1
|
Li Q, Wang C, Zhang S, Fu Z, Jiao X, Jin Z, Hejtmancik JF, Miao H, Qi S, Peng X. Targeted lipidomics uncovers oxylipin perturbations and potential circulation biomarkers in Bietti's crystalline dystrophy. Graefes Arch Clin Exp Ophthalmol 2024; 262:3773-3786. [PMID: 38963460 DOI: 10.1007/s00417-024-06554-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 06/04/2024] [Accepted: 06/12/2024] [Indexed: 07/05/2024] Open
Abstract
PURPOSE Abnormalities in lipid metabolism have been proposed in Bietti's crystalline dystrophy (BCD). We aim to characterize the lipid profiles in a case-control study. METHODS All participants were genetically confirmed by CYP4V2 gene sequencing and underwent chorioretinopathy evaluation by calculating the percentages of AF atrophy (PAFA). Fasting blood samples of BCD patients and controls were collected, and plasma was analyzed for routine lipid profiles. Targeted lipidomic evaluation includes long chain polyunsaturated fatty acids (LCPUFA) and associated eicosanoid metabolites. RESULTS Routine lipids profiles showed elevated plasma levels of triglyceride (P = 0.043) and low-density lipoprotein cholesterol (P = 0.024) in BCD patients. Lipidomic analysis showed significantly decreased levels of ω-3 LCPUFA including docosahexaenoic acid (DHA, 22:6, P = 0.00068) and eicosapentaenoic acid (EPA, 20:5, P = 0.0016), as well as ω-6 LCPUFA arachidonic acid (ARA, 20:4, P < 0.0001) in BCD patients. Eicosanoid metabolites, either derived from ω-3 and/ or ω-6 LCPUFAs via cyclooxygenase (COX) or lipoxygenase (LOX) pathways, including 5-HEPE, 12-HEPE, 13-HDHA, 15-HETE, 12-HETE, 5-HETE, 6k-PGF1a, PGE2, PGJ2, and TXB2, exhibited significant differences (P < 0.0001) between BCD patients and controls. Genotypes of CYP4V2, specifically the biallelic null mutations, were observed to correlate with more remarkably reduced levels of oxylipins, involving major LOX pathway metabolites including 5-HETE, 5-HEPE, 12-HEPE and LTB4. CONCLUSIONS BCD patients demonstrated significant decreases in plasma levels of ω-3 and ω-6 LCPUFA (DHA, EPA, and ARA), as well as their downstream metabolites via the COX and LOX pathways, suggesting that these might be implicated in BCD pathogenesis and could serve as biomarkers and therapeutic targets of the disease. KEY MESSAGES What is known BCD is a vision-threatening hereditary disease the causative gene of which is CYP4V2. Abnormalities in lipid metabolism have been proposed and demonstrated previously in BCD studies. The detailed pathogenesis remains unclear and controversial. What is new We observed prominent lipidomic alterations in the circulation when compared with age, gender, and bodymass index (BMI)-matched healthy controls. BCD patients demonstrated significant decreases in plasma levels of ω-3 and ω-6 LCPUFA (DHA, EPA, and ARA). Remarkable changes were observed in the downstream metabolites of the LCPUFA via the COX and LOX pathways. Genotypes of CYP4V2, specifically the biallelic null mutations, were observed to correlate with more remarkably reduced levels of oxylipins, involving major LOX pathway metabolites.
Collapse
Affiliation(s)
- Qian Li
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Beijing Key Laboratory of Ophthalmology and Visual Sciences, Capital Medical University, No.1 Dongjiaominxiang, Dongcheng District, Beijing, 100730, China.
| | - Cong Wang
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Beijing Key Laboratory of Ophthalmology and Visual Sciences, Capital Medical University, No.1 Dongjiaominxiang, Dongcheng District, Beijing, 100730, China
| | | | - Zhongjie Fu
- Department of Ophthalmology, Harvard Medical School, Boston Children's Hospital, Boston, MA, USA
| | - Xiaodong Jiao
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Zibing Jin
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - J Fielding Hejtmancik
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Huan Miao
- LipidALL Technologies Company Limited, Changzhou, Jiangsu, China
| | - Simeng Qi
- LipidALL Technologies Company Limited, Changzhou, Jiangsu, China
| | - Xiaoyan Peng
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Beijing Key Laboratory of Ophthalmology and Visual Sciences, Capital Medical University, No.1 Dongjiaominxiang, Dongcheng District, Beijing, 100730, China.
| |
Collapse
|
2
|
Li Y, Liu X, Sun X, Li H, Wang S, Tian W, Xiang C, Zhang X, Zheng J, Wang H, Zhang L, Cao L, Wong CCL, Liu Z. Gut dysbiosis impairs intestinal renewal and lipid absorption in Scarb2 deficiency-associated neurodegeneration. Protein Cell 2024; 15:818-839. [PMID: 38635907 PMCID: PMC11528516 DOI: 10.1093/procel/pwae016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 03/05/2024] [Indexed: 04/20/2024] Open
Abstract
Scavenger receptor class B, member 2 (SCARB2) is linked to Gaucher disease and Parkinson's disease. Deficiency in the SCARB2 gene causes progressive myoclonus epilepsy (PME), a rare group of inherited neurodegenerative diseases characterized by myoclonus. We found that Scarb2 deficiency in mice leads to age-dependent dietary lipid malabsorption, accompanied with vitamin E deficiency. Our investigation revealed that Scarb2 deficiency is associated with gut dysbiosis and an altered bile acid pool, leading to hyperactivation of FXR in intestine. Hyperactivation of FXR impairs epithelium renewal and lipid absorption. Patients with SCARB2 mutations have a severe reduction in their vitamin E levels and cannot absorb dietary vitamin E. Finally, inhibiting FXR or supplementing vitamin E ameliorates the neuromotor impairment and neuropathy in Scarb2 knockout mice. These data indicate that gastrointestinal dysfunction is associated with SCARB2 deficiency-related neurodegeneration, and SCARB2-associated neurodegeneration can be improved by addressing the nutrition deficits and gastrointestinal issues.
Collapse
Affiliation(s)
- Yinghui Li
- Institute for Immunology and School of Basic Medicine, Tsinghua University, Beijing 100084, China
- Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- Institute of Biophysics, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xingchen Liu
- Institute for Immunology and School of Basic Medicine, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Xue Sun
- First School of Clinical Medicine, Peking University First Hospital, Peking University, Beijing 100034, China
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, United States
| | - Hui Li
- Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- Institute of Biophysics, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shige Wang
- Department of Neurology, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai 200233, China
| | - Wotu Tian
- Department of Neurology, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai 200233, China
| | - Chen Xiang
- Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- Institute of Biophysics, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xuyuan Zhang
- Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Jiajia Zheng
- Department of Laboratory Medicine, Peking University Third Hospital, Beijing, 100191, China
| | - Haifang Wang
- Clinical Stem Cell Research Center, Peking University Third Hospital, Beijing 100191, China
| | - Liguo Zhang
- Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Li Cao
- Department of Neurology, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai 200233, China
| | - Catherine C L Wong
- Department of Medical Research Center, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
- Tsinghua University-Peking University Joint Center for Life Sciences, Peking University, Beijing 100084, China
| | - Zhihua Liu
- Institute for Immunology and School of Basic Medicine, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China
| |
Collapse
|
3
|
Torrente-Rodríguez RM, Ruiz-Valdepeñas Montiel V, Iftimie S, Montero-Calle A, Pingarrón JM, Castro A, Camps J, Barderas R, Campuzano S, Joven J. Contributing to the management of viral infections through simple immunosensing of the arachidonic acid serum level. Mikrochim Acta 2024; 191:369. [PMID: 38834823 PMCID: PMC11150294 DOI: 10.1007/s00604-024-06440-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 05/15/2024] [Indexed: 06/06/2024]
Abstract
A trendsetting direct competitive-based biosensing tool has been developed and implemented for the determination of the polyunsaturated fatty acid arachidonic acid (ARA), a highly significant biological regulator with decisive roles in viral infections. The designed methodology involves a competitive reaction between the target endogenous ARA and a biotin-ARA competitor for the recognition sites of anti-ARA antibodies covalently attached to the surface of carboxylic acid-coated magnetic microbeads (HOOC-MµBs), followed by the enzymatic label of the biotin-ARA residues with streptavidin-horseradish peroxidase (Strep-HRP) conjugate. The resulting bioconjugates were magnetically trapped onto the sensing surface of disposable screen-printed carbon transducers (SPCEs) to monitor the extent of the biorecognition reaction through amperometry. The operational functioning of the exhaustively optimized and characterized immunosensing bioplatform was highly convenient for the quantitative determination of ARA in serum samples from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2-) and respiratory syncytial virus (RSV)-infected individuals in a rapid, affordable, trustful, and sensitive manner.
Collapse
Affiliation(s)
- Rebeca M Torrente-Rodríguez
- Departamento de Química Analítica, Facultad de CC. Químicas, Universidad Complutense de Madrid, Pza. de las Ciencias 2, Madrid, 28040, Spain
| | - Víctor Ruiz-Valdepeñas Montiel
- Departamento de Química Analítica, Facultad de CC. Químicas, Universidad Complutense de Madrid, Pza. de las Ciencias 2, Madrid, 28040, Spain
| | - Simona Iftimie
- Servei de Medicina Interna, Hospital Universitari de Sant Joan, Institut d'Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Av. Dr. Josep Laporte 2, Reus, 43204, Spain
| | - Ana Montero-Calle
- Chronic Disease Programme, UFIEC, Instituto de Salud Carlos III, Majadahonda, Madrid, 28220, Spain
| | - José M Pingarrón
- Departamento de Química Analítica, Facultad de CC. Químicas, Universidad Complutense de Madrid, Pza. de las Ciencias 2, Madrid, 28040, Spain
| | - Antoni Castro
- Servei de Medicina Interna, Hospital Universitari de Sant Joan, Institut d'Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Av. Dr. Josep Laporte 2, Reus, 43204, Spain
| | - Jordi Camps
- Unitat de Recerca Biomèdica, Hospital Universitari de Sant Joan, Institut d'Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Av. Dr. Josep Laporte 2, Reus, 43204, Spain
| | - Rodrigo Barderas
- Chronic Disease Programme, UFIEC, Instituto de Salud Carlos III, Majadahonda, Madrid, 28220, Spain
- CIBER of Frailty and Healthy Aging (CIBERFES), Madrid, Spain
| | - Susana Campuzano
- Departamento de Química Analítica, Facultad de CC. Químicas, Universidad Complutense de Madrid, Pza. de las Ciencias 2, Madrid, 28040, Spain.
| | - Jorge Joven
- Unitat de Recerca Biomèdica, Hospital Universitari de Sant Joan, Institut d'Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Av. Dr. Josep Laporte 2, Reus, 43204, Spain
| |
Collapse
|
4
|
Muñoz-Juan A, Benseny-Cases N, Guha S, Barba I, Caldwell KA, Caldwell GA, Agulló L, Yuste VJ, Laromaine A, Dalfó E. Caenorhabditis elegans RAC1/ced-10 mutants as a new animal model to study very early stages of Parkinson's disease. Prog Neurobiol 2024; 234:102572. [PMID: 38253120 DOI: 10.1016/j.pneurobio.2024.102572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/21/2023] [Accepted: 01/15/2024] [Indexed: 01/24/2024]
Abstract
Patients with Parkinson's disease (PD) display non-motor symptoms arising prior to the appearance of motor signs and before a clear diagnosis. Motor and non-motor symptoms correlate with progressive deposition of the protein alpha-synuclein (Asyn) both within and outside of the central nervous system, and its accumulation parallels neurodegeneration. The genome of Caenorhabditis elegans does not encode a homolog of Asyn, thus rendering this nematode an invaluable system with which to investigate PD-related mechanisms in the absence of interference from endogenous Asyn aggregation. CED-10 is the nematode homolog of human RAC1, a small GTPase needed to maintain the function and survival of dopaminergic neurons against human Asyn-induced toxicity in C. elegans. Here, we introduce C. elegans RAC1/ced-10 mutants as a predictive tool to investigate early PD symptoms before neurodegeneration occurs. Deep phenotyping of these animals reveals that, early in development, they displayed altered defecation cycles, GABAergic abnormalities and an increased oxidation index. Moreover, they exhibited altered lipid metabolism evidenced by the accumulation of lipid droplets. Lipidomic fingerprinting indicates that phosphatidylcholine and sphingomyelin, but not phosphatidylethanolamine or phosphatidylserine, were elevated in RAC1/ced-10 mutant nematodes. These collective characteristics reflect the non-motor dysfunction, GABAergic neurotransmission defects, upregulation of stress response mechanisms, and metabolic changes associated with early-onset PD. Thus, we put forward an easy-to-manipulate preclinical animal model to deepen our understanding of early-stage PD and accelerate the translational path for therapeutic target discovery.
Collapse
Affiliation(s)
- A Muñoz-Juan
- Group of Nanoparticles and Nanocomposites, Institut Ciència de Materials de Barcelona, ICMAB-CSIC, Campus UAB, 08193 Bellaterra, Barcelona, Spain
| | - N Benseny-Cases
- Biophysics Unit. Department of Biochemistry and Molecular Biology. Universitat Autònoma de Barcelona, Bellaterra 08193, Barcelona, Spain
| | - S Guha
- Nautilus Biotechnology, 835 Industrial Rd, San Carlos, CA 94070, USA
| | - I Barba
- Faculty of Medicine, University of Vic-Central University of Catalonia (UVic-UCC), Institute for Research and Innovation in Life Sciences and Health in Central Catalonia (IRIS-CC), Can Baumann, 08500 Vic, Spain
| | - K A Caldwell
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL 35487, USA; Department of Neurology, Center for Neurodegeneration and Experimental Therapeutics, and Nathan Shock Center of Excellence in the Basic Biology of Aging, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL 35294, USA
| | - G A Caldwell
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL 35487, USA; Department of Neurology, Center for Neurodegeneration and Experimental Therapeutics, and Nathan Shock Center of Excellence in the Basic Biology of Aging, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL 35294, USA
| | - L Agulló
- Faculty of Medicine, University of Vic-Central University of Catalonia (UVic-UCC), Institute for Research and Innovation in Life Sciences and Health in Central Catalonia (IRIS-CC), Can Baumann, 08500 Vic, Spain
| | - V J Yuste
- Department of Biochemistry and Molecular Biology, Institut de Neurociències, Faculty of Medicine, M2, Universitat Autònoma de Barcelona (UAB), Bellaterra Campus, Cerdanyola del Vallés, Barcelona, Spain
| | - A Laromaine
- Group of Nanoparticles and Nanocomposites, Institut Ciència de Materials de Barcelona, ICMAB-CSIC, Campus UAB, 08193 Bellaterra, Barcelona, Spain
| | - E Dalfó
- Faculty of Medicine, University of Vic-Central University of Catalonia (UVic-UCC), Institute for Research and Innovation in Life Sciences and Health in Central Catalonia (IRIS-CC), Can Baumann, 08500 Vic, Spain; Department of Biochemistry and Molecular Biology, Institut de Neurociències, Faculty of Medicine, M2, Universitat Autònoma de Barcelona (UAB), Bellaterra Campus, Cerdanyola del Vallés, Barcelona, Spain; Institute of Neurosciences, Faculty of Medicine, Universitat Autònoma de Barcelona (UAB), Campus UAB, 08193 Cerdanyola del Vallès, Spain.
| |
Collapse
|
5
|
de Queiroz Cavalcanti SA, de Almeida LA, Gasparotto J. Effects of a high saturated fatty acid diet on the intestinal microbiota modification and associated impacts on Parkinson's disease development. J Neuroimmunol 2023; 382:578171. [PMID: 37562163 DOI: 10.1016/j.jneuroim.2023.578171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/28/2023] [Accepted: 08/04/2023] [Indexed: 08/12/2023]
Abstract
Recent research has focused on the link between diet, intestinal microbiota, and the impact of excessive consumption of saturated fatty acids. Saturated fatty acids, found in animal fats, dairy, and processed foods, contribute to dysbiosis, increase intestinal barrier permeability, chronic low-grade inflammation, oxidative stress, and dysfunction of the blood-brain barrier, affecting the central nervous system. High intake of saturated fatty acids is associated with an increased risk of developing Parkinson's disease (PD). Diets low in saturated fats, rich in fibers, promote microbial diversity, improve gut health, and potentially reduce the risk of neurodegenerative diseases like PD.
Collapse
Affiliation(s)
| | - Leonardo Augusto de Almeida
- Instituto de Ciências Biomédicas - Universidade Federal de Alfenas, Rua Gabriel Monteiro da Silva, 700, CEP: 37130-001 Alfenas, Minas Gerais, Brazil
| | - Juciano Gasparotto
- Instituto de Ciências Biomédicas - Universidade Federal de Alfenas, Rua Gabriel Monteiro da Silva, 700, CEP: 37130-001 Alfenas, Minas Gerais, Brazil.
| |
Collapse
|
6
|
Battis K, Xiang W, Winkler J. The Bidirectional Interplay of α-Synuclein with Lipids in the Central Nervous System and Its Implications for the Pathogenesis of Parkinson's Disease. Int J Mol Sci 2023; 24:13270. [PMID: 37686080 PMCID: PMC10487772 DOI: 10.3390/ijms241713270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/23/2023] [Accepted: 08/24/2023] [Indexed: 09/10/2023] Open
Abstract
The alteration and aggregation of alpha-synuclein (α-syn) play a crucial role in neurodegenerative diseases collectively termed as synucleinopathies, including Parkinson's disease (PD). The bidirectional interaction of α-syn with lipids and biomembranes impacts not only α-syn aggregation but also lipid homeostasis. Indeed, lipid composition and metabolism are severely perturbed in PD. One explanation for lipid-associated alterations may involve structural changes in α-syn, caused, for example, by missense mutations in the lipid-binding region of α-syn as well as post-translational modifications such as phosphorylation, acetylation, nitration, ubiquitination, truncation, glycosylation, and glycation. Notably, different strategies targeting the α-syn-lipid interaction have been identified and are able to reduce α-syn pathology. These approaches include the modulation of post-translational modifications aiming to reduce the aggregation of α-syn and modify its binding properties to lipid membranes. Furthermore, targeting enzymes involved in various steps of lipid metabolism and exploring the neuroprotective potential of lipids themselves have emerged as novel therapeutic approaches. Taken together, this review focuses on the bidirectional crosstalk of α-syn and lipids and how alterations of this interaction affect PD and thereby open a window for therapeutic interventions.
Collapse
Affiliation(s)
| | | | - Jürgen Winkler
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, 91054 Erlangen, Germany; (K.B.); (W.X.)
| |
Collapse
|
7
|
Snyder J, Wu Z. Origins of nervous tissue susceptibility to ferroptosis. CELL INSIGHT 2023; 2:100091. [PMID: 37398634 PMCID: PMC10308196 DOI: 10.1016/j.cellin.2023.100091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 03/03/2023] [Accepted: 03/11/2023] [Indexed: 07/04/2023]
Abstract
Ferroptosis is a newly defined form of programmed cell death. It possesses unique processes of cell demise, cytopathological changes, and independent signal regulation pathways. Ferroptosis is considered to be deeply involved in the development of many diseases, including cancer, cardiovascular diseases, and neurodegeneration. Intriguingly, why cells in certain tissues and organs (such as the central nervous system, CNS) are more sensitive to changes in ferroptosis remains a question that has not been carefully discussed. In this Holmesian review, we discuss lipid composition as a potential but often overlooked determining factor in ferroptosis sensitivity and the role of polyunsaturated fatty acids (PUFAs) in the pathogenesis of several common human neurodegenerative diseases. In subsequent studies of ferroptosis, lipid composition needs to be given special attention, as it may significantly affect the susceptibility of the cell model used (or the tissue studied).
Collapse
Affiliation(s)
- Jessica Snyder
- Department of Biological Sciences, Dedman College of Humanities and Sciences, Southern Methodist University, Dallas, TX, 75275, USA
| | - Zhihao Wu
- Department of Biological Sciences, Dedman College of Humanities and Sciences, Southern Methodist University, Dallas, TX, 75275, USA
| |
Collapse
|
8
|
Zhu X, Huang S, Kang W, Chen P, Liu J. Associations between polyunsaturated fatty acid concentrations and Parkinson's disease: A two-sample Mendelian randomization study. Front Aging Neurosci 2023; 15:1123239. [PMID: 36909950 PMCID: PMC9992541 DOI: 10.3389/fnagi.2023.1123239] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 02/02/2023] [Indexed: 02/24/2023] Open
Abstract
Introduction Observational studies demonstrated controversial effect of polyunsaturated fatty acids (PUFAs) on Parkinson's disease (PD) with limited causality evidence. Randomized control trials showed possible improvement in PD symptoms with PUFA supplement but had small study population and limited intervention time. Methods A two-sample Mendelian randomization was designed to evaluate the causal relevance between PUFAs and PD, using genetic variants of PUFAs as instrumental variables and PD data from the largest genome-wide association study as outcome. Inverse variance weighted (IVW) method was applied to obtain the primary outcome. Mendelian randomization Egger regression, weighted median and weighted mode methods were exploited to assist result analyses. Strict Mendelian randomization and multivariable Mendelian randomization (MVMR) were used to estimate direct effects of PUFAs on PD, eliminating pleiotropic effect. Debiased inverse variance weighted estimator was implemented when weak instrument bias was introduced into the analysis. A variety of sensitivity analyses were utilized to assess validity of the results. Results Our study included 33,674 PD cases and 449,056 controls. Higher plasma level of arachidonic acid (AA) was associated with a 3% increase of PD risk per 1-standard deviation (SD) increase of AA (IVW; Odds ratio (OR)=1.03 [95% confidence interval (CI) 1.01-1.04], P = 2.24E-04). After MVMR (IVW; OR=1.03 [95% CI 1.02-1.04], P =6.15E-08) and deletion of pleiotropic single-nucleotide polymorphisms overlapping with other lipids (IVW; OR=1.03 [95% CI 1.01-1.05], P =5.88E-04), result was still significant. Increased level of eicosapentaenoic acid (EPA) showed possible relevance with increased PD risk after adjustment of pleiotropy (MVMR; OR=1.05 [95% CI 1.01-1.08], P =5.40E-03). Linoleic acid (LA), docosahexaenoic acid (DHA), docosapentaenoic acid (DPA) and alpha-linolenic acid (ALA) were found not causally relevant to PD risk. Various sensitivity analyses verified the validity of our results. In conclusion, our findings from Mendelian randomization suggested that elevated levels of AA and possibly EPA might be linked to a higher risk of PD. No association between PD risk and LA, DHA, DPA, or ALA was found. Discussion The odds ratio for plasma AA and PD risk was weak. It is important to approach our results with caution in clinical practice and to conduct additional studies on the relationship between PUFAs and PD risk.
Collapse
Affiliation(s)
- Xue Zhu
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Sijia Huang
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenyan Kang
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Peizhan Chen
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jun Liu
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| |
Collapse
|
9
|
Naren P, Cholkar A, Kamble S, Khan SS, Srivastava S, Madan J, Mehra N, Tiwari V, Singh SB, Khatri DK. Pathological and Therapeutic Advances in Parkinson's Disease: Mitochondria in the Interplay. J Alzheimers Dis 2023; 94:S399-S428. [PMID: 36093711 PMCID: PMC10473111 DOI: 10.3233/jad-220682] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/08/2022] [Indexed: 11/15/2022]
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative illness majorly affecting the population between the ages of 55 to 65 years. Progressive dopaminergic neuronal loss and the collective assemblage of misfolded alpha-synuclein in the substantia nigra, remain notable neuro-pathological hallmarks of the disease. Multitudes of mechanistic pathways have been proposed in attempts to unravel the pathogenesis of PD but still, it remains elusive. The convergence of PD pathology is found in organelle dysfunction where mitochondria remain a major contributor. Mitochondrial processes like bioenergetics, mitochondrial dynamics, and mitophagy are under strict regulation by the mitochondrial genome and nuclear genome. These processes aggravate neurodegenerative activities upon alteration through neuroinflammation, oxidative damage, apoptosis, and proteostatic stress. Therefore, the mitochondria have grabbed a central position in the patho-mechanistic exploration of neurodegenerative diseases like PD. The management of PD remains a challenge to physicians to date, due to the variable therapeutic response of patients and the limitation of conventional chemical agents which only offer symptomatic relief with minimal to no disease-modifying effect. This review describes the patho-mechanistic pathways involved in PD not only limited to protein dyshomeostasis and oxidative stress, but explicit attention has been drawn to exploring mechanisms like organelle dysfunction, primarily mitochondria and mitochondrial genome influence, while delineating the newer exploratory targets such as GBA1, GLP, LRRK2, and miRNAs and therapeutic agents targeting them.
Collapse
Affiliation(s)
- Padmashri Naren
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Anjali Cholkar
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Suchita Kamble
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Sabiya Samim Khan
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Saurabh Srivastava
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Hyderabad, Telangana, India
| | - Jitender Madan
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Hyderabad, Telangana, India
| | - Neelesh Mehra
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Hyderabad, Telangana, India
| | - Vinod Tiwari
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (B.H.U.) Varanasi (U.P.), India
| | - Shashi Bala Singh
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Dharmendra Kumar Khatri
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| |
Collapse
|
10
|
Zhou Z, Li S, Yang Q, Yang X, Liu Y, Hao K, Xu S, Zhao N, Zheng P. Association of n-3 polyunsaturated fatty acid intakes with juvenile myopia: A cross-sectional study based on the NHANES database. Front Pediatr 2023; 11:1122773. [PMID: 37138572 PMCID: PMC10150007 DOI: 10.3389/fped.2023.1122773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 03/27/2023] [Indexed: 05/05/2023] Open
Abstract
Aim Inflammation is involved in the development of myopia. n-3 polyunsaturated fatty acids (n-3 PUFAs) have vasodilating and anti-inflammatory effects, which may be involved in controlling myopia. It is of great significance to explore the relationship between n-3 PUFA intakes and juvenile myopia in order to control and alleviate myopia among teenagers through dietary intervention. Methods Sociodemographic data, information of nutrient intakes, cotinine, PUFAs, and eye refractive status of 1,128 juveniles were extracted from the National Health and Nutrition Examination Survey (NHANES) database in this cross-sectional study. PUFAs contained total polyunsaturated fatty acid (TPFAs), alpha-linolenic acid, octadecatetraenoic acid, eicosapentaenoic acid (EPA), docosapentaenoic acid (DPA), and docosahexaenoic acid (DHA). Covariates were screened by comparison among groups of normal vision, low myopia, and high myopia. The association between n-3 PUFA intakes and the risk of juvenile myopia was evaluated using univariate and multivariate logistic regression analyses with odds ratios (ORs) and 95% confidence intervals (CIs). Results Among the juveniles, 788 (70.68%) had normal vision, 299 (25.80%) had low myopia, and 41 (3.52%) had high myopia. There were significant differences in average EPA and DHA intakes among the three groups, and mean DPA and DHA intakes in the normal vision group were lower than those in the low myopia group (P < 0.05). After adjustment for age, gender, TPFAs, and cotinine, a high dietary intake of EPA (≥11 mg/1,000 kcal) in juveniles seemed to be associated with the risk of high myopia (OR = 0.39, 95% CI: 0.18-0.85), while no significant associations were identified between n-3 PUFA intakes and the risk of low myopia. Conclusion A high dietary intake of EPA may be associated with a decreased risk of high myopia among juveniles. A further prospective study is needed to validate this observation.
Collapse
|