Luo H, Yang PF, Newton AT, Gore JC, Grissom W, Chen LM, Caskey CF. Small volume blood-brain barrier opening in macaques with a 1 MHz ultrasound phased array. J Control Release 2023; 363:707-720. [PMID: 37827222 DOI: 10.1016/j.jconrel.2023.10.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 10/05/2023] [Accepted: 10/08/2023] [Indexed: 10/14/2023]
Abstract
The use of focused ultrasound to open the blood-brain barrier (BBB) has the potential to deliver drugs to specific regions of the brain. The size of the BBB opening and ability to localize the opening determines the spatial extent and is a limiting factor in many applications of BBB opening where targeting a small brain region is desired. Here we evaluate the performance of a system designed for small opening volumes and highlight the unique challenges associated with pushing the spatial precision of this technique. To achieve small volume openings in cortical regions of the macaque brain, we tested a custom 1 MHz array transducer integrated into a magnetic resonance image-guided focused ultrasound system. Using real-time cavitation monitoring, we demonstrated twelve instances of single sonication, small volume BBB opening with average volumes of 59 ± 37 mm3 and 184 ± 2 mm3 in cortical and subcortical targets, respectively. We found high correlation between subject-specific acoustic simulations and observed openings when incorporating grey matter segmentation (R2 = 0.8577), and the threshold for BBB opening based on simulations was 0.53 MPa. Analysis of MRI-based safety assessment and cavitation signals indicate a safe pressure range for 1 MHz BBB opening and suggest that our system can be used to deliver drugs and gene therapy to small brain regions.
Collapse
Affiliation(s)
- Thomas J Manuel
- Vanderbilt University, Nashville, TN, USA; Vanderbilt University Institute of Imaging Science, Nashville, TN, USA
| | - Michelle K Sigona
- Vanderbilt University, Nashville, TN, USA; Vanderbilt University Institute of Imaging Science, Nashville, TN, USA
| | - M Anthony Phipps
- Vanderbilt University Medical Center, Nashville, TN, USA; Vanderbilt University Institute of Imaging Science, Nashville, TN, USA
| | - Jiro Kusunose
- Vanderbilt University Medical Center, Nashville, TN, USA; Vanderbilt University Institute of Imaging Science, Nashville, TN, USA
| | - Huiwen Luo
- Vanderbilt University, Nashville, TN, USA; Vanderbilt University Institute of Imaging Science, Nashville, TN, USA
| | - Pai-Feng Yang
- Vanderbilt University Medical Center, Nashville, TN, USA; Vanderbilt University Institute of Imaging Science, Nashville, TN, USA
| | - Allen T Newton
- Vanderbilt University Medical Center, Nashville, TN, USA; Vanderbilt University Institute of Imaging Science, Nashville, TN, USA
| | - John C Gore
- Vanderbilt University, Nashville, TN, USA; Vanderbilt University Medical Center, Nashville, TN, USA; Vanderbilt University Institute of Imaging Science, Nashville, TN, USA
| | - William Grissom
- Vanderbilt University, Nashville, TN, USA; Vanderbilt University Medical Center, Nashville, TN, USA; Vanderbilt University Institute of Imaging Science, Nashville, TN, USA
| | - Li Min Chen
- Vanderbilt University Medical Center, Nashville, TN, USA; Vanderbilt University Institute of Imaging Science, Nashville, TN, USA
| | - Charles F Caskey
- Vanderbilt University, Nashville, TN, USA; Vanderbilt University Medical Center, Nashville, TN, USA; Vanderbilt University Institute of Imaging Science, Nashville, TN, USA.
| |
Collapse
|
4
|
Padilla F, Brenner J, Prada F, Klibanov AL. Theranostics in the vasculature: bioeffects of ultrasound and microbubbles to induce vascular shutdown. Theranostics 2023; 13:4079-4101. [PMID: 37554276 PMCID: PMC10405856 DOI: 10.7150/thno.70372] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 01/07/2023] [Indexed: 08/10/2023] Open
Abstract
Ultrasound-triggered microbubbles destruction leading to vascular shutdown have resulted in preclinical studies in tumor growth delay or inhibition, lesion formation, radio-sensitization and modulation of the immune micro-environment. Antivascular ultrasound aims to be developed as a focal, targeted, non-invasive, mechanical and non-thermal treatment, alone or in combination with other treatments, and this review positions these treatments among the wider therapeutic ultrasound domain. Antivascular effects have been reported for a wide range of ultrasound exposure conditions, and evidence points to a prominent role of cavitation as the main mechanism. At relatively low peak negative acoustic pressure, predominantly non-inertial cavitation is most likely induced, while higher peak negative pressures lead to inertial cavitation and bubbles collapse. Resulting bioeffects start with inflammation and/or loose opening of the endothelial lining of the vessel. The latter causes vascular access of tissue factor, leading to platelet aggregation, and consequent clotting. Alternatively, endothelium damage exposes subendothelial collagen layer, leading to rapid adhesion and aggregation of platelets and clotting. In a pilot clinical trial, a prevalence of tumor response was observed in patients receiving ultrasound-triggered microbubble destruction along with transarterial radioembolization. Two ongoing clinical trials are assessing the effectiveness of ultrasound-stimulated microbubble treatment to enhance radiation effects in cancer patients. Clinical translation of antivascular ultrasound/microbubble approach may thus be forthcoming.
Collapse
Affiliation(s)
- Frederic Padilla
- Focused Ultrasound Foundation, Charlottesville, VA 22903, USA
- Department of Radiology, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | | | - Francesco Prada
- Focused Ultrasound Foundation, Charlottesville, VA 22903, USA
- Ultrasound Neuroimaging and Therapy Lab, Fondazione IRCCS Istituto Neurologico C. Besta, Milan, Italy
- Department of Neurological Surgery, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Alexander L Klibanov
- Department of Radiology, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, USA
- Cardiovascular Division, Department of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| |
Collapse
|
5
|
Hughes A, Khan DS, Alkins R. Current and Emerging Systems for Focused Ultrasound-Mediated Blood-Brain Barrier Opening. ULTRASOUND IN MEDICINE & BIOLOGY 2023; 49:1479-1490. [PMID: 37100672 DOI: 10.1016/j.ultrasmedbio.2023.02.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 02/09/2023] [Accepted: 02/23/2023] [Indexed: 05/17/2023]
Abstract
With an ever-growing list of neurological applications of focused ultrasound (FUS), there has been a consequent increase in the variety of systems for delivering ultrasound energy to the brain. Specifically, recent successful pilot clinical trials of blood-brain barrier (BBB) opening with FUS have generated substantial interest in the future applications of this relatively novel therapy, with divergent, purpose-built technologies emerging. With many of these technologies at various stages of pre-clinical and clinical investigation, this article seeks to provide an overview and analysis of the numerous medical devices in active use and under development for FUS-mediated BBB opening.
Collapse
Affiliation(s)
- Alec Hughes
- School of Medicine, Faculty of Health Sciences, Queen's University, Kingston, ON, Canada
| | - Dure S Khan
- Centre for Neuroscience Studies, Queen's University, Kingston, ON, Canada
| | - Ryan Alkins
- Centre for Neuroscience Studies, Queen's University, Kingston, ON, Canada; Division of Neurosurgery, Department of Surgery, Kingston Health Sciences Centre, Queen's University, Kingston, ON, Canada.
| |
Collapse
|
6
|
Mee-Inta O, Hsieh CF, Chen DQ, Fan CH, Chiang YY, Liu CC, Sze CI, Gean PW, Wu PC, Yang MS, Huang PS, Chieh Wu P, Kuo YM, Huang CC. High-frequency ultrasound imaging for monitoring the function of meningeal lymphatic system in mice. ULTRASONICS 2023; 131:106949. [PMID: 36773481 DOI: 10.1016/j.ultras.2023.106949] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 12/30/2022] [Accepted: 02/03/2023] [Indexed: 06/18/2023]
Abstract
The meningeal lymphatic system drains the cerebrospinal fluid from the subarachnoid space to the cervical lymphatic system, primarily to the deep cervical lymph nodes. Perturbations of the meningeal lymphatic system have been linked to various neurologic disorders. A method to specifically monitor the flow of meningeal lymphatic system in real time is unavailable. In the present study, we adopted the high-frequency ultrasound (HFUS) with 1,1'diocatadecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate (DiI)-loaded microbubble and FePt@PLGA nanoparticle contrast agents to evaluate the flow of the meningeal lymphatic system in 2-month-old mice. Statistical analysis was performed to identify changes of HFUS signals among the microbubbles, FePt@PLGA nanoparticles, and saline control groups. Approximately 15 min from the start of intracerebroventricular injection of contrast agents, their signals were evident at the deep cervical lymph nodes and lasted for at least 60 min. These signals were validated on the basis of the presence of DiI and Fe signals in the deep cervical lymph nodes. Ligation of afferent lymphatic vessels to the deep cervical lymph nodes eliminated the HFUS signals. Moreover, ablation of lymphatic vessels near the confluence of sinuses decreased the HFUS signals in the deep cervical lymph nodes. Glioma-bearing mice that exhibited reduced lymphatic vessel immunostaining signals near the confluence of sinuses had lowered HFUS signals in the deep cervical lymph nodes within 60 min. The proposed method provides a minimally invasive approach to monitor the qualities of the meningeal lymphatic system in real time as well as the progression of the meningeal lymphatic system in various brain disease animal models.
Collapse
Affiliation(s)
- Onanong Mee-Inta
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chin-Fang Hsieh
- Department of Biomedical Engineering, National Cheng Kung University, Tainan, Taiwan
| | - De-Quan Chen
- Department of Biomedical Engineering, National Cheng Kung University, Tainan, Taiwan
| | - Ching-Hsiang Fan
- Department of Biomedical Engineering, National Cheng Kung University, Tainan, Taiwan; Medical Device Innovation Center, National Cheng Kung University, Tainan, Taiwan
| | - Yu-Yi Chiang
- Department of Biomedical Engineering, National Cheng Kung University, Tainan, Taiwan
| | - Chan-Chuan Liu
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan; National Institute of Cancer Research, National Health Research Institutes, Tainan, Taiwan
| | - Chun-I Sze
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Department of Pathology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Po-Wu Gean
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Department of Pharmacology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Ping-Ching Wu
- Department of Biomedical Engineering, National Cheng Kung University, Tainan, Taiwan; Medical Device Innovation Center, National Cheng Kung University, Tainan, Taiwan; Institute of Oral Medicine and Department of Stomatology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University Tainan, Taiwan; Center of Applied Nanomedicine, National Cheng Kung University, Tainan, Taiwan
| | - Mon-Shieh Yang
- College of Science, National Cheng Kung University, Tainan, Taiwan
| | - Po-Sheng Huang
- Department of Photonics, National Cheng Kung University, Tainan, Taiwan
| | - Pin Chieh Wu
- Department of Photonics, National Cheng Kung University, Tainan, Taiwan
| | - Yu-Min Kuo
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
| | - Chih-Chung Huang
- Department of Biomedical Engineering, National Cheng Kung University, Tainan, Taiwan; Medical Device Innovation Center, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
7
|
Manuel TJ, Sigona MK, Phipps MA, Kusunose J, Luo H, Yang PF, Newton AT, Gore JC, Grissom W, Chen LM, Caskey CF. Small volume blood-brain barrier opening in macaques with a 1 MHz ultrasound phased array. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.02.530815. [PMID: 36909495 PMCID: PMC10002751 DOI: 10.1101/2023.03.02.530815] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
Abstract
Focused ultrasound blood-brain barrier (BBB) opening is a promising tool for targeted delivery of therapeutic agents into the brain. The volume of opening determines the extent of therapeutic administration and sets a lower bound on the size of targets which can be selectively treated. We tested a custom 1 MHz array transducer optimized for cortical regions in the macaque brain with the goal of achieving small volume openings. We integrated this device into a magnetic resonance image guided focused ultrasound system and demonstrated twelve instances of small volume BBB opening with average opening volumes of 59 ± 37 mm 3 and 184 ± 2 mm 3 in cortical and subcortical targets, respectively. We developed real-time cavitation monitoring using a passive cavitation detector embedded in the array and characterized its performance on a bench-top flow phantom mimicking transcranial BBB opening procedures. We monitored cavitation during in-vivo procedures and compared cavitation metrics against opening volumes and safety outcomes measured with FLAIR and susceptibility weighted MR imaging. Our findings show small BBB opening at cortical targets in macaques and characterize the safe pressure range for 1 MHz BBB opening. Additionally, we used subject-specific simulations to investigate variance in measured opening volumes and found high correlation (R 2 = 0.8577) between simulation predictions and observed measurements. Simulations suggest the threshold for 1 MHz BBB opening was 0.53 MPa. This system enables BBB opening for drug delivery and gene therapy to be targeted to more specific brain regions.
Collapse
|
8
|
Chien CY, Xu L, Pacia CP, Yue Y, Chen H. Blood-brain barrier opening in a large animal model using closed-loop microbubble cavitation-based feedback control of focused ultrasound sonication. Sci Rep 2022; 12:16147. [PMID: 36167747 PMCID: PMC9515082 DOI: 10.1038/s41598-022-20568-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 09/15/2022] [Indexed: 11/09/2022] Open
Abstract
Focused ultrasound (FUS) in combination with microbubbles has been established as a promising technique for noninvasive and localized Blood-brain barrier (BBB) opening. Real-time passive cavitation detection (PCD)-based feedback control of the FUS sonication is critical to ensure effective BBB opening without causing hemorrhage. This study evaluated the performance of a closed-loop feedback controller in a porcine model. Calibration of the baseline cavitation level was performed for each targeted brain location by a FUS sonication in the presence of intravenously injected microbubbles at a low acoustic pressure without inducing BBB opening. The target cavitation level (TCL) was defined for each target based on the baseline cavitation level. FUS treatment was then performed under real-time PCD-based feedback controller to maintain the cavitation level at the TCL. After FUS treatment, contrast-enhanced MRI and ex vivo histological staining were performed to evaluate the BBB permeability and safety. Safe and effective BBB opening was achieved with the BBB opening volume increased from 3.8 ± 0.7 to 53.6 ± 23.3 mm3 as the TCL was increased from 0.25 to 1 dB. This study validated that effective and safe FUS-induced BBB opening in a large animal model can be achieved with closed-loop feedback control of the FUS sonication.
Collapse
Affiliation(s)
- Chih-Yen Chien
- Department of Biomedical Engineering, Washington University in St. Louis, Saint Louis, MO, 63130, USA
| | - Lu Xu
- Department of Biomedical Engineering, Washington University in St. Louis, Saint Louis, MO, 63130, USA
| | - Christopher Pham Pacia
- Department of Biomedical Engineering, Washington University in St. Louis, Saint Louis, MO, 63130, USA
| | - Yimei Yue
- Department of Biomedical Engineering, Washington University in St. Louis, Saint Louis, MO, 63130, USA
| | - Hong Chen
- Department of Biomedical Engineering, Washington University in St. Louis, Saint Louis, MO, 63130, USA.
- Department of Radiation Oncology, Washington University School of Medicine, 4511 Forest Park Ave., Saint Louis, MO, 63108, USA.
| |
Collapse
|
9
|
Sharma D, Czarnota GJ. Involvement of Ceramide Signalling in Radiation-Induced Tumour Vascular Effects and Vascular-Targeted Therapy. Int J Mol Sci 2022; 23:ijms23126671. [PMID: 35743121 PMCID: PMC9223569 DOI: 10.3390/ijms23126671] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 05/31/2022] [Accepted: 06/06/2022] [Indexed: 02/04/2023] Open
Abstract
Sphingolipids are well-recognized critical components in several biological processes. Ceramides constitute a class of sphingolipid metabolites that are involved in important signal transduction pathways that play key roles in determining the fate of cells to survive or die. Ceramide accumulated in cells causes apoptosis; however, ceramide metabolized to sphingosine promotes cell survival and angiogenesis. Studies suggest that vascular-targeted therapies increase endothelial cell ceramide resulting in apoptosis that leads to tumour cure. Specifically, ultrasound-stimulated microbubbles (USMB) used as vascular disrupting agents can perturb endothelial cells, eliciting acid sphingomyelinase (ASMase) activation accompanied by ceramide release. This phenomenon results in endothelial cell death and vascular collapse and is synergistic with other antitumour treatments such as radiation. In contrast, blocking the generation of ceramide using multiple approaches, including the conversion of ceramide to sphingosine-1-phosphate (S1P), abrogates this process. The ceramide-based cell survival "rheostat" between these opposing signalling metabolites is essential in the mechanotransductive vascular targeting following USMB treatment. In this review, we aim to summarize the past and latest findings on ceramide-based vascular-targeted strategies, including novel mechanotransductive methodologies.
Collapse
Affiliation(s)
- Deepa Sharma
- Physical Sciences, Sunnybrook Health Sciences Centre, Toronto, ON M4N 3M5, Canada;
- Department of Radiation Oncology, Sunnybrook Health Sciences Centre, Toronto, ON M4N 3M5, Canada
- Departments of Medical Biophysics and Radiation Oncology, University of Toronto, Toronto, ON M4N 3M5, Canada
- Correspondence: ; Tel.: +1-416-480-6100 (ext. 89533)
| | - Gregory J. Czarnota
- Physical Sciences, Sunnybrook Health Sciences Centre, Toronto, ON M4N 3M5, Canada;
- Department of Radiation Oncology, Sunnybrook Health Sciences Centre, Toronto, ON M4N 3M5, Canada
- Departments of Medical Biophysics and Radiation Oncology, University of Toronto, Toronto, ON M4N 3M5, Canada
| |
Collapse
|
10
|
Prada F, Ciocca R, Corradino N, Gionso M, Raspagliesi L, Vetrano IG, Doniselli F, Del Bene M, DiMeco F. Multiparametric Intraoperative Ultrasound in Oncological Neurosurgery: A Pictorial Essay. Front Neurosci 2022; 16:881661. [PMID: 35516800 PMCID: PMC9063404 DOI: 10.3389/fnins.2022.881661] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 03/16/2022] [Indexed: 12/20/2022] Open
Abstract
Intraoperative ultrasound (ioUS) is increasingly used in current neurosurgical practice. This is mainly explained by its affordability, handiness, multimodal real-time nature, and overall by its image spatial and temporal resolution. Identification of lesion and potential residue, analysis of the vascularization pattern, and characterization of the nature of the mass are only some of the advantages that ioUS offers to guide safe and efficient tumor resection. Technological advances in ioUS allow to achieve both structural and functional imaging. B-mode provides high-resolution visualization of the lesion and of its boundaries and relationships. Pioneering modes, such as contrast-enhanced ultrasound (CEUS), ultrasensitive Doppler, and elastosonography, are tools with great potential in characterizing different functional aspects of the lesion in a qualitative and quantitative manner. As already happening for many organs and pathologies, the combined use of different US modalities offers new insights in a multiparametric fashion. In this study, we present the potential of our multiparametric approach for ioUS during neuro-oncological surgery. In this effort, we provide a pictorial essay focusing on the most frequent pathologies: low- and high-grade gliomas, meningiomas, and brain metastases.
Collapse
Affiliation(s)
- Francesco Prada
- Department of Neurosurgery, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
- Department of Neurological Surgery, University of Virginia, Charlottesville, VA, United States
- Focused Ultrasound Foundation, Charlottesville, VA, United States
- Acoustic Neuroimaging and Therapy Laboratory, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
- *Correspondence: Francesco Prada,
| | - Riccardo Ciocca
- Acoustic Neuroimaging and Therapy Laboratory, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
- Faculty of Medicine and Surgery, Università degli Studi di Milano, Milan, Italy
| | - Nicoletta Corradino
- Acoustic Neuroimaging and Therapy Laboratory, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
- Faculty of Medicine and Surgery, Università degli Studi di Milano, Milan, Italy
| | - Matteo Gionso
- Acoustic Neuroimaging and Therapy Laboratory, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
- Faculty of Medicine and Surgery, Humanitas University, Pieve Emanuele, Italy
| | - Luca Raspagliesi
- Acoustic Neuroimaging and Therapy Laboratory, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
- Department of Neurosurgery, Humanitas Clinical and Research Center, Milan, Italy
| | | | - Fabio Doniselli
- Neuroradiology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Milan, Italy
| | - Massimiliano Del Bene
- Department of Neurosurgery, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Francesco DiMeco
- Department of Neurosurgery, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
- Johns Hopkins Medical School, Baltimore, MD, United States
| |
Collapse
|
11
|
Librizzi L, Uva L, Raspagliesi L, Gionso M, Regondi MC, Durando G, DiMeco F, de Curtis M, Prada F. Ultrasounds induce blood–brain barrier opening across a sonolucent polyolefin plate in an in vitro isolated brain preparation. Sci Rep 2022; 12:2906. [PMID: 35190597 PMCID: PMC8861168 DOI: 10.1038/s41598-022-06791-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 02/04/2022] [Indexed: 11/28/2022] Open
Abstract
The blood–brain barrier (BBB) represents a major obstacle to the delivery of drugs to the central nervous system. The combined use of low-intensity pulsed ultrasound waves and intravascular microbubbles (MB) represents a promising solution to this issue, allowing reversible disruption of the barrier. In this study, we evaluate the feasibility of BBB opening through a biocompatible, polyolefin-based plate in an in vitro whole brain model. Twelve in vitro guinea pig brains were employed; brains were insonated using a planar transducer with or without interposing the polyolefin plate during arterial infusion of MB. Circulating MBs were visualized with an ultrasonographic device with a linear probe. BBB permeabilization was assessed by quantifying at confocal microscopy the extravasation of FITC-albumin perfused after each treatment. US-treated brains displayed BBB permeabilization exclusively in the volume under the US beam; no significant differences were observed between brains insonated with or without the polyolefin plate. Control brains not perfused with MB did not show signs of FITC-albumin extravasation. Our preclinical study suggests that polyolefin cranial plate could be implanted as a skull replacement to maintain craniotomic windows and perform post-surgical repeated BBB opening with ultrasound guidance to deliver therapeutic agents to the central nervous system.
Collapse
|
12
|
Schoen S, Kilinc MS, Lee H, Guo Y, Degertekin FL, Woodworth GF, Arvanitis C. Towards controlled drug delivery in brain tumors with microbubble-enhanced focused ultrasound. Adv Drug Deliv Rev 2022; 180:114043. [PMID: 34801617 PMCID: PMC8724442 DOI: 10.1016/j.addr.2021.114043] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 09/27/2021] [Accepted: 11/04/2021] [Indexed: 02/06/2023]
Abstract
Brain tumors are particularly challenging malignancies, due to their location in a structurally and functionally distinct part of the human body - the central nervous system (CNS). The CNS is separated and protected by a unique system of brain and blood vessel cells which together prevent most bloodborne therapeutics from entering the brain tumor microenvironment (TME). Recently, great strides have been made through microbubble (MB) ultrasound contrast agents in conjunction with ultrasound energy to locally increase the permeability of brain vessels and modulate the brain TME. As we elaborate in this review, this physical method can effectively deliver a wide range of anticancer agents, including chemotherapeutics, antibodies, and nanoparticle drug conjugates across a range of preclinical brain tumors, including high grade glioma (glioblastoma), diffuse intrinsic pontine gliomas, and brain metastasis. Moreover, recent evidence suggests that this technology can promote the effective delivery of novel immunotherapeutic agents, including immune check-point inhibitors and chimeric antigen receptor T cells, among others. With early clinical studies demonstrating safety, and several Phase I/II trials testing the preclinical findings underway, this technology is making firm steps towards shaping the future treatments of primary and metastatic brain cancer. By elaborating on its key components, including ultrasound systems and MB technology, along with methods for closed-loop spatial and temporal control of MB activity, we highlight how this technology can be tuned to enable new, personalized treatment strategies for primary brain malignancies and brain metastases.
Collapse
Affiliation(s)
- Scott Schoen
- Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - M. Sait Kilinc
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Hohyun Lee
- Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Yutong Guo
- Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - F. Levent Degertekin
- Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Graeme F. Woodworth
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA,Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, College Park, MD 20742, USA,Fischell Department of Bioengineering A. James Clarke School of Engineering, University of Maryland
| | - Costas Arvanitis
- Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA,Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
| |
Collapse
|
13
|
From Focused Ultrasound Tumor Ablation to Brain Blood Barrier Opening for High Grade Glioma: A Systematic Review. Cancers (Basel) 2021; 13:cancers13225614. [PMID: 34830769 PMCID: PMC8615744 DOI: 10.3390/cancers13225614] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/25/2021] [Accepted: 10/28/2021] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Focused Ultrasound (FUS) is gaining a therapeutic role in neuro-oncology considering its novelty and non-invasiveness. Multiple pre-clinical studies show the efficacy of FUS mediated ablation and Blood-Brain Barrier (BBB) opening in high-grade glioma (HGG), but there is still poor evidence in humans, mainly aimed towards assessing FUS safety. METHODS With this systematic review our aim is, firstly, to summarize how FUS is proposed for human HGG treatment. Secondly, we focus on future perspectives and new therapeutic options. Using PRISMA 2020 guidelines, we reviewed case series and trials with description of patient characteristics, pre- and post-operative treatments and FUS outcomes. We considered nine case series (five about tumor ablation and four about BBB opening) with FUS-treated HGG patients between 1991 and 2021. RESULTS Sixty-eight patients were considered in total, mostly males (67.6%), with a mean age of 50.5 ± 15.3 years old. Major complication rates were found in the tumor ablation group (26.1%). FUS has been rarely applied for direct tumoral ablation in human HGG patients with controversial results, but at the best of current studies, FUS-mediated BBB opening is showing good results with very low complication rates, paving the way for a new reliable technique to improve local chemotherapy delivery and antitumoral immune response. CONCLUSIONS FUS can become a complementary technique to surgical resection and standard radiochemotherapy in recurrent HGG. Ongoing trials could provide in the near future more data on FUS-mediated BBB opening impact on progression-free survival, overall survival and potential drug-delivery capacities.
Collapse
|