1
|
Wang S, Gu Y, Cao X, Ge L, He M, Zhang W, Getachew T, Mwacharo JM, Haile A, Quan K, Li Y, Reverter A, Sun W. The identification and validation of target genes of IGFBP3 protein in sheep skeletal muscle cells. Anim Biotechnol 2023; 34:4580-4587. [PMID: 36794322 DOI: 10.1080/10495398.2023.2174875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
This study aimed to identify the target genes of IGFBP3(insulin growth factor binding protein)protein and to investigate its target genes effects on the proliferation and differentiation of Hu sheep skeletal muscle cells. IGFBP3 was an RNA-binding protein that regulates mRNA stability. Previous studies have reported that IGFBP3 promotes the proliferation of Hu sheep skeletal muscle cells and inhibits differentiation, but the downstream genes that bind to it have not been reported yet. We predicted the target genes of IGFBP3 through RNAct and sequencing data, and verified by qPCR and RIP(RNA Immunoprecipitation)experiments, and demonstrated GNAI2(G protein subunit alpha i2)as one of the target gene of IGFBP3. After interference with siRNA, we carried out qPCR, CCK8, EdU, and immunofluorescence experiments, and found that GNAI2 can promote the proliferation and inhibit differentiation of Hu sheep skeletal muscle cells. This study revealed the effects of GNAI2 and provided one of the regulatory mechanisms of IGFBP3 protein underlying sheep muscle development.
Collapse
Affiliation(s)
- Shan Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
- School of Animal Science and Technology, Jiangsu Agri-animal Husbandry Vocational College, Taizhou, China
| | - Yifei Gu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Xiukai Cao
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, China
- International Joint Research Laboratory in Universities of Jiangsu Province of China for Domestic Animal Germplasm Resources and Genetic Improvement, Yangzhou University, Yangzhou, China
| | - Ling Ge
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Mingliang He
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Weibo Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Tesfaye Getachew
- International Centre for Agricultural Research in the Dry Areas, Addis Ababa, Ethiopia
| | - Joram M Mwacharo
- International Centre for Agricultural Research in the Dry Areas, Addis Ababa, Ethiopia
| | - Aynalem Haile
- International Centre for Agricultural Research in the Dry Areas, Addis Ababa, Ethiopia
| | - Kai Quan
- College of Animal Science and Technology, Henan University of Animal Husbandry and Economics, Henan Zhengzhou, China
| | - Yutao Li
- CSIRO Agriculture and Food, 306 Carmody Rd, St Lucia, Queensland, Australia
| | - Antonio Reverter
- CSIRO Agriculture and Food, 306 Carmody Rd, St Lucia, Queensland, Australia
| | - Wei Sun
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, China
- International Joint Research Laboratory in Universities of Jiangsu Province of China for Domestic Animal Germplasm Resources and Genetic Improvement, Yangzhou University, Yangzhou, China
- "Innovative China" "Belt and Road" International Agricultural Technology Innovation Institute for Evaluation, Protection, and Improvement on Sheep Genetic Resource, Yangzhou, China
| |
Collapse
|
2
|
Nguyen MT, Dash R, Jeong K, Lee W. Role of Actin-Binding Proteins in Skeletal Myogenesis. Cells 2023; 12:2523. [PMID: 37947600 PMCID: PMC10650911 DOI: 10.3390/cells12212523] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/22/2023] [Accepted: 10/23/2023] [Indexed: 11/12/2023] Open
Abstract
Maintenance of skeletal muscle quantity and quality is essential to ensure various vital functions of the body. Muscle homeostasis is regulated by multiple cytoskeletal proteins and myogenic transcriptional programs responding to endogenous and exogenous signals influencing cell structure and function. Since actin is an essential component in cytoskeleton dynamics, actin-binding proteins (ABPs) have been recognized as crucial players in skeletal muscle health and diseases. Hence, dysregulation of ABPs leads to muscle atrophy characterized by loss of mass, strength, quality, and capacity for regeneration. This comprehensive review summarizes the recent studies that have unveiled the role of ABPs in actin cytoskeletal dynamics, with a particular focus on skeletal myogenesis and diseases. This provides insight into the molecular mechanisms that regulate skeletal myogenesis via ABPs as well as research avenues to identify potential therapeutic targets. Moreover, this review explores the implications of non-coding RNAs (ncRNAs) targeting ABPs in skeletal myogenesis and disorders based on recent achievements in ncRNA research. The studies presented here will enhance our understanding of the functional significance of ABPs and mechanotransduction-derived myogenic regulatory mechanisms. Furthermore, revealing how ncRNAs regulate ABPs will allow diverse therapeutic approaches for skeletal muscle disorders to be developed.
Collapse
Affiliation(s)
- Mai Thi Nguyen
- Department of Biochemistry, Dongguk University College of Medicine, 123 Dongdae-ro, Gyeongju 38066, Republic of Korea; (M.T.N.); (K.J.)
| | - Raju Dash
- Department of Anatomy, Dongguk University College of Medicine, 123 Dongdae-ro, Gyeongju 38066, Republic of Korea;
- Department of New Biology, Daegu Gyeongbuk Institute of Science & Technology (DGIST), Daegu 42988, Republic of Korea
| | - Kyuho Jeong
- Department of Biochemistry, Dongguk University College of Medicine, 123 Dongdae-ro, Gyeongju 38066, Republic of Korea; (M.T.N.); (K.J.)
| | - Wan Lee
- Department of Biochemistry, Dongguk University College of Medicine, 123 Dongdae-ro, Gyeongju 38066, Republic of Korea; (M.T.N.); (K.J.)
- Channelopathy Research Center, Dongguk University College of Medicine, 32 Dongguk-ro, Ilsan Dong-gu, Goyang 10326, Republic of Korea
| |
Collapse
|
3
|
Guo L, Bloom JS, Dols-Serrate D, Boocock J, Ben-David E, Schubert OT, Kozuma K, Ho K, Warda E, Chui C, Wei Y, Leighton D, Lemus Vergara T, Riutort M, Sánchez Alvarado A, Kruglyak L. Island-specific evolution of a sex-primed autosome in a sexual planarian. Nature 2022; 606:329-334. [PMID: 35650439 PMCID: PMC9177419 DOI: 10.1038/s41586-022-04757-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 04/12/2022] [Indexed: 12/26/2022]
Abstract
The sexual strain of the planarian Schmidtea mediterranea, indigenous to Tunisia and several Mediterranean islands, is a hermaphrodite1,2. Here we isolate individual chromosomes and use sequencing, Hi-C3,4 and linkage mapping to assemble a chromosome-scale genome reference. The linkage map reveals an extremely low rate of recombination on chromosome 1. We confirm suppression of recombination on chromosome 1 by genotyping individual sperm cells and oocytes. We show that previously identified genomic regions that maintain heterozygosity even after prolonged inbreeding make up essentially all of chromosome 1. Genome sequencing of individuals isolated in the wild indicates that this phenomenon has evolved specifically in populations from Sardinia and Corsica. We find that most known master regulators5-13 of the reproductive system are located on chromosome 1. We used RNA interference14,15 to knock down a gene with haplotype-biased expression, which led to the formation of a more pronounced female mating organ. On the basis of these observations, we propose that chromosome 1 is a sex-primed autosome primed for evolution into a sex chromosome.
Collapse
Affiliation(s)
- Longhua Guo
- Department of Human Genetics and Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA, USA.
- Howard Hughes Medical Institute, Chevy Chase, MD, USA.
| | - Joshua S Bloom
- Department of Human Genetics and Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Daniel Dols-Serrate
- Departament de Genètica, Microbiologia i Estadística, Institut de Recerca de la Biodiversitat, Universitat de Barcelona, Barcelona, Spain
| | - James Boocock
- Department of Human Genetics and Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Eyal Ben-David
- Department of Biochemistry and Molecular Biology, Institute for Medical Research Israel-Canada, Hebrew University of Jerusalem-Hadassah Medical School, Jerusalem, Israel
| | - Olga T Schubert
- Department of Human Genetics and Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Kaiya Kozuma
- Department of Human Genetics and Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA, USA
| | - Katarina Ho
- Department of Human Genetics and Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA, USA
| | - Emily Warda
- Department of Human Genetics and Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA, USA
| | - Clarice Chui
- Department of Human Genetics and Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA, USA
| | - Yubao Wei
- Institute of Reproductive Medicine, Henan Provincial People's Hospital, Zhengzhou University, Zhengzhou, China
| | - Daniel Leighton
- Department of Human Genetics and Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Tzitziki Lemus Vergara
- Department of Human Genetics and Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Marta Riutort
- Departament de Genètica, Microbiologia i Estadística, Institut de Recerca de la Biodiversitat, Universitat de Barcelona, Barcelona, Spain
| | - Alejandro Sánchez Alvarado
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Leonid Kruglyak
- Department of Human Genetics and Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA, USA.
- Howard Hughes Medical Institute, Chevy Chase, MD, USA.
| |
Collapse
|
4
|
Junion G, Jagla K. Diversification of muscle types in Drosophila embryos. Exp Cell Res 2022; 410:112950. [PMID: 34838813 DOI: 10.1016/j.yexcr.2021.112950] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 11/22/2021] [Accepted: 11/24/2021] [Indexed: 12/31/2022]
Abstract
Drosophila embryonic somatic muscles represent a simple and tractable model system to study the gene regulatory networks that control diversification of cell types. Somatic myogenesis in Drosophila is initiated by intrinsic action of the mesodermal master gene twist, which activates a cascade of transcriptional outputs including myogenic differentiation factor Mef2, which triggers all aspects of the myogenic differentiation program. In parallel, the expression of a combinatorial code of identity transcription factors (iTFs) defines discrete particular features of each muscle fiber, such as number of fusion events, and specific attachment to tendon cells or innervation, thus ensuring diversification of muscle types. Here, we take the example of a subset of lateral transverse (LT) muscles and discuss how the iTF code and downstream effector genes progressively define individual LT properties such as fusion program, attachment and innervation. We discuss new challenges in the field including the contribution of posttranscriptional and epitranscriptomic regulation of gene expression in the diversification of cell types.
Collapse
Affiliation(s)
- Guillaume Junion
- Genetics Reproduction and Development Institute (iGReD), CNRS UMR6293, INSERM U1103, University of Clermont Auvergne, Clermont-Ferrand, France
| | - Krzysztof Jagla
- Genetics Reproduction and Development Institute (iGReD), CNRS UMR6293, INSERM U1103, University of Clermont Auvergne, Clermont-Ferrand, France.
| |
Collapse
|