1
|
Par M, Dukaric K, Marovic D, Tauböck TT, Attin T, Tarle Z. Effect of customized bioactive glass in experimental composites on dentin bond strength after 12 months of aging. Clin Oral Investig 2024; 29:19. [PMID: 39690350 DOI: 10.1007/s00784-024-06108-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 12/11/2024] [Indexed: 12/19/2024]
Abstract
OBJECTIVES This study aimed to investigate the effect of a customized low-sodium bioactive glass (BG) fillers in experimental resin composites on their bond strength to dentin after 12 months of artificial aging. Specifically, it evaluated whether the bond strength was affected by different BG concentrations (0, 10, 20, 40 wt%) and artificial aging durations (1, 6, and 12 months). MATERIALS AND METHODS Experimental composites were prepared with 10, 20, and 40 wt% of a customized low-sodium fluoride-containing BG. The experimental composite with 0 wt% BG was used as a control, while Beautifil II (Shofu) was used as an external reference material. A universal adhesive system was applied to dentin substrates and composite build-ups were made. Bond strength was measured using a macro-shear bond strength test, and Weibull statistics were used to assess the reliability of the materials. Failure modes were analyzed to evaluate the type of the fracture. RESULTS After 12 months, the bond strength of all experimental composites remained stable and comparable to the control material, with statistically significant improvements between 6 and 12 months for all experimental materials. The bond strength was statistically similar across materials, except at the 12-month point, where the 20 wt% BG-composite showed significantly higher bond strength than the 40 wt% BG-composite. The frequency of mixed failures in composite increased after 12 months, particularly in experimental composites containing higher BG content. CONCLUSIONS The incorporation of a customized low- sodium BG into resin composites did not negatively impact their bond strength to dentin over 12 months. Instead, bond strength improved over time, and the composites remained mechanically stable, although a higher incidence of mixed failures was observed with increased BG content. CLINICAL RELEVANCE The customized low-sodium BG demonstrated stable bond strength over the 12-month period, offering a promising option for functional fillers in restorative composites without compromising the longevity of the adhesive-dentin interface.
Collapse
Affiliation(s)
- Matej Par
- Department of Endodontics and Restorative Dentistry, University of Zagreb School of Dental Medicine, Gunduliceva 5, Zagreb, Croatia.
| | | | - Danijela Marovic
- Department of Endodontics and Restorative Dentistry, University of Zagreb School of Dental Medicine, Gunduliceva 5, Zagreb, Croatia
| | - Tobias T Tauböck
- Department of Conservative and Preventive Dentistry, Center for Dental Medicine, University of Zurich, Zurich, 8032, Switzerland
| | - Thomas Attin
- Department of Conservative and Preventive Dentistry, Center for Dental Medicine, University of Zurich, Zurich, 8032, Switzerland
| | - Zrinka Tarle
- Department of Endodontics and Restorative Dentistry, University of Zagreb School of Dental Medicine, Gunduliceva 5, Zagreb, Croatia
| |
Collapse
|
2
|
Par M, Cheng L, Camilleri J, Lingström P. Applications of smart materials in minimally invasive dentistry - some research and clinical perspectives. Dent Mater 2024; 40:2008-2016. [PMID: 39341720 DOI: 10.1016/j.dental.2024.09.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 08/25/2024] [Accepted: 09/20/2024] [Indexed: 10/01/2024]
Abstract
OBJECTIVES Dental caries is one of the most prevalent bacteria-induced non-communicable diseases globally. It is known to be the top oral health burden in both developing and developed nations. There is substantial literature on the disease process and there is still debate on the extent of caries removal needed and the adequacy of the materials available to restore the lost tooth structure. The current review discusses the disease process together with the contemporary management of the carious lesion and also presents substantial evidence on novel materials and techniques that make minimally invasive dentistry predictable. METHODS The written work presented shows the most relevant literature for the management of dental caries focusing on novel materials used in minimally invasive dentistry. RESULTS There is still much to learn about specific antimicrobial and caries prevention mechanisms of novel materials. Materials that respond to a single or a few stimuli remain "weakly intelligent" in the face of the complex microenvironment in the oral cavity. Engineered systems that combine artificial intelligence and chemical engineering, are expected to possess higher intelligence, self-healing capabilities as well as environmental adaptability, and may be future promising research directions. SIGNIFICANCE The targeted approach in managing dental caries will hopefully have a better clinical outcome. The strategies discussed are alternatives to the contemporary approach and will improve the clinical management.
Collapse
Affiliation(s)
- M Par
- Department of Endodontics and Restorative Dentistry, University of Zagreb School of Dental Medicine, Zagreb, Croatia
| | - L Cheng
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China; Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - J Camilleri
- Dentistry, School of Health Sciences, College of Medicine and Health, University fo Birmingham, Birmingham, United Kingdom.
| | - P Lingström
- Department of Cariology, Institute of Odontolog, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
3
|
Majstorović M, Babić Brčić S, Malev O, Par M, Živković I, Marciuš M, Tarle Z, Čož-Rakovac R, Marović D. Environmental implications of dental restorative materials on the zebrafish Danio rerio: Are dental chair drainage systems an emerging environmental threat? ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 110:104499. [PMID: 39019244 DOI: 10.1016/j.etap.2024.104499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/17/2024] [Accepted: 07/04/2024] [Indexed: 07/19/2024]
Abstract
This study aimed to evaluate the environmental impact of dental materials: commercial composite Tetric EvoCeram®, glass ionomer Equia Forte® HT Fil, laboratory-prepared composite, alkasite Cention® Forte, amalgam Amalcap® Plus, and samples from dental chair drainage systems (DCDS). Methacrylate monomers were detected in the eluates of experimental and commercials composites, and alkasite. In DCDS samples solely mercury was found at concentrations of 0.08-1.86 μg/L. The experimental composite (48 h incubation) exhibited the highest toxicity on zebrafish Danio rerio (LC50=0.70 g/L), followed by amalgam (LC50=8.27 g/L) < Tetric EvoCeram® (LC50=10.94 g/L) < Equia Forte® HT Fil (LC50=24.84 g/L) < Cention® Forte (LC50=32.22 g/L). Exposure of zebrafish to DCDS samples resulted in decreased larval body length and increased occurrences of edema and blood accumulation. The results obtained highlight the need for additional monitoring and further research on the release of unreacted monomers and mercury from dental materials and their environmental impact.
Collapse
Affiliation(s)
- Matea Majstorović
- Department of Prosthodontics, Study of Dental Medicine, School of Medicine, University of Split, Šoltanska ul. 2, Split, Croatia
| | - Sanja Babić Brčić
- Laboratory for Aquaculture Biotechnology, Division of Materials Chemistry, Ruđer Bošković Institute, Bijenička 54, Zagreb, Croatia; Center of Excellence for Marine Bioprospecting (BioProCro), Ruđer Bošković Institute, Bijenička 54, Zagreb, Croatia.
| | - Olga Malev
- Laboratory for Aquaculture Biotechnology, Division of Materials Chemistry, Ruđer Bošković Institute, Bijenička 54, Zagreb, Croatia; Center of Excellence for Marine Bioprospecting (BioProCro), Ruđer Bošković Institute, Bijenička 54, Zagreb, Croatia
| | - Matej Par
- Department of Endodontics and Restorative Dentistry, School of Dental Medicine, University of Zagreb, Gundulićeva 5, Zagreb, Croatia
| | - Igor Živković
- Laboratory for Biogeochemistry, Department of Environmental Sciences, Jožef Stefan Institute, Jamova cesta 39, Ljubljana 1000, Slovenia
| | - Marijan Marciuš
- Laboratory for Synthesis of New Materials, Division of Materials Chemistry, Ruđer Bošković Institute, Bijenička 54, Zagreb, Croatia
| | - Zrinka Tarle
- Department of Endodontics and Restorative Dentistry, School of Dental Medicine, University of Zagreb, Gundulićeva 5, Zagreb, Croatia
| | - Rozelindra Čož-Rakovac
- Laboratory for Aquaculture Biotechnology, Division of Materials Chemistry, Ruđer Bošković Institute, Bijenička 54, Zagreb, Croatia; Center of Excellence for Marine Bioprospecting (BioProCro), Ruđer Bošković Institute, Bijenička 54, Zagreb, Croatia
| | - Danijela Marović
- Department of Endodontics and Restorative Dentistry, School of Dental Medicine, University of Zagreb, Gundulićeva 5, Zagreb, Croatia.
| |
Collapse
|
4
|
Mohn N, Par M, Gubler A, Tauböck TT. Marginal integrity of prototype bioactive glass-doped resin composites in class II cavities. Clin Oral Investig 2024; 28:430. [PMID: 39012388 DOI: 10.1007/s00784-024-05824-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 07/08/2024] [Indexed: 07/17/2024]
Abstract
OBJECTIVES This in vitro study examined the marginal integrity of experimental composite materials doped with bioactive glass (BG). MATERIALS AND METHODS Class-II MOD cavities were prepared and restored with one of the following composite materials: a commercial composite material as a reference (Filtek Supreme XTE), an experimental composite doped with BG 45S5 (C-20), and an experimental composite doped with a fluoride-containing BG (F-20). Six experimental groups (n = 8) were used, as each of the three composites was applied with (+) or without (-) a universal adhesive (Adper Scotchbond Multipurpose). All specimens were subjected to thermocycling (10,000 x, 5-55 °C) and then additionally stored in artificial saliva for eight weeks. Scanning electron micrographs of the mesial and the distal box were taken at three time points (initial, after thermocycling, and after eight weeks of storage in artificial saliva). The margins were classified as "continuous" and "non-continuous" and the percentage of continuous margins (PCM) was statistically analyzed (α = 0.05). RESULTS In most experimental groups, thermocycling led to a significant decrease in PCM, while the additional 8-week aging had no significant effect. F-20 + performed significantly better (p = 0.005) after 8 weeks storage in artificial saliva than the reference material with adhesive, while no statistically significant differences were observed at the other two time points. C-20 + exhibited significantly better PCM than the reference material with adhesive after thermocycling (p = 0.026) and after 8 weeks (p = 0.003). CONCLUSIONS Overall, the experimental composites with BG showed at least as good marginal adaptation as the commercial reference, with an indication of possible re-sealing of marginal gaps. CLINICAL RELEVANCE Maintaining or improving the marginal integrity of composite restorations is important to prevent microleakage and its likely consequences such as pulp irritation and secondary caries.
Collapse
Affiliation(s)
- Nike Mohn
- Department of Conservative and Preventive Dentistry, Center for Dental Medicine, University of Zurich, Plattenstrasse 11, Zurich, Switzerland
| | - Matej Par
- Department of Endodontics and Restorative Dentistry, School of Dental Medicine, University of Zagreb, Gunduliceva 5, Zagreb, Croatia.
| | - Andrea Gubler
- Department of Conservative and Preventive Dentistry, Center for Dental Medicine, University of Zurich, Plattenstrasse 11, Zurich, Switzerland
| | - Tobias T Tauböck
- Department of Conservative and Preventive Dentistry, Center for Dental Medicine, University of Zurich, Plattenstrasse 11, Zurich, Switzerland
| |
Collapse
|
5
|
Negovetic Mandic V, Plancak L, Marovic D, Tarle Z, Trutina Gavran M, Par M. Mechanical Properties of Alkasite Material with Different Curing Modes and Simulated Aging Conditions. MATERIALS (BASEL, SWITZERLAND) 2024; 17:2777. [PMID: 38894041 PMCID: PMC11173928 DOI: 10.3390/ma17112777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/02/2024] [Accepted: 06/05/2024] [Indexed: 06/21/2024]
Abstract
This study aimed to evaluate the micro-mechanical and macro-mechanical properties of self-cured and light-cured alkasite and to investigate how accelerated degradation in acidic, alkaline, and ethanol solutions affects the macro-mechanical properties of self-cured and light-cured alkasite. The specimens of the alkasite material (Cention Forte, Ivoclar Vivadent) were prepared according to the following three curing modes: (1) light-cured immediately, (2) light-cured after a 5-min delay, and (3) self-cured. Microhardness was tested before and after immersion in absolute ethanol to indirectly determine crosslink density, while flexural strength and flexural modulus were measured using a three-point bending test after accelerated aging in the following solutions: (1) lactic acid solution (pH = 4.0), (2) NaOH solution (pH = 13.0), (3) phosphate-buffered saline solution (pH = 7.4), and (4) 75% ethanol solution. The data were statistically analyzed using a two-way ANOVA and Tukey post hoc test. The results showed that the microhardness, flexural strength, and flexural modulus were significantly lower in self-cured specimens compared to light-cured specimens. A 5-min delay between the extrusion of the material from the capsule and light curing had no significant effect on any of the measured properties. A significant effect of the accelerated aging solutions on macro-mechanical properties was observed, with ethanol and alkaline solutions having a particularly detrimental effect. In conclusion, light curing was preferable to self-curing, as it resulted in significantly better micro- and macro-mechanical properties, while a 5-min delay between mixing the capsule and light curing had no negative effects.
Collapse
Affiliation(s)
- Visnja Negovetic Mandic
- Department of Endodontics and Restorative Dentistry, School of Dental Medicine, University of Zagreb, Gunduliceva 5, 10000 Zagreb, Croatia; (V.N.M.); (D.M.); (Z.T.)
| | - Laura Plancak
- School of Dental Medicine, University of Zagreb, Gunduliceva 5, 10000 Zagreb, Croatia;
| | - Danijela Marovic
- Department of Endodontics and Restorative Dentistry, School of Dental Medicine, University of Zagreb, Gunduliceva 5, 10000 Zagreb, Croatia; (V.N.M.); (D.M.); (Z.T.)
| | - Zrinka Tarle
- Department of Endodontics and Restorative Dentistry, School of Dental Medicine, University of Zagreb, Gunduliceva 5, 10000 Zagreb, Croatia; (V.N.M.); (D.M.); (Z.T.)
| | - Milena Trutina Gavran
- Department of Morphology and Anthropology, Study of Dental Medicine, School of Medicine, University of Mostar, Zrinskog Frankopana 34, 88000 Mostar, Bosnia and Herzegovina;
| | - Matej Par
- Department of Endodontics and Restorative Dentistry, School of Dental Medicine, University of Zagreb, Gunduliceva 5, 10000 Zagreb, Croatia; (V.N.M.); (D.M.); (Z.T.)
| |
Collapse
|
6
|
Muradbegovic A, Par M, Panduric V, Zugec P, Tauböck TT, Attin T, Tarle Z, Marovic D. Water-Induced Changes in Experimental Resin Composites Functionalized with Conventional (45S5) and Customized Bioactive Glass. J Funct Biomater 2023; 14:298. [PMID: 37367262 DOI: 10.3390/jfb14060298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/19/2023] [Accepted: 05/25/2023] [Indexed: 06/28/2023] Open
Abstract
The aim of the study was to evaluate microhardness, mass changes during 1-year water immersion, water sorption/solubility, and calcium phosphate precipitation of experimental composites functionalized with 5-40 wt% of two types of bioactive glass (BG): 45S5 or a customized low-sodium fluoride-containing formulation. Vickers microhardness was evaluated after simulated aging (water storage and thermocycling), water sorption and solubility were tested according to ISO 4049, and calcium phosphate precipitation was studied by scanning electron microscopy, energy dispersive X-ray spectroscopy, and Fourier-transform infrared spectroscopy. For the composites containing BG 45S5, a significant reduction in microhardness was observed with increasing BG amount. In contrast, 5 wt% of the customized BG resulted in statistically similar microhardness to the control material, while higher BG amounts (20 and 40 wt%) resulted in a significant improvement in microhardness. Water sorption was more pronounced for composites containing BG 45S5, increasing 7-fold compared to the control material, while the corresponding increase for the customized BG was only 2-fold. Solubility increased with higher amounts of BG, with an abrupt increase at 20 and 40 wt% of BG 45S5. Calcium phosphate was precipitated by all composites with BG amounts of 10 wt% or more. The improved properties of the composites functionalized with the customized BG indicate better mechanical, chemical, and dimensional stability without compromising the potential for calcium phosphate precipitation.
Collapse
Affiliation(s)
- Alen Muradbegovic
- Muradbegović Dental Clinic, Malkočeva 3, 75000 Tuzla, Bosnia and Herzegovina
| | - Matej Par
- Department of Endodontics and Restorative Dentistry, School of Dental Medicine, University of Zagreb, Gunduliceva 5, 10000 Zagreb, Croatia
| | - Vlatko Panduric
- Department of Endodontics and Restorative Dentistry, School of Dental Medicine, University of Zagreb, Gunduliceva 5, 10000 Zagreb, Croatia
| | - Paula Zugec
- Department of Endodontics and Restorative Dentistry, School of Dental Medicine, University of Zagreb, Gunduliceva 5, 10000 Zagreb, Croatia
| | - Tobias T Tauböck
- Department of Conservative and Preventive Dentistry, Center of Dental Medicine, University of Zurich, Plattenstrasse 11, 8032 Zurich, Switzerland
| | - Thomas Attin
- Department of Conservative and Preventive Dentistry, Center of Dental Medicine, University of Zurich, Plattenstrasse 11, 8032 Zurich, Switzerland
| | - Zrinka Tarle
- Department of Endodontics and Restorative Dentistry, School of Dental Medicine, University of Zagreb, Gunduliceva 5, 10000 Zagreb, Croatia
| | - Danijela Marovic
- Department of Endodontics and Restorative Dentistry, School of Dental Medicine, University of Zagreb, Gunduliceva 5, 10000 Zagreb, Croatia
| |
Collapse
|
7
|
Yun J, Burrow MF, Matinlinna JP, Wang Y, Tsoi JKH. A Narrative Review of Bioactive Glass-Loaded Dental Resin Composites. J Funct Biomater 2022; 13:jfb13040208. [PMID: 36412849 PMCID: PMC9680275 DOI: 10.3390/jfb13040208] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/22/2022] [Accepted: 10/25/2022] [Indexed: 12/14/2022] Open
Abstract
This review aims to provide a comprehensive analysis of the characterizations of bioactive glass (BAG)-loaded dental resin-based composite materials. Online databases (Web of Science, PubMed, and Science Direct) were used to collect data published from January 2011 to January 2022. Only BAG-containing resin adhesive and resin restorative composites are discussed in this narrative review. BAG-loaded resin composites exhibit excellent mineralization ability reflecting enhanced ion release, pH elevation, and apatite formation, especially regarding high BAG loading. This aids the anti-demineralization and remineralization of teeth. Furthermore, BAG-loaded resin composites demonstrated in vitro biocompatibility and antibacterial performance. It has been suggested that BAG fillers with small particle sizes and no more than 20 wt% in terms of loading amount should be used to guarantee the appropriate mechanical properties of resin composites. However, most of these studies focused on one or some aspects using different resin systems, BAG types, and BAG amounts. As such, this makes the comparison difficult, and it is essential to find an optimal balance between different properties. BAG-loaded resin composites can be regarded as bioactive materials, which present major benefits in dentistry, especially their capability in the bacterial inhibition, cell biocompatibility, anti-demineralization, and remineralization of teeth.
Collapse
Affiliation(s)
- Jiaojiao Yun
- Dental Materials Science, Division of Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China
| | - Michael Francis Burrow
- Prosthodontics, Division of Restorative Dental Sciences, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China
| | - Jukka Pekka Matinlinna
- Dental Materials Science, Division of Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China
- Division of Dentistry, School of Medical Sciences, University of Manchester, Manchester M13 9PL, UK
| | - Yan Wang
- Department of Prosthodontics, Guanghua School of Stomatology, Hospital of Stomatology, Guangdong Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
| | - James Kit Hon Tsoi
- Dental Materials Science, Division of Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China
- Correspondence: ; Tel.: +852-28590515
| |
Collapse
|
8
|
Using Copper-Doped Mesoporous Bioactive Glass Nanospheres to Impart Anti-Bacterial Properties to Dental Composites. Pharmaceutics 2022; 14:pharmaceutics14102241. [PMID: 36297676 PMCID: PMC9611516 DOI: 10.3390/pharmaceutics14102241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/11/2022] [Accepted: 10/18/2022] [Indexed: 11/17/2022] Open
Abstract
Experimental dental resin composites containing copper-doped mesoporous bioactive glass nanospheres (Cu-MBGN) were developed to impart anti-bacterial properties. Increasing amounts of Cu-MBGN (0, 1, 5 and 10 wt%) were added to the BisGMA/TEGDMA resin matrix containing micro- and nano-fillers of inert glass, keeping the resin/filler ratio constant. Surface micromorphology and elemental analysis were performed to evaluate the homogeneous distribution of filler particles. The study investigated the effects of Cu-MBGN on the degree of conversion, polymerization shrinkage, porosity, ion release and anti-bacterial activity on S. mutans and A. naeslundii. Experimental materials containing Cu-MBGN showed a dose-dependent Cu release with an initial burst and a further increase after 28 days. The composite containing 10% Cu-MBGN had the best anti-bacterial effect on S. mutans, as evidenced by the lowest adherence of free-floating bacteria and biofilm formation. In contrast, the 45S5-containing materials had the highest S. mutans adherence. Ca release was highest in the bioactive control containing 15% 45S5, which correlated with the highest number of open porosities on the surface. Polymerization shrinkage was similar for all tested materials, ranging from 3.8 to 4.2%, while the degree of conversion was lower for Cu-MBGN materials. Cu-MBGN composites showed better anti-bacterial properties than composites with 45S5 BG.
Collapse
|
9
|
Par M, Plančak L, Ratkovski L, Tauböck TT, Marovic D, Attin T, Tarle Z. Improved Flexural Properties of Experimental Resin Composites Functionalized with a Customized Low-Sodium Bioactive Glass. Polymers (Basel) 2022; 14:4289. [PMID: 36297866 PMCID: PMC9607205 DOI: 10.3390/polym14204289] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/11/2022] [Accepted: 10/11/2022] [Indexed: 11/23/2022] Open
Abstract
This study evaluated the flexural properties of an experimental composite series functionalized with 5-40 wt% of a low-Na F-containing bioactive glass (F-series) and compared it to another experimental composite series containing the same amounts of the conventional bioactive glass 45S5 (C-series). Flexural strength and modulus were evaluated using a three-point bending test. Degree of conversion was measured using Fourier-transform infrared spectroscopy. Weibull analysis was performed to evaluate material reliability. The control material with 0 wt% of bioactive glass demonstrated flexural strength values of 105.1-126.8 MPa). In the C-series, flexural strength ranged between 17.1 and 121.5 MPa and was considerably more diminished by the increasing amounts of bioactive glass than flexural strength in the F-series (83.8-130.2 MPa). Analogously, flexural modulus in the C-series (0.56-6.66 GPa) was more reduced by the increase in bioactive glass amount than in the F-series (5.24-7.56 GPa). The ISO-recommended "minimum acceptable" flexural strength for restorative resin composites of 80 MPa was achieved for all materials in the F-series, while in the C-series, the materials with higher bioactive glass amounts (20 and 40 wt%) failed to meet the requirement of 80 MPa. The degree of conversion in the F-series was statistically similar or higher compared to that of the control composite with no bioactive glass, while the C-series showed a declining degree of conversion with increasing bioactive glass amounts. In summary, the negative effect of the addition of bioactive glass on mechanical properties was notably less pronounced for the customized bioactive glass than for the bioactive glass 45S5; additionally, mechanical properties of the composites functionalized with the customized bioactive glass were significantly less diminished by artificial aging. Hence, the customized bioactive glass investigated in the present study represents a promising candidate for functionalizing ion-releasing resin composites.
Collapse
Affiliation(s)
- Matej Par
- Department of Endodontics and Restorative Dentistry, School of Dental Medicine, University of Zagreb, Gunduliceva 5, 10000 Zagreb, Croatia
| | - Laura Plančak
- School of Dental Medicine, University of Zagreb, Gunduliceva 5, 10000 Zagreb, Croatia
| | - Lucija Ratkovski
- School of Dental Medicine, University of Zagreb, Gunduliceva 5, 10000 Zagreb, Croatia
| | - Tobias T. Tauböck
- Department of Conservative and Preventive Dentistry, Center of Dental Medicine, University of Zurich, Plattenstrasse 11, 8032 Zurich, Switzerland
| | - Danijela Marovic
- Department of Endodontics and Restorative Dentistry, School of Dental Medicine, University of Zagreb, Gunduliceva 5, 10000 Zagreb, Croatia
| | - Thomas Attin
- Department of Conservative and Preventive Dentistry, Center of Dental Medicine, University of Zurich, Plattenstrasse 11, 8032 Zurich, Switzerland
| | - Zrinka Tarle
- Department of Endodontics and Restorative Dentistry, School of Dental Medicine, University of Zagreb, Gunduliceva 5, 10000 Zagreb, Croatia
| |
Collapse
|
10
|
Par M, Gubler A, Attin T, Tarle Z, Tarle A, Prskalo K, Tauböck TT. Effect of adhesive coating on calcium, phosphate, and fluoride release from experimental and commercial remineralizing dental restorative materials. Sci Rep 2022; 12:10272. [PMID: 35715694 PMCID: PMC9205952 DOI: 10.1038/s41598-022-14544-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 06/08/2022] [Indexed: 11/23/2022] Open
Abstract
This study investigated the potential of adhesive coating for hindering the reactivity of ion-releasing dental restorative materials. Experimental composites were prepared by replacing 10 or 20 wt% of reinforcing fillers with two types of bioactive glass. A glass ionomer, a giomer, and an alkasite were used as representatives of commercial ion-releasing materials. Restorative material specimens were coated with an etch-and-rinse adhesive, 1-step self-etch adhesive, 2-step self-etch adhesive, or left uncoated. The specimens were immersed in a lactic acid solution and ion concentrations were measured in 4 days intervals for 32 days (atomic absorption spectrometry for calcium, UV–Vis spectrometry for phosphate, ion-selective electrode for fluoride, and pH-meter for pH values). The adhesive coating reduced ion release between 0.3 and 307 times, in a significantly material- and adhesive-dependent manner. Fluoride release was most highly impaired, with the reduction of up to 307 times, followed by phosphate and calcium release, which were reduced up to 90 and 45 times, respectively. The effect of different adhesive systems was most pronounced for phosphate release, with the following rankings: uncoated ≥ 2-step self-etch adhesive ≥ 1-step self-etch adhesive ≥ etch-and-rinse adhesive. The differences among adhesives were less pronounced for calcium and fluoride. It was concluded that the resinous adhesive layer can act as a barrier for ion release and diminish the beneficial effects of remineralizing restorative materials.
Collapse
Affiliation(s)
- Matej Par
- Department of Endodontics and Restorative Dentistry, School of Dental Medicine, University of Zagreb, Gunduliceva 5, Zagreb, Croatia.
| | - Andrea Gubler
- Department of Conservative and Preventive Dentistry, Center of Dental Medicine, University of Zurich, Plattenstrasse 11, Zurich, Switzerland
| | - Thomas Attin
- Department of Conservative and Preventive Dentistry, Center of Dental Medicine, University of Zurich, Plattenstrasse 11, Zurich, Switzerland
| | - Zrinka Tarle
- Department of Endodontics and Restorative Dentistry, School of Dental Medicine, University of Zagreb, Gunduliceva 5, Zagreb, Croatia
| | - Andro Tarle
- Community Health Center Zagreb - Center, Runjaninova 4, Zagreb, Croatia
| | - Katica Prskalo
- Department of Endodontics and Restorative Dentistry, School of Dental Medicine, University of Zagreb, Gunduliceva 5, Zagreb, Croatia
| | - Tobias T Tauböck
- Department of Conservative and Preventive Dentistry, Center of Dental Medicine, University of Zurich, Plattenstrasse 11, Zurich, Switzerland
| |
Collapse
|
11
|
Marovic D, Par M, Posavec K, Marić I, Štajdohar D, Muradbegović A, Tauböck TT, Attin T, Tarle Z. Long-Term Assessment of Contemporary Ion-Releasing Restorative Dental Materials. MATERIALS (BASEL, SWITZERLAND) 2022; 15:4042. [PMID: 35744101 PMCID: PMC9227571 DOI: 10.3390/ma15124042] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 06/02/2022] [Accepted: 06/03/2022] [Indexed: 02/05/2023]
Abstract
The objective was to evaluate new commercially available ion-releasing restorative materials and compare them to established anti-cariogenic materials. Four materials were tested: alkasite Cention (Ivoclar Vivadent) in self-cure or light-cure mode, giomer Beautifil II (Shofu), conventional glass-ionomer Fuji IX (GC), and resin composite Tetric EvoCeram (Ivoclar Vivadent) as a control. Flexural strength, flexural modulus, and Weibull modulus were measured one day, three months, and after three months with accelerated aging in ethanol. Water sorption and solubility were evaluated for up to one year. Degree of conversion was measured during 120 min for self-cured and light-cured Cention. In this study, Beautifil II was the ion-releasing material with the highest flexural strength and modulus and with the best resistance to aging. Alkasite Cention showed superior mechanical properties to Fuji IX. Weibull analysis showed that the glass-ionomer had the least reliable distribution of mechanical properties with the highest water sorption. The solubility of self-cured alkasite exceeded the permissible values according to ISO 4049. Degree of conversion of light-cured Cention was higher than in self-cure mode. The use of alkasite Cention is recommended only in the light-cure mode.
Collapse
Affiliation(s)
- Danijela Marovic
- Department of Endodontics and Restorative Dentistry, School of Dental Medicine, University of Zagreb, Gunduliceva 5, 10000 Zagreb, Croatia; (D.M.); (D.Š.); (Z.T.)
| | - Matej Par
- Department of Endodontics and Restorative Dentistry, School of Dental Medicine, University of Zagreb, Gunduliceva 5, 10000 Zagreb, Croatia; (D.M.); (D.Š.); (Z.T.)
| | - Karlo Posavec
- Private Dental Practice, Dr. Ivana Novaka 28, 40000 Čakovec, Croatia;
| | - Ivana Marić
- Private Dental Practice, Odranska 10, 10000 Zagreb, Croatia;
| | - Dominik Štajdohar
- Department of Endodontics and Restorative Dentistry, School of Dental Medicine, University of Zagreb, Gunduliceva 5, 10000 Zagreb, Croatia; (D.M.); (D.Š.); (Z.T.)
| | - Alen Muradbegović
- Private Dental Practice, Malkočeva 3, 75000 Tuzla, Bosnia and Herzegovina;
| | - Tobias T. Tauböck
- Clinic of Conservative and Preventive Dentistry, Center for Dental Medicine, University of Zurich, Plattenstrasse 11, 8032 Zurich, Switzerland; (T.T.T.); (T.A.)
| | - Thomas Attin
- Clinic of Conservative and Preventive Dentistry, Center for Dental Medicine, University of Zurich, Plattenstrasse 11, 8032 Zurich, Switzerland; (T.T.T.); (T.A.)
| | - Zrinka Tarle
- Department of Endodontics and Restorative Dentistry, School of Dental Medicine, University of Zagreb, Gunduliceva 5, 10000 Zagreb, Croatia; (D.M.); (D.Š.); (Z.T.)
| |
Collapse
|
12
|
Veček NN, Par M, Sever EK, Miletić I, Krmek SJ. The Effect of a Green Smoothie on Microhardness, Profile Roughness and Color Change of Dental Restorative Materials. Polymers (Basel) 2022; 14:polym14102067. [PMID: 35631949 PMCID: PMC9145769 DOI: 10.3390/polym14102067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/12/2022] [Accepted: 05/17/2022] [Indexed: 11/16/2022] Open
Abstract
Acidic drinks are known to exert negative effects on the surface properties of dental restorative materials. However, the effect of increasingly popular green smoothie drinks has not been addressed so far. The present study investigated the effect of cyclic immersions (5 min daily over 30 days) in a green smoothie drink on the surface properties of contemporary dental restorative materials, including resin composites, an alkasite, and a glass hybrid. Vickers microhardness, profile roughness, and perceptible color change in the CIE L* a* b* color space were evaluated as clinically relevant properties of the material surface. After 30-day green smoothie immersion, microhardness values either decreased by 8–28% (for resin composites) or increased by up to 91% (for glass hybrid). The increase in profile roughness (Ra parameter) of smoothie-immersed specimens was 7–26 times higher compared to the control group. The perceptible color change (ΔE*) in the smoothie group was 3–8 times higher compared to the control group. Overall, this study demonstrated that daily exposure of dental restorations made from resin composites, alkasites, and glass hybrid materials to a green smoothie drink can significantly accelerate material degradation, which is reflected as surface softening, as well as higher roughness and higher perceptible color change.
Collapse
Affiliation(s)
| | - Matej Par
- Department of Endodontics and Restorative Dentistry, School of Dental Medicine, University of Zagreb, Gunduliceva 5, 10000 Zagreb, Croatia; (E.K.S.); (I.M.); (S.J.K.)
- Correspondence:
| | - Eva Klarić Sever
- Department of Endodontics and Restorative Dentistry, School of Dental Medicine, University of Zagreb, Gunduliceva 5, 10000 Zagreb, Croatia; (E.K.S.); (I.M.); (S.J.K.)
| | - Ivana Miletić
- Department of Endodontics and Restorative Dentistry, School of Dental Medicine, University of Zagreb, Gunduliceva 5, 10000 Zagreb, Croatia; (E.K.S.); (I.M.); (S.J.K.)
| | - Silvana Jukić Krmek
- Department of Endodontics and Restorative Dentistry, School of Dental Medicine, University of Zagreb, Gunduliceva 5, 10000 Zagreb, Croatia; (E.K.S.); (I.M.); (S.J.K.)
| |
Collapse
|
13
|
Hill R. Glass ionomer polyalkenoate cements and related materials: past, present and future. Br Dent J 2022; 232:653-657. [PMID: 35562467 DOI: 10.1038/s41415-022-4239-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 03/15/2022] [Indexed: 11/09/2022]
Abstract
The aim of this article is to review the development of glass ionomer cements (GICs) over the last 40 years and look critically at both their clinical advantages and disadvantages. Primarily, it will explore the future development of both GICs and related ion-releasing materials in relation to improved mechanical properties, capability to prevent secondary caries and promoting remineralisation of hard carious dentine left after minimal cavity preparation procedures, including atraumatic restorative treatment. This article will also introduce new materials with a focus on degradable fluorine-containing glass fillers, including alkasite glasses and fluorine-containing bioactive glasses, that have the capability to raise the pH and promote remineralisation with the potential for fluorapatite formation.
Collapse
Affiliation(s)
- Robert Hill
- Dental Physical Sciences, Centre for Oral Bioengineering, Dental Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Mile End Road, E1 4NS, UK.
| |
Collapse
|
14
|
Ion release and hydroxyapatite precipitation of resin composites functionalized with two types of bioactive glass. J Dent 2022; 118:103950. [PMID: 35026355 DOI: 10.1016/j.jdent.2022.103950] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 01/06/2022] [Accepted: 01/09/2022] [Indexed: 12/22/2022] Open
Abstract
OBJECTIVES To prepare experimental composites with bioactive glass (BG) and investigate their release of calcium (Ca), phosphate (PO4), and fluoride (F), as well as pH changes and apatite precipitation after immersion. METHODS Experimental composites were prepared with 0, 10, or 20 wt% of either BG 45S5 or a customized low-Na F-containing BG. Three commercial ion-releasing materials were used for reference. Material specimens were immersed in lactic acid (pH = 4.0) and artificial saliva (pH = 6.4). Ion concentrations (atomic absorption spectrometry for Ca, UV-vis spectrometry for PO4, and ion-selective electrode for F) and pH were measured after 4, 8, 12, 16, 20, 24, 28, and 32 days. After immersion, composite specimens were analyzed using scanning electron microscopy (SEM) and Fourier-transform infrared (FTIR) spectroscopy. RESULTS Material-dependent concentrations of Ca, PO4, and F were measured in the lactic acid solution, while a decrease of Ca and PO4 concentrations was observed in artificial saliva. The uptake of ions from artificial saliva indicates their precipitation on specimen surfaces, which was supported by the results of SEM and FTIR investigations. In experimental composites functionalized with both bioactive glass types and a commercial "alkasite" material, apatite was precipitated not only in artificial saliva but also in the lactic acid solution. CONCLUSIONS Experimental BG-containing composites and selected commercial restorative materials demonstrated the potential for releasing multiple ion types and increasing pH. CLINICAL SIGNIFICANCE The observed effects can be beneficial for preventing demineralization and promoting remineralization of dental hard tissues, while apatite precipitation can additionally help in sealing marginal discontinuities.
Collapse
|
15
|
Par M, Gubler A, Attin T, Tarle Z, Tarle A, Tauböck TT. Experimental Bioactive Glass-Containing Composites and Commercial Restorative Materials: Anti-Demineralizing Protection of Dentin. Biomedicines 2021; 9:1616. [PMID: 34829845 PMCID: PMC8615840 DOI: 10.3390/biomedicines9111616] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/28/2021] [Accepted: 11/02/2021] [Indexed: 11/24/2022] Open
Abstract
The purpose of this in vitro study was to investigate whether different types of experimental and commercial restorative dental materials can protect dentin against acid-induced softening. Experimental composites were prepared with a photocurable mixture of methacrylates and two types of bioactive glass (45S5 and a customized low-Na F-containing formulation). Human dentin samples were prepared from mid-coronal tooth slices and immersed in lactic acid solution (pH = 4.0) at 5 mm from set specimens of restorative material. After 4, 8, 12, 16, 20, 24, 28, and 32 days, surface microhardness of dentin samples and pH of the immersion solution were measured, followed by replenishing of the immersion medium. Microstructural analysis was performed using scanning electron microscopy. The protective effect of restorative materials was determined as dentin microhardness remaining statistically similar to initial values for a certain number of acid additions. Scanning electron microscopy showed a gradual widening of dentinal tubules and proved less discriminatory than microhardness measurements. To produce a protective effect on dentin, 20 wt% of low-Na F-containing bioactive glass was needed, whereas 10 wt% of bioactive glass 45S5 was sufficient to protect dentin against acid-induced demineralization. The anti-demineralizing protective effect of experimental and commercial restoratives on dentin was of shorter duration than measured for enamel in a previous study using the same experimental approach.
Collapse
Affiliation(s)
- Matej Par
- Department of Endodontics and Restorative Dentistry, School of Dental Medicine, University of Zagreb, Gunduliceva 5, 10000 Zagreb, Croatia;
| | - Andrea Gubler
- Department of Conservative and Preventive Dentistry, Center for Dental Medicine, University of Zurich, Plattenstrasse 11, 8032 Zurich, Switzerland; (A.G.); (T.A.); (T.T.T.)
| | - Thomas Attin
- Department of Conservative and Preventive Dentistry, Center for Dental Medicine, University of Zurich, Plattenstrasse 11, 8032 Zurich, Switzerland; (A.G.); (T.A.); (T.T.T.)
| | - Zrinka Tarle
- Department of Endodontics and Restorative Dentistry, School of Dental Medicine, University of Zagreb, Gunduliceva 5, 10000 Zagreb, Croatia;
| | - Andro Tarle
- Community Health Center Zagreb—Center, Runjaninova 4, 10000 Zagreb, Croatia;
| | - Tobias T. Tauböck
- Department of Conservative and Preventive Dentistry, Center for Dental Medicine, University of Zurich, Plattenstrasse 11, 8032 Zurich, Switzerland; (A.G.); (T.A.); (T.T.T.)
| |
Collapse
|
16
|
Par M, Prskalo K, Tauböck TT, Skenderovic H, Attin T, Tarle Z. Polymerization kinetics of experimental resin composites functionalized with conventional (45S5) and a customized low-sodium fluoride-containing bioactive glass. Sci Rep 2021; 11:21225. [PMID: 34707213 PMCID: PMC8551297 DOI: 10.1038/s41598-021-00774-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 10/18/2021] [Indexed: 12/18/2022] Open
Abstract
This study aimed to investigate polymerization kinetics and curing light transmittance of two series of experimental dental resin composites filled with 0–40 wt% of either 45S5 bioactive glass (BG) or a customized low-Na F-containing BG. Polymerization kinetics in 0.1-mm and 2-mm thick layers were investigated through real-time degree of conversion measurements using a Fourier transform infrared (FTIR) spectrometer. FTIR spectra were continuously collected at a rate of 2 s−1 during light-curing (1340 mW/cm2). Light transmittance through 2-mm thick composite specimens was measured using a UV–Vis spectrometer at a rate of 20 s−1. Unlike BG 45S5, which led to a dose-dependent reduction in the rate and extent of polymerization, the customized low-Na F-containing BG showed a negligible influence on polymerization. The reduction in light transmittance of experimental composites due to the addition of the low-Na F-containing BG did not translate into impaired polymerization kinetics. Additionally, the comparison of polymerization kinetics between 0.1-mm and 2-mm thick layers revealed that polymerization inhibition identified for BG 45S5 was not mediated by an impaired light transmittance, indicating a direct effect of BG 45S5 on polymerization reaction. A customized low-Na F-containing BG showed favourable behaviour for being used as a functional filler in light-curing dental resin composites.
Collapse
Affiliation(s)
- Matej Par
- Department of Endodontics and Restorative Dentistry, School of Dental Medicine, University of Zagreb, Gunduliceva 5, Zagreb, Croatia.
| | - Katica Prskalo
- Department of Endodontics and Restorative Dentistry, School of Dental Medicine, University of Zagreb, Gunduliceva 5, Zagreb, Croatia
| | - Tobias T Tauböck
- Department of Conservative and Preventive Dentistry, Centre for Dental Medicine, University of Zurich, Plattenstrasse 11, Zurich, Switzerland
| | | | - Thomas Attin
- Department of Conservative and Preventive Dentistry, Centre for Dental Medicine, University of Zurich, Plattenstrasse 11, Zurich, Switzerland
| | - Zrinka Tarle
- Department of Endodontics and Restorative Dentistry, School of Dental Medicine, University of Zagreb, Gunduliceva 5, Zagreb, Croatia
| |
Collapse
|
17
|
Kim MJ, Lee MJ, Kim KM, Yang SY, Seo JY, Choi SH, Kwon JS. Enamel Demineralization Resistance and Remineralization by Various Fluoride-Releasing Dental Restorative Materials. MATERIALS (BASEL, SWITZERLAND) 2021; 14:4554. [PMID: 34443077 PMCID: PMC8402149 DOI: 10.3390/ma14164554] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/09/2021] [Accepted: 08/10/2021] [Indexed: 02/01/2023]
Abstract
The aim of this study is to investigate the resistance of various fluoride-releasing restorative materials against the demineralization and remineralization of enamel surfaces, including those that have been recently introduced to the market. Three different fluoride-releasing restorative materials were considered: glass ionomer (FI), resin-modified glass ionomer (RL), and an alkasite restorative material (CN). The acid neutralization ability was investigated using pH measurement, and the concentrations of released fluoride and calcium ions were measured. Finally, the demineralization resistance and remineralization effects of enamel were observed using a microhardness tester and SEM. CN showed an initial substantial increase in pH followed by a steady increase, with values higher than those of the other groups (p < 0.05). All three groups released fluoride ions, and the CN group released more calcium ions than the other groups (p < 0.05). In the acid resistance test, from the microhardness and SEM images, the CN group showed effective resistance to demineralization. In the remineralization test, the microhardness results showed that the FI and CN groups recovered the microhardness from the values of the demineralized enamel surface (p < 0.05). This was confirmed by the SEM images from remineralization tests; the CN group showed a recovered demineralized surface when immersed in artificial saliva for 7 days. In conclusion, alkasite restorative material can be an effective material when used in cariogenic environments.
Collapse
Affiliation(s)
- Min-Ji Kim
- Department and Research Institute of Dental Biomaterials and Bioengineering, Yonsei University College of Dentistry, Seoul 03722, Korea; (M.-J.K.); (K.-M.K.); (S.-Y.Y.)
- BK21 PLUS Project, Yonsei University College of Dentistry, Seoul 03772, Korea
| | - Myung-Jin Lee
- Division of Health Science, Department of Dental Hygiene, Baekseok University, Cheonan 31065, Korea;
| | - Kwang-Mahn Kim
- Department and Research Institute of Dental Biomaterials and Bioengineering, Yonsei University College of Dentistry, Seoul 03722, Korea; (M.-J.K.); (K.-M.K.); (S.-Y.Y.)
| | - Song-Yi Yang
- Department and Research Institute of Dental Biomaterials and Bioengineering, Yonsei University College of Dentistry, Seoul 03722, Korea; (M.-J.K.); (K.-M.K.); (S.-Y.Y.)
| | - Ji-Young Seo
- Department of Orthodontics, Institute of Craniofacial Deformity, Yonsei University College of Dentistry, Seoul 03772, Korea;
| | - Sung-Hwan Choi
- Department of Orthodontics, Institute of Craniofacial Deformity, Yonsei University College of Dentistry, Seoul 03772, Korea;
| | - Jae-Sung Kwon
- Department and Research Institute of Dental Biomaterials and Bioengineering, Yonsei University College of Dentistry, Seoul 03722, Korea; (M.-J.K.); (K.-M.K.); (S.-Y.Y.)
- BK21 PLUS Project, Yonsei University College of Dentistry, Seoul 03772, Korea
| |
Collapse
|