1
|
Shukla I, Wilmers CC. Waste reduction decreases rat activity from peri-urban environment. PLoS One 2024; 19:e0308917. [PMID: 39536030 PMCID: PMC11559977 DOI: 10.1371/journal.pone.0308917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 08/01/2024] [Indexed: 11/16/2024] Open
Abstract
Globally, species in the genus Rattus (specifically Rattus rattus and Rattus norvegicus), are some of the most influential invasive taxa due to their high rates of competitive exclusion and large dietary breadth. However, the specific foraging strategies of urban-adjacent populations remain largely unknown. We examined Rattus spp. dependency on human food supplementation in a population on adjacent non-developed (or peri-urban) land. Via linear regression modeling, we measured rodent activity changes between native and invasive species before and after a decrease in human supplementation due to the COVID-19 lockdown in Santa Cruz, California, USA. We documented invasive rat activity via camera traps in normal (pre-COVID lockdown) conditions near dining halls and similar waste sources, and again under COVID lockdown conditions when sources of human supplementation were drastically decreased. After 120 trap nights we found a significant decrease (p < 0.001) in Rattus activity after the removal of human refuse, while native small mammal activity remained unchanged (p = 0.1). These results have strong conservation implications, as they support the hypothesis that proper waste management is an effective, less-invasive form of population control over conventional rodenticides.
Collapse
Affiliation(s)
- Ishana Shukla
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, Santa Cruz, California, United States of America
| | - Christopher C. Wilmers
- Department of Environmental Studies, University of California, Santa Cruz, Santa Cruz, California, United States of America
| |
Collapse
|
2
|
Burhanuddin M, Noor HM, Salim H, Asrif NA, Jamian S, Azhar B. Field Efficacy of Anticoagulant Rodenticide Towards Managing Rodent Pests in Jitra Rice Field, Kedah, Malaysia. Trop Life Sci Res 2024; 35:243-264. [PMID: 39464665 PMCID: PMC11507976 DOI: 10.21315/tlsr2024.35.3.11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 03/24/2024] [Indexed: 10/29/2024] Open
Abstract
Frequent encounters with the greater bandicoot rats (Bandicota indica) following high rodent damage towards rice crops and lack of information on the species had encouraged this study to be conducted to test the relevance of using first- and second-generation rodenticide in a field efficacy test. This study also attempts to detect any sign of resistance of current rodent pest populations towards chlorophacinone (0.005%) and flucoumafen (0.05%) for the control of field rats predominant rice field agrosystem of the Kedah in northern peninsular Malaysia. Six different treatments over dry and wet rice planting season together with trapping exercise. The observation was evaluated based on the number of active burrows, counting tiller damage due to rodent attack and trapping index. The results indicated that flucoumafen gives better rodent control and has a better impact (p < 0.05) although chlorophacinone is still relevant to be applied (p < 0.05). Treatments during the off-planting season (September-February) are more effective compared to the main planting season (March-August). Rodent control during the early off-planting season is encouraged for better rodent management in the rice field and the use of bait stations to increase the weatherability of the baits.
Collapse
Affiliation(s)
- Maisarah Burhanuddin
- Department of Plant Protection, Faculty of Agriculture, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Hafidzi Mohd Noor
- Department of Plant Protection, Faculty of Agriculture, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Hasber Salim
- School of Biological Sciences, Universiti Sains Malaysia, 11800 USM Pulau Pinang, Malaysia
| | - Nur Athirah Asrif
- Department of Plant Protection, Faculty of Agriculture, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
- Research and Development Department, Eco-Management Unit, Wilmar Plantations S/B, Locked Bag 34, 90009 Sandakan, Sabah, Malaysia
| | - Syari Jamian
- Department of Plant Protection, Faculty of Agriculture, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
- Laboratory of Climate-Smart Food Crop Production, Institute of Tropical Agriculture and Food Security (ITAFoS), Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Badrul Azhar
- Laboratory of Climate-Smart Food Crop Production, Institute of Tropical Agriculture and Food Security (ITAFoS), Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
- School of Environmental and Geographical Sciences, University of Nottingham Malaysia, 43500 Semenyih, Selangor, Malaysia
- Biodiversity Unit, Institute of Bioscience, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| |
Collapse
|
3
|
Rivory P, Bedoya-Pérez M, Ward MP, Šlapeta J. Older urban rats are infected with the zoonotic nematode Angiostrongylus cantonensis. CURRENT RESEARCH IN PARASITOLOGY & VECTOR-BORNE DISEASES 2024; 5:100179. [PMID: 38845789 PMCID: PMC11154120 DOI: 10.1016/j.crpvbd.2024.100179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/17/2024] [Accepted: 05/18/2024] [Indexed: 06/09/2024]
Abstract
Rats, being synanthropic, are hosts to agents of zoonotic diseases that pose a threat to human and domestic animal health. The nematode parasite Angiostrongylus cantonensis, commonly known as the rat lungworm, is no exception; it can cause potentially fatal neural disease in humans, dogs and other species. The distribution of A. cantonensis (haplotypes SYD.1 and Ac13) and its close relative, Angiostrongylus mackerrasae is not well understood in Australia. We investigated the prevalence of Angiostrongylus in rats in Sydney, Australia, primarily via faecal qPCR, and identified the species and haplotypes using partial cox1 sequencing. We found a moderate prevalence of infection (29%; 95% CI: 16.1-46.6%) in black (Rattus rattus) and brown (Rattus norvegicus) rats around public parks and residential areas. This study demonstrates that Sydney's urban rat population is a reservoir for A. cantonensis. Modelling infection status as a function of rat species, sex, tibia length (as a proxy for age), and health index (a measure of weight by size) revealed that older rats are statistically more likely to be infected (χ 2 1 = 5.331, P = 0.021). We observed a dominant presence of the A. cantonensis SYD.1 haplotype, for which the implications are not yet known. No A. mackerassae was detected, leading us to suspect it may have a more restricted host- and geographical range. Overall, this study illustrates the presence and potential risk of A. cantonensis infection in Sydney. Public education regarding transmission routes and preventative measures is crucial to safeguard human and animal health.
Collapse
Affiliation(s)
- Phoebe Rivory
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, New South Wales, 2006, Australia
| | - Miguel Bedoya-Pérez
- The Lambert Initiative for Cannabinoid Therapeutics, The University of Sydney, Sydney, New South Wales, Australia
- School of Psychology, Faculty of Science, The University of Sydney, Sydney, New South Wales, Australia
| | - Michael P. Ward
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, New South Wales, 2006, Australia
| | - Jan Šlapeta
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, New South Wales, 2006, Australia
- Sydney Infectious Diseases Institute, The University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
4
|
Mendoza H, López-Pérez AM, Rubio AV, Barrón-Rodríguez JJ, Mazari-Hiriart M, Pontifes PA, Dirzo R, Suzán G. Association between anthropization and rodent reservoirs of zoonotic pathogens in Northwestern Mexico. PLoS One 2024; 19:e0298976. [PMID: 38386681 PMCID: PMC10883555 DOI: 10.1371/journal.pone.0298976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 02/01/2024] [Indexed: 02/24/2024] Open
Abstract
The world is facing a major pulse of ecological and social changes that may favor the risk of zoonotic outbreaks. Such risk facilitation may occur through the modification of the host's community diversity and structure, leading to an increase in pathogen reservoirs and the contact rate between these reservoirs and humans. Here, we examined whether anthropization alters the relative abundance and richness of zoonotic reservoir and non-reservoir rodents in three Socio-Ecological Systems. We hypothesized that anthropization increases the relative abundance and richness of rodent reservoirs while decreasing non-reservoir species. We first developed an Anthropization index based on 15 quantitative socio-ecological variables classified into five groups: 1) Vegetation type, 2) Urbanization degree, 3) Water quality, 4) Potential contaminant sources, and 5) Others. We then monitored rodent communities in three regions of Northwestern Mexico (Baja California, Chihuahua, and Sonora). A total of 683 rodents of 14 genera and 27 species were captured, nine of which have been identified as reservoirs of zoonotic pathogens (359 individuals, 53%). In all regions, we found that as anthropization increased, the relative abundance of reservoir rodents increased; in contrast, the relative abundance of non-reservoir rodents decreased. In Sonora, reservoir richness increased with increasing anthropization, while in Baja California and Chihuahua non-reservoir richness decreased as anthropization increased. We also found a significant positive relationship between the anthropization degree and the abundance of house mice (Mus musculus) and deer mice (Peromyscus maniculatus), the most abundant reservoir species in the study. These findings support the hypothesis that reservoir species of zoonotic pathogens increase their abundance in disturbed environments, which may increase the risk of pathogen exposure to humans, while anthropization creates an environmental filtering that promotes the local extinction of non-reservoir species.
Collapse
Affiliation(s)
- Hugo Mendoza
- Laboratorio de Ecología de Enfermedades y Una Salud, Departamento de Etología, Fauna Silvestre y Animales de Laboratorio, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Ciudad de México, México
- Laboratorio Nacional de Ciencias de la Sostenibilidad, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Andrés M. López-Pérez
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, CA, United States of America
- Red de Biología y Conservación de Vertebrados, Instituto de Ecología A.C., Xalapa, México
| | - André V. Rubio
- Departamento de Ciencias Biológicas Animales, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile
| | - Julio J. Barrón-Rodríguez
- Laboratorio de Ecología de Enfermedades y Una Salud, Departamento de Etología, Fauna Silvestre y Animales de Laboratorio, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Marisa Mazari-Hiriart
- Laboratorio Nacional de Ciencias de la Sostenibilidad, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Paulina A. Pontifes
- Laboratorio de Ecología de Enfermedades y Una Salud, Departamento de Etología, Fauna Silvestre y Animales de Laboratorio, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Ciudad de México, México
- MIVEGEC Unit, IRD, CNRS, Université de Montpellier, Montpellier, France
| | - Rodolfo Dirzo
- Departments of Biology and Earth Systems Science, Stanford University, Stanford, CA, United States of America
| | - Gerardo Suzán
- Laboratorio de Ecología de Enfermedades y Una Salud, Departamento de Etología, Fauna Silvestre y Animales de Laboratorio, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Ciudad de México, México
| |
Collapse
|
5
|
Cai W, Zhu Y, Wang F, Feng Q, Zhang Z, Xue N, Xu X, Hou Z, Liu D, Xu J, Tao J. Prevalence of Gastrointestinal Parasites in Zoo Animals and Phylogenetic Characterization of Toxascaris leonina (Linstow, 1902) and Baylisascaris transfuga (Rudolphi, 1819) in Jiangsu Province, Eastern China. Animals (Basel) 2024; 14:375. [PMID: 38338018 PMCID: PMC10854492 DOI: 10.3390/ani14030375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/12/2024] [Accepted: 01/22/2024] [Indexed: 02/12/2024] Open
Abstract
The burden of gastrointestinal parasites in zoo animals has serious implications for their welfare and the health of veterinarians and visitors. Zhuyuwan Zoo is located in the eastern suburb of Yangzhou city in eastern China, in which over 40 species of zoo animals are kept. In order to understand the infection status of GI parasites in Zhuyuwan Zoo, a total of 104 fresh fecal samples collected randomly from birds (n = 19), primates (n = 19), and non-primate mammals (n = 66) were analyzed using the saturated saline flotation technique and nylon sifter elutriation and sieving method for eggs/oocysts, respectively. Two Ascaris species were molecularly characterized. The results showed that the overall prevalence of parasitic infection was 42.3% (44/104). The parasitic infection rate in birds, primates, and non-primate mammals were 26.3% (5/19), 31.6% (6/19), and 50.0% (33/66), respectively. A total of 11 species of parasites were identified, namely, Trichostrongylidae, Capillaria sp., Trichuris spp., Strongyloides spp., Amidostomum sp., Toxascaris leonina, Baylisascaris transfuga, Parascaris equorum, Paramphistomum spp., Fasciola spp., and Eimeria spp. Paramphistomum spp. eggs were first detected from the captive Père David's deer, and Fasciola spp. eggs were first reported from sika deer in zoo in China. A sequence analysis of ITS-2 and cox1 showed that the eggs isolated from the African lion (Panthera leo Linnaeus, 1758) were T. leonina, and the eggs from the brown bear (Ursus arctos Linnaeus, 1758) were B. transfuga. The public health threat posed by these potential zoonotic parasitic agents requires attention. These results lay a theoretical foundation for prevention and control of wild animal parasitic diseases at zoos in China.
Collapse
Affiliation(s)
- Weimin Cai
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (W.C.); (Y.Z.); (F.W.); (Q.F.); (Z.Z.); (N.X.); (Z.H.); (D.L.); (J.X.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou 225009, China
| | - Yu Zhu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (W.C.); (Y.Z.); (F.W.); (Q.F.); (Z.Z.); (N.X.); (Z.H.); (D.L.); (J.X.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou 225009, China
| | - Feiyan Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (W.C.); (Y.Z.); (F.W.); (Q.F.); (Z.Z.); (N.X.); (Z.H.); (D.L.); (J.X.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou 225009, China
| | - Qianqian Feng
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (W.C.); (Y.Z.); (F.W.); (Q.F.); (Z.Z.); (N.X.); (Z.H.); (D.L.); (J.X.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou 225009, China
| | - Zhizhi Zhang
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (W.C.); (Y.Z.); (F.W.); (Q.F.); (Z.Z.); (N.X.); (Z.H.); (D.L.); (J.X.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou 225009, China
| | - Nianyu Xue
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (W.C.); (Y.Z.); (F.W.); (Q.F.); (Z.Z.); (N.X.); (Z.H.); (D.L.); (J.X.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou 225009, China
| | - Xun Xu
- Yangzhou Zhuyuwan Zoo, Yangzhou 225009, China;
| | - Zhaofeng Hou
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (W.C.); (Y.Z.); (F.W.); (Q.F.); (Z.Z.); (N.X.); (Z.H.); (D.L.); (J.X.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou 225009, China
| | - Dandan Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (W.C.); (Y.Z.); (F.W.); (Q.F.); (Z.Z.); (N.X.); (Z.H.); (D.L.); (J.X.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou 225009, China
| | - Jinjun Xu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (W.C.); (Y.Z.); (F.W.); (Q.F.); (Z.Z.); (N.X.); (Z.H.); (D.L.); (J.X.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou 225009, China
| | - Jianping Tao
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (W.C.); (Y.Z.); (F.W.); (Q.F.); (Z.Z.); (N.X.); (Z.H.); (D.L.); (J.X.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
6
|
Vez-Garzón M, Giménez J, Sánchez-Márquez A, Montalvo T, Navarro J. Changes in the feeding ecology of an opportunistic predator inhabiting urban environments in response to COVID-19 lockdown. ROYAL SOCIETY OPEN SCIENCE 2023; 10:221639. [PMID: 37063991 PMCID: PMC10090867 DOI: 10.1098/rsos.221639] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 03/22/2023] [Indexed: 06/19/2023]
Abstract
Urban-dwelling species present feeding and behavioural innovation that enable them to adjust to anthropogenic food subsidies available in cities. In 2020, the SARS-CoV-2 virus outbreak resulted in unprecedented reduction in the human activity worldwide associated with the human lockdown. This situation opened an excellent opportunity to investigate the capability of urban wildlife to cope with this anthropopause event. Here, we investigated the effects of the COVID-19 lockdown on the feeding strategies of the urban yellow-legged gull (Larus michahellis) population inhabiting the highly dense city of Barcelona (NE Spain). We compared the diet of chicks (through stomach content and stable isotope analyses) sampled randomly around the city of Barcelona before (2018 and 2019), during (2020) and after (2021) the COVID-19 lockdown. The results revealed that the anthropopause associated with the lockdown had an effect on the diet of this urban-dwelling predator. The diversity of prey consumed during the lockdown was lower, and consumption of urban birds (pigeons and parakeets) and marine prey (fishery discards and natural prey) decreased during the year of lockdown. Although it was not analysed, these diet changes probably were associated with variations in the availability of these resources due to the decrease in human activity during the lockdown. These results demonstrate the trophic flexibility of urban-dwelling species to cope with the changes in the availability of human-related anthropogenic resources in urban marine ecosystems.
Collapse
Affiliation(s)
- Marc Vez-Garzón
- Institut de Ciències del Mar (ICM), CSIC, Passeig Marítim de la Barceloneta 37-49, 08003 Barcelona, Spain
| | - Joan Giménez
- Institut de Ciències del Mar (ICM), CSIC, Passeig Marítim de la Barceloneta 37-49, 08003 Barcelona, Spain
| | - Antoni Sánchez-Márquez
- Institut de Ciències del Mar (ICM), CSIC, Passeig Marítim de la Barceloneta 37-49, 08003 Barcelona, Spain
| | - Tomás Montalvo
- Servei de Vigilància i Control de Plagues Urbanes, Agencia de Salud Pública de Barcelona, Pl. Lesseps, 1, 08023 Barcelona, Spain
| | - Joan Navarro
- Institut de Ciències del Mar (ICM), CSIC, Passeig Marítim de la Barceloneta 37-49, 08003 Barcelona, Spain
| |
Collapse
|
7
|
Guo X, Lee MJ, Byers KA, Helms L, Weinberger KR, Himsworth CG. Characteristics of the urban sewer system and rat presence in Seattle. Urban Ecosyst 2022. [DOI: 10.1007/s11252-022-01255-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
8
|
Galán-Puchades MT, Solano J, González G, Osuna A, Pascual J, Bueno-Marí R, Franco S, Peracho V, Montalvo T, Fuentes MV. Molecular detection of Leishmania infantum in rats and sand flies in the urban sewers of Barcelona, Spain. Parasit Vectors 2022; 15:211. [PMID: 35710435 PMCID: PMC9201797 DOI: 10.1186/s13071-022-05309-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 05/04/2022] [Indexed: 11/13/2022] Open
Abstract
Background Classically, dogs have been considered to be the only reservoir of leishmaniasis in urban areas. However, in a previous study, we found a 33.3% prevalence of Leishmania infantum in the spleens of Norway rats (Rattus norvegicus) sampled in the underground sewer system of the city of Barcelona (Spain). The aim of the present study was to verify, using molecular methods, the potential reservoir role of these rats in the same sewer system. Methods A sensitive real-time PCR (qPCR) assay, DNA sequencing and phylogenetic analysis were carried out to identify and quantify the presence of L. infantum DNA in sand fly individuals captured in the same underground sewer system of Barcelona as in our previous study and in the spleens and ears of rats captured in the same sewer system. Results Leishmania infantum DNA was found in 14 of the 27 (51.9%) sand flies identified as Phlebotomus perniciosus, and 10 of the 24 (41.7%) rats studied were infected. Leishmania infantum was found in the spleens (70%) and in the ears (40%) of the infected rats. Quantitative results revealed the presence of high loads of L. infantum in the rats studied (> 3 × 106 parasites/g ear tissue) and among the sand flies (> 34 × 106 parasites in 1 individual). Conclusions The molecular methods used in this study demonstrated a high prevalence of L. infantum in the underground
sewer populations of both R. norvegicus and P. perniciosus. These results suggest that sewer rats, in addition to dogs, are likely to act as reservoirs of leishmaniasis in cities, where sewer systems seem to offer the ideal scenario for the transmission of leishmaniasis. Therefore, to achieve the WHO 2030 target on the elimination of leishmaniasis as a public health problem successfully, an efficient control strategy against leishmaniasis in rats and sand flies should be implemented, particularly in the sewer systems of urban areas of endemic countries. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13071-022-05309-4.
Collapse
Affiliation(s)
- María Teresa Galán-Puchades
- Parasite and Health Research Group, Department of Pharmacy, Pharmaceutical Technology and Parasitology, Faculty of Pharmacy, University of Valencia, 46100, Burjassot, Valencia, Spain.
| | - Jennifer Solano
- Molecular Biochemistry and Parasitology Research Group, Department of Parasitology, Institute of Biotechnology, Faculty of Sciences, University of Granada, 18071, Granada, Spain
| | - Gloria González
- Molecular Biochemistry and Parasitology Research Group, Department of Parasitology, Institute of Biotechnology, Faculty of Sciences, University of Granada, 18071, Granada, Spain
| | - Antonio Osuna
- Molecular Biochemistry and Parasitology Research Group, Department of Parasitology, Institute of Biotechnology, Faculty of Sciences, University of Granada, 18071, Granada, Spain
| | - Jordi Pascual
- Pest Surveillance and Control, Agència de Salut Pública de Barcelona (ASPB), 08023, Barcelona, Spain
| | - Rubén Bueno-Marí
- Parasite and Health Research Group, Department of Pharmacy, Pharmaceutical Technology and Parasitology, Faculty of Pharmacy, University of Valencia, 46100, Burjassot, Valencia, Spain.,Department of Research and Development, Laboratorios Lokímica, 46980, Paterna, Valencia, Spain
| | - Sandra Franco
- Pest Surveillance and Control, Agència de Salut Pública de Barcelona (ASPB), 08023, Barcelona, Spain
| | - Víctor Peracho
- Pest Surveillance and Control, Agència de Salut Pública de Barcelona (ASPB), 08023, Barcelona, Spain
| | - Tomás Montalvo
- Pest Surveillance and Control, Agència de Salut Pública de Barcelona (ASPB), 08023, Barcelona, Spain.,Biomedical Research Center Network for Epidemiology and Public Health CIBERESP Epidemiology and Public Health, 08023, Barcelona, Spain
| | - Màrius V Fuentes
- Parasite and Health Research Group, Department of Pharmacy, Pharmaceutical Technology and Parasitology, Faculty of Pharmacy, University of Valencia, 46100, Burjassot, Valencia, Spain
| |
Collapse
|
9
|
Parsons MH, Richardson JL, Kiyokawa Y, Stryjek R, Corrigan RM, Deutsch MA, Ootaki M, Tanikawa T, Parsons FE, Munshi-South J. Rats and the COVID-19 pandemic: considering the influence of social distancing on a global commensal pest. JOURNAL OF URBAN ECOLOGY 2021. [PMCID: PMC8500081 DOI: 10.1093/jue/juab027] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Abstract
Rats contaminate foods and spread pathogens. Thus, changes in rat populations have consequences for society, especially in densely-populated cities. Following widespread social distancing and lockdown measures to curtail SARS-CoV-2, worldwide media outlets reported increased sightings of rats. To document possible changes in rat populations, we: (i) examined public service requests in the 6 years before, and during, ‘lockdown’ in New York City; (ii) used spatial analyses to identify calls in proximity to food service establishments (FSE); and (iii) surveyed pest-management companies. Over 6 years prior to the pandemic, we found a consistent moderate spatial association (r = 0.35) between FSE and rat-related calls. During the early stages of the pandemic, the association between rat reports and food services did not decrease as would be expected by restaurant closures, but instead modestly increased (r = 0.45). There was a 29.5% decrease in rat reports, overall. However, hotspot analysis showed that new reports were highly localized, yet absent in several industrial areas they were previously observed in, potentially masking a higher proportion of calls in neighborhoods near closed restaurants. Additionally, 37% of pest management companies surveyed reported that, unlike previous years, 50–100% of requests were from new clients and addresses. The finding that hotspots remained nearby dense clusters of restaurants does not support the common narrative that rats moved long distances. Rather, our results are consistent with rats finding nearby alternative food resources. Tracking these dynamics as the COVID-19 pandemic abates will be an important step to identifying how rats respond to society returning to normal activity patterns.
Collapse
Affiliation(s)
- Michael H Parsons
- Department of Biological Sciences, Fordham University, Bronx, NY, USA
| | | | - Yasushi Kiyokawa
- Laboratory of Veterinary Ethology, The University of Tokyo, Tokyo, Japan
| | - Rafal Stryjek
- Institute of Psychology, Polish Academy of Sciences, Warsaw, Poland
| | | | - Michael A Deutsch
- Medical and Applied Entomology, Arrow Exterminating Company, Inc., Lynbrook, NY, USA
| | - Masato Ootaki
- Laboratory of Veterinary Ethology, The University of Tokyo, Tokyo, Japan
| | | | - Faith E Parsons
- CareSet Systems, Houston, TX, USA
- Center for Behavioral and Cardiovascular Health, Columbia University, New York, NY, USA
| | - Jason Munshi-South
- Department of Biological Sciences and the Louis Calder Center—Biological Field Station, Fordham University, Armonk, NY, USA
| |
Collapse
|