1
|
Ruta S, Fernández-Afonso Y, Rannala SE, Morales MP, Veintemillas-Verdaguer S, Jones C, Gutiérrez L, Chantrell RW, Serantes D. Beyond Newton's law of cooling in evaluating magnetic hyperthermia performance: a device-independent procedure. NANOSCALE ADVANCES 2024; 6:4207-4218. [PMID: 39114136 PMCID: PMC11302052 DOI: 10.1039/d4na00383g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/22/2024] [Accepted: 06/23/2024] [Indexed: 08/10/2024]
Abstract
Accurate knowledge of the heating performance of magnetic nanoparticles (MNPs) under AC magnetic fields is critical for the development of hyperthermia-mediated applications. Usually reported in terms of the specific loss power (SLP) obtained from the temperature variation (ΔT) vs. time (t) curve, such an estimate is subjected to a huge uncertainty. Thus, very different SLP values are reported for the same particles when measured on different equipment/in different laboratories. This lack of control clearly hampers the further development of nanoparticle-mediated heat-triggered technologies. Here, we report a device-independent approach to calculate the SLP value of a suspension of magnetic nanoparticles: the SLP is obtained from the analysis of the peak at the AC magnetic field on/off switch of the ΔT(time) curve. The measurement procedure, which itself constitutes a change of paradigm within the field, is based on the heat diffusion equation, which is still valid when the assumptions of Newton's law of cooling are not applicable, as (i) it corresponds to the ideal scenario in which the temperature profiles of the system during heating and cooling are the same; and (ii) it diminishes the role of coexistence of various heat dissipation channels. Such an approach is supported by theoretical and computational calculations to increase the reliability and reproducibility of SLP determination. Furthermore, the new methodological approach is experimentally confirmed, by magnetic hyperthermia experiments performed using 3 different devices located in 3 different laboratories. Furthermore, the application of this peak analysis method (PAM) to a rapid succession of stimulus on/off switches which results in a zigzag-like ΔT(t), which we term the zigzag protocol, allows evaluation of possible variations of the SLP values with time or temperature.
Collapse
Affiliation(s)
- Sergiu Ruta
- College of Business, Technology and Engineering, Sheffield Hallam University UK
| | - Yilian Fernández-Afonso
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza and CIBER-BBN Spain
| | | | | | | | - Carlton Jones
- nanoTherics Ltd Brookside Farm Dig Lane Warrington WA2 0SH UK
| | - Lucía Gutiérrez
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza and CIBER-BBN Spain
| | | | - David Serantes
- Applied Physics Department, Universidade de Santiago de Compostela Spain
- Instituto de Materiais (iMATUS), Universidade de Santiago de Compostela Spain
| |
Collapse
|
2
|
Wang C, Liu Y, Hu S, Lv X, Zhao B, Ma Q, Zhou S. Experimental study of the effects of a magnetic field/magnetic field-ferromagnetic nanocomposite pour point depressant on wax deposition. RSC Adv 2024; 14:6234-6245. [PMID: 38375012 PMCID: PMC10875419 DOI: 10.1039/d3ra08875h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 02/01/2024] [Indexed: 02/21/2024] Open
Abstract
A magnetic field and pour point depressant, as a new avenue for improving the submarine pipeline flow of waxy oils, has attracted increasing attention along with the development of efficient wax mitigation techniques. Although advances have been made recently in understanding the rheological behavior and crystallization properties of waxy oils, the effect of magnetic field and pour point depressants on wax deposition remains an open question. In this work, a ferromagnetic nanocomposite pour point depressant (FNPPD) was prepared. The variations in wax deposition mass and component under the effect of different magnetic treatments and magnetic field-FNPPDs were investigated using cold fingers and high-temperature gas chromatography. It was evident that both the high-intensity and high-frequency magnetic fields generated by the magnet and magnetic coil can effectively reduce the deposition mass and have a long-term magnetic history effect. The synergistic effect of magnetic fields and FNPPDs concurrently reduced the thickness/mass and wax content in the deposition layer, as compared to the individual use of magnetic fields or FNPPDs. The wax precipitation properties and wax crystal morphology of waxy oils under the action of the magnetic field were characterized by differential scanning calorimetry, focused beam reflectance measurement and polarizing microscopy experiments, and the mechanism of the magnetic field was elaborated from the perspective of crystallization kinetics by combining the fitting analysis of Avrami and size-independent growth model.
Collapse
Affiliation(s)
- Chuanshuo Wang
- Jiangsu Key Laboratory of Oil and Gas Storage and Transportation Technology, Changzhou University Changzhou 213164 P. R. China
| | - Yang Liu
- Jiangsu Key Laboratory of Oil and Gas Storage and Transportation Technology, Changzhou University Changzhou 213164 P. R. China
| | - Shanwei Hu
- China Oil & Gas Pipeline Network Corporation Comprehensive Supervision Department Beijing 100013 P. R. China
| | - Xiaofang Lv
- Jiangsu Key Laboratory of Oil and Gas Storage and Transportation Technology, Changzhou University Changzhou 213164 P. R. China
| | - Biao Zhao
- No. 9 Plantform of CHANGQING Oilfield Yinchuan 750001 P. R. China
| | - Qianli Ma
- Jiangsu Key Laboratory of Oil and Gas Storage and Transportation Technology, Changzhou University Changzhou 213164 P. R. China
| | - Shidong Zhou
- Jiangsu Key Laboratory of Oil and Gas Storage and Transportation Technology, Changzhou University Changzhou 213164 P. R. China
| |
Collapse
|
3
|
Carlton H, Ivkov R. A new method to measure magnetic nanoparticle heating efficiency in non-adiabatic systems using transient pulse analysis. JOURNAL OF APPLIED PHYSICS 2023; 133:044302. [PMID: 36718210 PMCID: PMC9884152 DOI: 10.1063/5.0131058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 01/12/2023] [Indexed: 06/18/2023]
Abstract
Heating magnetic nanoparticles (MNPs) with alternating magnetic fields (AMFs) have applications in biomedical research and cancer therapy. Accurate measurement of the heating efficiency or specific loss power (SLP) generated by the MNPs is essential to assess response(s) in biological systems. Efforts to develop standardized equipment and to harmonize results obtained from various MNP samples and AMF systems have met with little success. Without a standardized magnetic nanoparticle or calorimeter device, objective comparisons of estimated thermal output among laboratories remain a challenge. In addition, the most widely used adiabatic initial slope model fails to account for thermal losses, which are unavoidable. We propose a non-adiabatic method to analyze MNP heating efficiency derived from the Box-Lucas equation, wherein the sample is subjected to several short duration heating pulses. SLP is then estimated from an arithmetic average of the Box-Lucas fitted coefficients obtained from each pulse. Heating experiments were conducted with two identical samples that were placed within vessels having different thermal insulation using the same AMF parameters. Though the samples generated different temperature curves, the pulsed Box-Lucas method produced nearly equivalent SLP estimates. Further, the pulsed test enabled analysis of the heat transfer coefficient providing quantitative measures of sample heat loss throughout the test, with robust statistical confidence. We anticipate this new methodology will aid efforts to standardize measurements of MNP heating efficiency, enabling direct comparison among varied systems.
Collapse
Affiliation(s)
- Hayden Carlton
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, USA
| | - Robert Ivkov
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, USA
| |
Collapse
|
4
|
Kim H, Im PW, Lee C, Hong H, Lee W, Koo C, Park SY, Im HJ, Paek SH, Piao Y. In vitro magnetic hyperthermia properties of angle-shaped superparamagnetic iron oxide nanoparticles synthesized by a bromide-assisted polyol method. RSC Adv 2023; 13:2803-2810. [PMID: 36756446 PMCID: PMC9850280 DOI: 10.1039/d2ra07190h] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 12/30/2022] [Indexed: 01/21/2023] Open
Abstract
Currently, research on superparamagnetic iron oxide nanoparticles (SPIONs) for magnetic hyperthermia applications is steadily increasing. In this work, SPIONs were synthesized by the bromide-assisted polyol method and angle-shaped SPIONs were successfully generated with the optimized concentration of bromide. The influence of bromide concentration on the shape of the generated SPIONs as well as the heating characteristics under an alternating magnetic field (AMF) was thoroughly investigated. At a concentration of 20 mg mL-1 of the angle-shaped SPIONs, the highest temperature curve up to 23 °C was observed under AMF with 140 Oe and 100 kHz for 10 min. With the biotoxicity assay, no significant cytotoxicity was observed in the normal fibroblast of HFB-141103 as well as tumor cells of U87MG and FSall treated with the angle-shaped SPIONs at a concentration below 100 μg mL-1. However, significantly decreased cellular viability was observed in tumor cells of U87MG and FSall treated with 100 μg mL-1 of the angle-shaped SPIONs under AMF with 140 Oe and 100 kHz. Based on these results, it is thought that the angle-shaped SPIONs synthesized by the bromide-assisted polyol method will provide highly efficient magnetic hyperthermia therapy for cancers under biologically safe AMF with 140 Oe and 100 kHz.
Collapse
Affiliation(s)
- Hoonsub Kim
- Department of Applied Bioengineering, Graduate School of Convergence Science and Technology, Seoul National University Suwon-si Gyeonggi-do 16229 Republic of Korea
| | - Pyung Won Im
- Cancer Research Institute, Seoul National University Seoul 03080 Republic of Korea
| | - Chaedong Lee
- Department of Applied Bioengineering, Graduate School of Convergence Science and Technology, Seoul National University Suwon-si Gyeonggi-do 16229 Republic of Korea
| | - Hwichan Hong
- Department of Applied Bioengineering, Graduate School of Convergence Science and Technology, Seoul National University Suwon-si Gyeonggi-do 16229 Republic of Korea
| | - Wooseung Lee
- Department of Applied Bioengineering, Graduate School of Convergence Science and Technology, Seoul National University Suwon-si Gyeonggi-do 16229 Republic of Korea
| | - Changhyuk Koo
- Department of Applied Bioengineering, Graduate School of Convergence Science and Technology, Seoul National University Suwon-si Gyeonggi-do 16229 Republic of Korea
| | - Sang Yoon Park
- Advanced Institutes of Convergence Technology Suwon-si Gyeonggi-do 16229 South Korea +82 31 888 9141
| | - Hyung-Jun Im
- Department of Applied Bioengineering, Graduate School of Convergence Science and Technology, Seoul National University Suwon-si Gyeonggi-do 16229 Republic of Korea .,Cancer Research Institute, Seoul National University Seoul 03080 Republic of Korea .,Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University Seoul 08826 Republic of Korea
| | - Sun Ha Paek
- Cancer Research Institute, Seoul National University Seoul 03080 Republic of Korea .,Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University Seoul 08826 Republic of Korea.,Department of Neurosurgery, Hypoxia/Ischemia Disease Institute, Seoul National University Seoul 03080 Republic of Korea
| | - Yuanzhe Piao
- Department of Applied Bioengineering, Graduate School of Convergence Science and Technology, Seoul National University Suwon-si Gyeonggi-do 16229 Republic of Korea .,Advanced Institutes of Convergence Technology Suwon-si Gyeonggi-do 16229 South Korea +82 31 888 9141
| |
Collapse
|
5
|
Smart Bone Graft Composite for Cancer Therapy Using Magnetic Hyperthermia. MATERIALS 2022; 15:ma15093187. [PMID: 35591525 PMCID: PMC9104543 DOI: 10.3390/ma15093187] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/10/2022] [Accepted: 04/11/2022] [Indexed: 02/06/2023]
Abstract
Magnetic hyperthermia (MHT) is a therapy that uses the heat generated by a magnetic material for cancer treatment. Magnetite nanoparticles are the most used materials in MHT. However, magnetite has a high Curie temperature (Tc~580 °C), and its use may generate local superheating. To overcome this problem, strontium-doped lanthanum manganite could replace magnetite because it shows a Tc near the ideal range (42–45 °C). In this study, we developed a smart composite formed by an F18 bioactive glass matrix with different amounts of Lanthanum-Strontium Manganite (LSM) powder (5, 10, 20, and 30 wt.% LSM). The effect of LSM addition was analyzed in terms of sinterability, magnetic properties, heating ability under a magnetic field, and in vitro bioactivity. The saturation magnetization (Ms) and remanent magnetization (Mr) increased by the LSM content, the confinement of LSM particles within the bioactive glass matrix also caused an increase in Tc. Calorimetry evaluation revealed a temperature increase from 5 °C (composition LSM5) to 15 °C (LSM30). The specific absorption rates were also calculated. Bioactivity measurements demonstrated HCA formation on the surface of all the composites in up to 15 days. The best material reached 40 °C, demonstrating the proof of concept sought in this research. Therefore, these composites have great potential for bone cancer therapy and should be further explored.
Collapse
|
6
|
Popescu T, Oktaviani Matei C, Culita DC, Maraloiu VA, Rostas AM, Diamandescu L, Iacob N, Savopol T, Ilas MC, Feder M, Lupu AR, Iacoban AC, Vlaicu ID, Moisescu MG. Facile synthesis of low toxicity iron oxide/TiO 2 nanocomposites with hyperthermic and photo-oxidation properties. Sci Rep 2022; 12:6887. [PMID: 35477987 PMCID: PMC9046213 DOI: 10.1038/s41598-022-11003-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 04/18/2022] [Indexed: 12/20/2022] Open
Abstract
The present study aimed to assess the feasibility of developing low-cost multipurpose iron oxide/TiO2 nanocomposites (NCs) for use in combined antitumor therapies and water treatment applications. Larger size (≈ 100 nm) iron oxide nanoparticles (IONPs) formed magnetic core-TiO2 shell structures at high Fe/Ti ratios and solid dispersions of IONPs embedded in TiO2 matrices when the Fe/Ti ratio was low. When the size of the iron phase was comparable to the size of the crystallized TiO2 nanoparticles (≈ 10 nm), the obtained nanocomposites consisted of randomly mixed aggregates of TiO2 and IONPs. The best inductive heating and ROS photogeneration properties were shown by the NCs synthesized at 400 °C which contained the minimum amount of α-Fe2O3 and sufficiently crystallized anatase TiO2. Their cytocompatibility was assessed on cultured human and murine fibroblast cells and analyzed in relation to the adsorption of bovine serum albumin from the culture medium onto their surface. The tested nanocomposites showed excellent cytocompatibility to human fibroblast cells. The results also indicated that the environment (i.e. phosphate buffer or culture medium) used to disperse the nanomaterials prior to performing the viability tests can have a significant impact on their cytotoxicity.
Collapse
Affiliation(s)
- Traian Popescu
- National Institute of Materials Physics, Str. Atomistilor 405A, POB MG 7, 077125, Magurele, Ilfov, Romania
| | - Christien Oktaviani Matei
- Biophysics and Cellular Biotechnology Department, Excellence Centre for Research in Biophysics and Cellular Biotechnology, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari Blvd., 050474, Bucharest, Romania
| | - Daniela Cristina Culita
- Ilie Murgulescu Institute of Physical Chemistry, Romanian Academy, 202 Splaiul Independentei, 060021, Bucharest, Romania
| | - Valentin-Adrian Maraloiu
- National Institute of Materials Physics, Str. Atomistilor 405A, POB MG 7, 077125, Magurele, Ilfov, Romania
| | - Arpad Mihai Rostas
- National Institute of Materials Physics, Str. Atomistilor 405A, POB MG 7, 077125, Magurele, Ilfov, Romania
| | - Lucian Diamandescu
- National Institute of Materials Physics, Str. Atomistilor 405A, POB MG 7, 077125, Magurele, Ilfov, Romania
| | - Nicusor Iacob
- National Institute of Materials Physics, Str. Atomistilor 405A, POB MG 7, 077125, Magurele, Ilfov, Romania
| | - Tudor Savopol
- Biophysics and Cellular Biotechnology Department, Excellence Centre for Research in Biophysics and Cellular Biotechnology, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari Blvd., 050474, Bucharest, Romania
| | - Monica Cristiana Ilas
- National Institute of Materials Physics, Str. Atomistilor 405A, POB MG 7, 077125, Magurele, Ilfov, Romania
| | - Marcel Feder
- National Institute of Materials Physics, Str. Atomistilor 405A, POB MG 7, 077125, Magurele, Ilfov, Romania
| | - Andreea-Roxana Lupu
- "Victor Babes" National Institute of Pathology, Splaiul Independentei 99-101, Bucharest, Romania
| | - Alexandra Corina Iacoban
- National Institute of Materials Physics, Str. Atomistilor 405A, POB MG 7, 077125, Magurele, Ilfov, Romania
| | - Ioana Dorina Vlaicu
- National Institute of Materials Physics, Str. Atomistilor 405A, POB MG 7, 077125, Magurele, Ilfov, Romania.
| | - Mihaela Georgeta Moisescu
- Biophysics and Cellular Biotechnology Department, Excellence Centre for Research in Biophysics and Cellular Biotechnology, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari Blvd., 050474, Bucharest, Romania
| |
Collapse
|
7
|
Abedini-Nassab R, Ding X, Xie H. A novel magnetophoretic-based device for magnetometry and separation of single magnetic particles and magnetized cells. LAB ON A CHIP 2022; 22:738-746. [PMID: 35040849 DOI: 10.1039/d1lc01104a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The use of magnetic micro- and nanoparticles in medicine and biology is expanding. One important example is the transport of magnetic microparticles and magnetized cells in lab-on-a-chip systems. The magnetic susceptibility of the particles is a key factor in determining their response to the externally applied magnetic field. Typically, to measure this parameter, their magnetophoretic mobility is studied. However, the particle tracking system for accurately determining the traveled distance in a certain time may be too complicated. Here, we introduce a lithographically fabricated chip composed of an array of thin magnetic micro-disks for evaluating the magnetic susceptibility of numerous individual magnetic particles simultaneously. The proposed novel magnetometer works based on the phase change in the trajectory of microparticles circulating around the disks in a rotating in-plane magnetic field. We explain that the easily detectable transition between the "phase-locked" and the "phase-slipping" regimes and the frequency at which it happens are appropriate parameters for measuring the magnetic susceptibility of the magnetic particles at the single-particle level. We show that this high-throughput (i.e., ∼ten thousand particles on a 1 cm2 area) single-particle magnetometry method has various crucial applications, including i) magnetic characterization of magnetic beads as well as magnetically labeled living cells, ii) determining the magnetization rate of the cells taking up magnetic nanoparticles with respect to time, iii) evaluating the rate of degradation of magnetic nanoparticles in cells over time, iv) detecting the number of target cells in a sample, and v) separating particles based on their size and magnetic susceptibility.
Collapse
Affiliation(s)
- Roozbeh Abedini-Nassab
- Faculty of Mechanical Engineering, Tarbiat Modares University, P.O. Box: 14115-111, Tehran, Iran.
| | - Xianting Ding
- School of Biomedical Engineering, Institute for Personalized Medicine, Shanghai Jiao Tong University, 200030, China
| | - Haiyang Xie
- School of Biomedical Engineering, Institute for Personalized Medicine, Shanghai Jiao Tong University, 200030, China
| |
Collapse
|
8
|
Zeinoun M, Domingo-Diez J, Rodriguez-Garcia M, Garcia O, Vasic M, Ramos M, Serrano Olmedo JJ. Enhancing Magnetic Hyperthermia Nanoparticle Heating Efficiency with Non-Sinusoidal Alternating Magnetic Field Waveforms. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:3240. [PMID: 34947589 PMCID: PMC8704388 DOI: 10.3390/nano11123240] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 11/01/2021] [Accepted: 11/26/2021] [Indexed: 01/23/2023]
Abstract
For decades now, conventional sinusoidal signals have been exclusively used in magnetic hyperthermia as the only alternating magnetic field waveform to excite magnetic nanoparticles. However, there are no theoretical nor experimental reasons that prevent the use of different waveforms. The only justifiable motive behind using the sinusoidal signal is its availability and the facility to produce it. Following the development of a configurable alternating magnetic field generator, we aim to study the effect of various waveforms on the heat production effectiveness of magnetic nanoparticles, seeking to prove that signals with more significant slope values, such as the trapezoidal and almost-square signals, allow the nanoparticles to reach higher efficiency in heat generation. Furthermore, we seek to point out that the nanoparticle power dissipation is dependent on the waveform's slope and not only the frequency, magnetic field intensity and the nanoparticle size. The experimental results showed a remarkably higher heat production performance of the nanoparticles when exposed to trapezoidal and almost-square signals than conventional sinusoidal signals. We conclude that the nanoparticles respond better to the trapezoidal and almost-square signals. On the other hand, the experimental results were used to calculate the normalized power dissipation value and prove its dependency on the slope. However, adjustments are necessary to the coil before proceeding with in vitro and in vivo studies to handle the magnetic fields required.
Collapse
Affiliation(s)
- Michael Zeinoun
- Center for Biomedical Technology (CTB), Universidad Politécnica de Madrid (UPM), Campus Montegancedo, 28233 Madrid, Spain; (J.D.-D.); (M.R.-G.); (M.R.)
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid, Spain
| | - Javier Domingo-Diez
- Center for Biomedical Technology (CTB), Universidad Politécnica de Madrid (UPM), Campus Montegancedo, 28233 Madrid, Spain; (J.D.-D.); (M.R.-G.); (M.R.)
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid, Spain
| | - Miguel Rodriguez-Garcia
- Center for Biomedical Technology (CTB), Universidad Politécnica de Madrid (UPM), Campus Montegancedo, 28233 Madrid, Spain; (J.D.-D.); (M.R.-G.); (M.R.)
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid, Spain
| | - Oscar Garcia
- Centro de Electrónica Industrial, Universidad Politécnica de Madrid (UPM), 28006 Madrid, Spain; (O.G.); (M.V.)
| | - Miroslav Vasic
- Centro de Electrónica Industrial, Universidad Politécnica de Madrid (UPM), 28006 Madrid, Spain; (O.G.); (M.V.)
| | - Milagros Ramos
- Center for Biomedical Technology (CTB), Universidad Politécnica de Madrid (UPM), Campus Montegancedo, 28233 Madrid, Spain; (J.D.-D.); (M.R.-G.); (M.R.)
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid, Spain
| | - José Javier Serrano Olmedo
- Center for Biomedical Technology (CTB), Universidad Politécnica de Madrid (UPM), Campus Montegancedo, 28233 Madrid, Spain; (J.D.-D.); (M.R.-G.); (M.R.)
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid, Spain
| |
Collapse
|