1
|
Duarte D, Manuel F, Dias A, Sacato E, Taleingue E, Daniel E, Simão F, Varandas L, Antunes ML, Nogueira F. Low prevalence of copy number variation in pfmdr1 and pfpm2 in Plasmodium falciparum isolates from southern Angola. Malar J 2025; 24:5. [PMID: 39794826 PMCID: PMC11720348 DOI: 10.1186/s12936-024-05240-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 12/30/2024] [Indexed: 01/13/2025] Open
Abstract
BACKGROUND Malaria is the parasitic disease with the highest global morbidity and mortality. According to estimates from the World Health Organization (WHO), there were around 249 million cases in 2022, with 3.4% occurring in Angola. The emergence and spread of drug-resistant Plasmodium falciparum have compromised anti-malarial efficacy and threatens malaria elimination campaigns using artemisinin-based combination therapy (ACT). Increased copy number (CNV) of the P. falciparum gene plasmepsin 2 (pfpm2) have been reported to confer parasite tolerance to piperaquine (PPQ) and the multidrug resistance-1 (pfmdr1), resistance to mefloquine (MEF) and decreased susceptibility to lumefantrine (LUM). PPQ, MEF and LUM are ACT partner drugs. Therefore, CNV detection is a useful tool to track ACT resistance risk. The potential for future treatment failure of artemisinin-based combinations (that include PPQ, LUM and AMQ), due to parasite resistance in the region, emphasizes the need for continued molecular surveillance. METHODS One hundred and nine clinically derived samples were collected at Hospital Central Dr. António Agostinho Neto (HCL) in Lubango, Angola. qPCR targeting the small-subunit 18S rRNA gene was used to confirm P. falciparum infection. Copy number estimates were determined using a SYBR green-based quantitative PCR assay. RESULTS Overall, this study revealed a low number of resistance CNVs present in the parasite population at Lubango, for the genes pfmdr1 and pfpm2. Of the 102 samples successfully analysed for pfpm2 10 (9.8%) carried increased CNV and 9/101 (8.9%) carried increased CNV of pfmdr1. CONCLUSIONS This study provides, for the first time, evidence for the presence of CNVs in the pfpm2 and pfmdr1 genes in P. falciparum isolates from southern Angola.
Collapse
Affiliation(s)
- Denise Duarte
- Global Health and Tropical Medicine, GHTM, Associate Laboratory in Translation and Innovation Towards Global Health, LA-REAL, Instituto de Higiene e Medicina Tropical, IHMT, Universidade NOVA de Lisboa, UNL, Rua da Junqueira 100, 1349-008, Lisbon, Portugal
| | - Francisco Manuel
- Faculdade de Medicina, Universidade Agostinho Neto, Rua Principal da Camama, Distrito da Cidade Universitária CP 815, Luanda, Angola
| | - Ana Dias
- Laboratório de Microbiologia Clínica e Biologia Molecular, Serviço de Patologia Clínica, Centro Hospitalar Lisboa Ocidental (CHLO), Rua da Junqueira 126, 1349-019, Lisbon, Portugal
| | - Esmeralda Sacato
- Hospital Central de Lubango Dr. António Agostinho Neto (HCL), Avenida Dr. António Agostinho Neto, Bairro Cdte Cowboy, Lubango, Angola
| | - Elsa Taleingue
- Hospital Central de Lubango Dr. António Agostinho Neto (HCL), Avenida Dr. António Agostinho Neto, Bairro Cdte Cowboy, Lubango, Angola
| | - Elsa Daniel
- Hospital Central de Lubango Dr. António Agostinho Neto (HCL), Avenida Dr. António Agostinho Neto, Bairro Cdte Cowboy, Lubango, Angola
| | - Francisco Simão
- Hospital Central de Lubango Dr. António Agostinho Neto (HCL), Avenida Dr. António Agostinho Neto, Bairro Cdte Cowboy, Lubango, Angola
| | - Luis Varandas
- Global Health and Tropical Medicine, GHTM, Associate Laboratory in Translation and Innovation Towards Global Health, LA-REAL, Instituto de Higiene e Medicina Tropical, IHMT, Universidade NOVA de Lisboa, UNL, Rua da Junqueira 100, 1349-008, Lisbon, Portugal
| | - Maria Lina Antunes
- Faculdade de Medicina, Universidade Agostinho Neto, Rua Principal da Camama, Distrito da Cidade Universitária CP 815, Luanda, Angola
- Hospital Central de Lubango Dr. António Agostinho Neto (HCL), Avenida Dr. António Agostinho Neto, Bairro Cdte Cowboy, Lubango, Angola
| | - Fatima Nogueira
- Global Health and Tropical Medicine, GHTM, Associate Laboratory in Translation and Innovation Towards Global Health, LA-REAL, Instituto de Higiene e Medicina Tropical, IHMT, Universidade NOVA de Lisboa, UNL, Rua da Junqueira 100, 1349-008, Lisbon, Portugal.
| |
Collapse
|
2
|
Delandre O, Pradines B, Javelle E. Dihydroartemisinin-Piperaquine Combination in the Treatment of Uncomplicated Plasmodium falciparum Malaria: Update on Clinical Failures in Africa and Tools for Surveillance. J Clin Med 2024; 13:6828. [PMID: 39597971 PMCID: PMC11594973 DOI: 10.3390/jcm13226828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 11/05/2024] [Accepted: 11/10/2024] [Indexed: 11/29/2024] Open
Abstract
Dihydroartemisinin (or artenimol)-piperaquine is one of the six artemisinin-based combination therapies recommended in uncomplicated malaria treatment. However, artemisinin partial resistance has been reported in Cambodia, Laos, Vietnam, India, and, recently, in Africa. Polymorphisms in the Pfk13 gene have been described as molecular markers of artemisinin resistance and the amplification of the plasmepsine II/III (Pfpmp2/Pfpmp3) gene has been associated with piperaquine resistance. However, some therapeutic failures with this combination remain unexplained by strains' characterization. We provide an overview on the use of dihydroartemisinin-piperaquine in malaria treatment and discuss tools available to monitor its efficacy.
Collapse
Affiliation(s)
- Océane Delandre
- Unité Parasitologie et Entomologie, Département Microbiologie et Maladies Infectieuses, Institut de Recherche Biomédicale des Armées, 13005 Marseille, France; (B.P.); (E.J.)
- Aix Marseille Univ, SSA, AP-HM, RITMES, 13005 Marseille, France
- IHU Méditerranée Infection, 13005 Marseille, France
| | - Bruno Pradines
- Unité Parasitologie et Entomologie, Département Microbiologie et Maladies Infectieuses, Institut de Recherche Biomédicale des Armées, 13005 Marseille, France; (B.P.); (E.J.)
- Aix Marseille Univ, SSA, AP-HM, RITMES, 13005 Marseille, France
- IHU Méditerranée Infection, 13005 Marseille, France
- Centre National de Référence du Paludisme, 13005 Marseille, France
| | - Emilie Javelle
- Unité Parasitologie et Entomologie, Département Microbiologie et Maladies Infectieuses, Institut de Recherche Biomédicale des Armées, 13005 Marseille, France; (B.P.); (E.J.)
- Aix Marseille Univ, SSA, AP-HM, RITMES, 13005 Marseille, France
- IHU Méditerranée Infection, 13005 Marseille, France
- Centre National de Référence du Paludisme, 13005 Marseille, France
| |
Collapse
|
3
|
Brown N, da Silva C, Webb C, Matias D, Dias B, Cancio B, Silva M, Viegas R, Salvador C, Chivale N, Luis S, Arnaldo P, Zulawinska J, Moore CC, Nogueira F, Guler JL. Antimalarial resistance risk in Mozambique detected by a novel quadruplex droplet digital PCR assay. Antimicrob Agents Chemother 2024; 68:e0034624. [PMID: 38771031 PMCID: PMC11232384 DOI: 10.1128/aac.00346-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 04/18/2024] [Indexed: 05/22/2024] Open
Abstract
While the Plasmodium falciparum malaria parasite continues to cause severe disease globally, Mozambique is disproportionally represented in malaria case totals. Acquisition of copy number variations (CNVs) in the parasite genome contributes to antimalarial drug resistance through overexpression of drug targets. Of interest, piperaquine resistance is associated with plasmepsin 2 and 3 CNVs (pfpmp2 and pfpmp3, respectively), while CNVs in the multidrug efflux pump, multidrug resistance-1 (pfmdr1), increase resistance to amodiaquine and lumefantrine. These antimalarials are partner drugs in artemisinin combination therapies (ACTs) and therefore, CNV detection with accurate and efficient tools is necessary to track ACT resistance risk. Here, we evaluated ~300 clinically derived samples collected from three sites in Mozambique for resistance-associated CNVs. We developed a novel, medium-throughput, quadruplex droplet digital PCR (ddPCR) assay to simultaneously quantify the copy number of pfpmp3, pfpmp2, and pfmdr1 loci in these clinical samples. By using DNA from laboratory parasite lines, we show that this nanodroplet-based method is capable of detecting picogram levels of parasite DNA, which facilitates its application for low yield and human host-contaminated clinical surveillance samples. Following ddPCR and the application of quality control standards, we detected CNVs in 13 of 229 high-quality samples (prevalence of 5.7%). Overall, our study revealed a low number of resistance CNVs present in the parasite population across all three collection sites, including various combinations of pfmdr1, pfpmp2, and pfpmp3 CNVs. The potential for future ACT resistance across Mozambique emphasizes the need for continued molecular surveillance across the region.
Collapse
Affiliation(s)
- Noah Brown
- Department of Biology, University of Virginia, Charlottesville, Virginia, USA
| | - Clemente da Silva
- Global Health and Tropical Medicine, GHTM, Associate Laboratory in Translation and Innovation Towards Global Health, LA-REAL, Instituto de Higiene e Medicina Tropical, IHMT, Universidade NOVA de Lisboa, UNL, Lisbon, Portugal
| | - Caroline Webb
- Department of Biology, University of Virginia, Charlottesville, Virginia, USA
| | - Daniela Matias
- Global Health and Tropical Medicine, GHTM, Associate Laboratory in Translation and Innovation Towards Global Health, LA-REAL, Instituto de Higiene e Medicina Tropical, IHMT, Universidade NOVA de Lisboa, UNL, Lisbon, Portugal
| | - Brigite Dias
- Global Health and Tropical Medicine, GHTM, Associate Laboratory in Translation and Innovation Towards Global Health, LA-REAL, Instituto de Higiene e Medicina Tropical, IHMT, Universidade NOVA de Lisboa, UNL, Lisbon, Portugal
| | - Beatriz Cancio
- Global Health and Tropical Medicine, GHTM, Associate Laboratory in Translation and Innovation Towards Global Health, LA-REAL, Instituto de Higiene e Medicina Tropical, IHMT, Universidade NOVA de Lisboa, UNL, Lisbon, Portugal
| | - Miguel Silva
- Global Health and Tropical Medicine, GHTM, Associate Laboratory in Translation and Innovation Towards Global Health, LA-REAL, Instituto de Higiene e Medicina Tropical, IHMT, Universidade NOVA de Lisboa, UNL, Lisbon, Portugal
| | - Ruben Viegas
- Global Health and Tropical Medicine, GHTM, Associate Laboratory in Translation and Innovation Towards Global Health, LA-REAL, Instituto de Higiene e Medicina Tropical, IHMT, Universidade NOVA de Lisboa, UNL, Lisbon, Portugal
| | | | - Nordino Chivale
- Instituto Nacional de Saúde, Maputo (INS), Maputo, Mozambique
| | - Sonia Luis
- Hospital Provincial de Matola, Matola, Mozambique
| | - Paulo Arnaldo
- Instituto Nacional de Saúde, Maputo (INS), Maputo, Mozambique
| | - Julia Zulawinska
- Department of Biology, University of Virginia, Charlottesville, Virginia, USA
| | - Christopher C. Moore
- Division of Infectious Disease and International Health, University of Virginia, Charlottesville, Virginia, USA
| | - Fatima Nogueira
- Global Health and Tropical Medicine, GHTM, Associate Laboratory in Translation and Innovation Towards Global Health, LA-REAL, Instituto de Higiene e Medicina Tropical, IHMT, Universidade NOVA de Lisboa, UNL, Lisbon, Portugal
| | - Jennifer L. Guler
- Department of Biology, University of Virginia, Charlottesville, Virginia, USA
- Division of Infectious Disease and International Health, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
4
|
Tran THT, Hien BTT, Dung NTL, Huong NT, Binh TT, Van Long N, Ton ND. Evaluation of Dihydroartemisinin-Piperaquine Efficacy and Molecular Markers in Uncomplicated Falciparum Patients: A Study across Binh Phuoc and Dak Nong, Vietnam. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:1013. [PMID: 38929629 PMCID: PMC11205605 DOI: 10.3390/medicina60061013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 06/14/2024] [Accepted: 06/18/2024] [Indexed: 06/28/2024]
Abstract
Background and Objectives: Malaria continues to be a significant global health challenge. The efficacy of artemisinin-based combination therapies (ACTs) has declined in many parts of the Greater Mekong Subregion, including Vietnam, due to the spread of resistant malaria strains. This study was conducted to assess the efficacy of the Dihydroartemisinin (DHA)-Piperaquine (PPQ) regimen in treating uncomplicated falciparum malaria and to conduct molecular surveillance of antimalarial drug resistance in Binh Phuoc and Dak Nong provinces. Materials and Methods: The study included 63 uncomplicated malaria falciparum patients from therapeutic efficacy studies (TES) treated following the WHO treatment guidelines (2009). Molecular marker analysis was performed on all 63 patients. Methods encompassed Sanger sequencing for pfK13 mutations and quantitative real-time PCR for the pfpm2 gene. Results: This study found a marked decrease in the efficacy of the DHA-PPQ regimen, with an increased rate of treatment failures at two study sites. Genetic analysis revealed a significant presence of pfK13 mutations and pfpm2 amplifications, indicating emerging resistance to artemisinin and its partner drug. Conclusions: The effectiveness of the standard DHA-PPQ regimen has sharply declined, with rising treatment failure rates. This decline necessitates a review and possible revision of national malaria treatment guidelines. Importantly, molecular monitoring and clinical efficacy assessments together provide a robust framework for understanding and addressing detection drug resistance in malaria.
Collapse
Affiliation(s)
- Thu Huyen Thi Tran
- Institute of Biomedicine and Pharmacy, Vietnam Military Medical University, Hanoi 100000, Vietnam; (T.H.T.T.); (B.T.T.H.); (N.T.L.D.); (N.V.L.)
- Department of Biotechnology, Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Hanoi 100000, Vietnam
| | - Bui Thi Thu Hien
- Institute of Biomedicine and Pharmacy, Vietnam Military Medical University, Hanoi 100000, Vietnam; (T.H.T.T.); (B.T.T.H.); (N.T.L.D.); (N.V.L.)
| | - Nguyen Thi Lan Dung
- Institute of Biomedicine and Pharmacy, Vietnam Military Medical University, Hanoi 100000, Vietnam; (T.H.T.T.); (B.T.T.H.); (N.T.L.D.); (N.V.L.)
| | - Nguyen Thi Huong
- National Burn Hospital, Vietnam Military Medical University, Hanoi 100000, Vietnam
| | - Tran Thanh Binh
- 103 Hospital, Vietnam Military Medical University, Hanoi 100000, Vietnam;
| | - Nguyen Van Long
- Institute of Biomedicine and Pharmacy, Vietnam Military Medical University, Hanoi 100000, Vietnam; (T.H.T.T.); (B.T.T.H.); (N.T.L.D.); (N.V.L.)
| | - Nguyen Dang Ton
- Department of Biotechnology, Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Hanoi 100000, Vietnam
- Institute of Genome Research, Vietnam Academy of Science and Technology, Hanoi 100000, Vietnam
| |
Collapse
|
5
|
Muhamad P, Phompradit P, Chaijaroenkul W, Na-Bangchang K. Distribution patterns of molecular markers of antimalarial drug resistance in Plasmodium falciparum isolates on the Thai-Myanmar border during the periods of 1993-1998 and 2002-2008. BMC Genomics 2024; 25:269. [PMID: 38468205 DOI: 10.1186/s12864-023-09814-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 11/17/2023] [Indexed: 03/13/2024] Open
Abstract
BACKGROUND Polymorphisms of Plasmodium falciparum chloroquine resistance transporter (pfcrt), Plasmodium falciparum multi-drug resistance 1 (pfmdr1) and Plasmodium falciparum kelch 13-propeller (pfk13) genes are accepted as valid molecular markers of quinoline antimalarials and artemisinins. This study investigated the distribution patterns of these genes in P. falciparum isolates from the areas along the Thai-Myanmar border during the two different periods of antimalarial usage in Thailand. RESULTS Polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) were used to detect pfcrt mutations at codons 76, 220, 271, 326, 356, and 371 as well as pfmdr1 mutation at codon 86. The prevalence of pfcrt mutations was markedly high (96.4-99.7%) in samples collected during both periods. The proportions of mutant genotypes (number of mutant/total isolate) at codons 76, 220, 271, 326, 356 and 371 in the isolates collected during 1993-1998 (period 1) compared with 2002-2008 (period 2) were 97.9% (137/140) vs. 97.1% (401/413), 97.9% (140/143) vs. 98.8% (171/173), 97.2% (139/143) vs. 97.1% (333/343), 98.6% (140/142) vs. 99.7% (385/386), 96.4% (134/139) vs. 98.2% (378/385) and 97.8% (136/139) vs. 98.9% (375/379), respectively. Most isolates carried pfmdr1 wild-type at codon 86, with a significant difference in proportions genotypes (number of wild type/total sample) in samples collected during period 1 [92.9% (130/140)] compared with period 2 [96.9% (379/391)]. Investigation of pfmdr1 copy number was performed by real-time PCR. The proportions of isolates carried 1, 2, 3 and 4 or more than 4 copies of pfmdr1 (number of isolates carried correspondent copy number/total isolate) were significantly different between the two sample collecting periods (65.7% (90/137) vs. 87.8% (390/444), 18.2% (25/137) vs. 6.3%(28/444), 5.1% (7/137) vs. 1.4% (6/444) and 11.0% (15/137) vs. 4.5% (20/444), for period 1 vs. period 2, respectively). No pfk13 mutation was detected by nested PCR and nucleotide sequencing in all samples with successful analysis (n = 68). CONCLUSIONS The persistence of pfcrt mutations and pfmdr1 wild-types at codon 86, along with gene amplification in P. falciparum, contributes to the continued resistance of chloroquine and mefloquine in P. falciparum isolates in the study area. Regular surveillance of antimalarial drug resistance in P. falciparum, incorporating relevant molecular markers and treatment efficacy assessments, should be conducted.
Collapse
Affiliation(s)
- Phunuch Muhamad
- Drug Discovery and Development Center, Office of Advanced Science and Technology, Thammasat University, Pathumthani, 12120, Thailand
| | - Papichaya Phompradit
- Chulabhorn International College of Medicine, Thammasat University, Pathumthani, 12120, Thailand
| | - Wanna Chaijaroenkul
- Chulabhorn International College of Medicine, Thammasat University, Pathumthani, 12120, Thailand
- Center of Excellence in Pharmacology and Molecular Biology of Malaria and Cholangiocarcinoma, Chulabhorn International College of Medicine, Thammasat University, Pathumthani, 12120, Thailand
- Graduate Program in Bioclinical Sciences, Chulabhorn International College of Medicine, Thammasat University, Pathumthani, 12120, Thailand
| | - Kesara Na-Bangchang
- Drug Discovery and Development Center, Office of Advanced Science and Technology, Thammasat University, Pathumthani, 12120, Thailand.
- Chulabhorn International College of Medicine, Thammasat University, Pathumthani, 12120, Thailand.
- Center of Excellence in Pharmacology and Molecular Biology of Malaria and Cholangiocarcinoma, Chulabhorn International College of Medicine, Thammasat University, Pathumthani, 12120, Thailand.
- Graduate Program in Bioclinical Sciences, Chulabhorn International College of Medicine, Thammasat University, Pathumthani, 12120, Thailand.
| |
Collapse
|
6
|
de Abreu-Fernandes R, Almeida-de-Oliveira NK, Gama BE, Gomes LR, De Lavigne Mello AR, Queiroz LTD, Barros JDA, Alecrim MDGC, Medeiros de Souza R, Pratt-Riccio LR, Brasil P, Daniel-Ribeiro CT, Ferreira-da-Cruz MDF. Plasmodium falciparum Chloroquine- pfcrt Resistant Haplotypes in Brazilian Endemic Areas Four Decades after CQ Withdrawn. Pathogens 2023; 12:pathogens12050731. [PMID: 37242401 DOI: 10.3390/pathogens12050731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 05/10/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023] Open
Abstract
(1) Background: Malaria is a public health problem worldwide. Despite global efforts to control it, antimalarial drug resistance remains a great challenge. In 2009, our team identified, for the first time in Brazil, chloroquine (CQ)-susceptible Plasmodium falciparum parasites in isolates from the Brazilian Amazon. The present study extends those observations to include survey samples from 2010 to 2018 from the Amazonas and Acre states for the purpose of tracking pfcrt molecular changes in P. falciparum parasites. (2) Objective: to investigate SNPs in the P. falciparum gene associated with chemoresistance to CQ (pfcrt). (3) Methods: Sixty-six P. falciparum samples from the Amazonas and Acre states were collected from 2010 to 2018 in patients diagnosed at the Reference Research Center for Treatment and Diagnosis of Malaria (CPD-Mal/Fiocruz), FMT-HVD and Acre Health Units. These samples were subjected to PCR and DNA Sanger sequencing to identify mutations in pfcrt (C72S, M74I, N75E, and K76T). (4) Results: Of the 66 P. falciparum samples genotyped for pfcrt, 94% carried CQ-resistant genotypes and only 4 showed a CQ pfcrt sensitive-wild type genotype, i.e., 1 from Barcelos and 3 from Manaus. (5) Conclusion: CQ-resistant P. falciparum populations are fixed, and thus, CQ cannot be reintroduced in malaria falciparum therapy.
Collapse
Affiliation(s)
- Rebecca de Abreu-Fernandes
- Laboratório de Pesquisa em Malária, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro 21041-361, Brazil
- Centro de Pesquisa, Diagnóstico e Treinamento em Malária (CPD-Mal), Reference Laboratory for Malaria in the Extra-Amazonian Region for the Brazilian Ministry of Health, Secretaria de Vigilância Sanitária & Fiocruz, Rio de Janeiro 21041-361, Brazil
| | - Natália Ketrin Almeida-de-Oliveira
- Laboratório de Pesquisa em Malária, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro 21041-361, Brazil
- Centro de Pesquisa, Diagnóstico e Treinamento em Malária (CPD-Mal), Reference Laboratory for Malaria in the Extra-Amazonian Region for the Brazilian Ministry of Health, Secretaria de Vigilância Sanitária & Fiocruz, Rio de Janeiro 21041-361, Brazil
| | - Bianca Ervatti Gama
- Centro de Transplante de Medula Óssea Laboratório de Oncovirologia, Instituto Nacional do Câncer, Rio de Janeiro 20230-130, Brazil
| | - Larissa Rodrigues Gomes
- Laboratório de Bioquímica e Proteínas de Peptídeos, CDTS Centro de Desenvolvimento Tecnológico em Saúde, Fiocruz, Rio de Janeiro 21041-361, Brazil
| | - Aline Rosa De Lavigne Mello
- Laboratório de Pesquisa em Malária, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro 21041-361, Brazil
- Centro de Pesquisa, Diagnóstico e Treinamento em Malária (CPD-Mal), Reference Laboratory for Malaria in the Extra-Amazonian Region for the Brazilian Ministry of Health, Secretaria de Vigilância Sanitária & Fiocruz, Rio de Janeiro 21041-361, Brazil
| | - Lucas Tavares de Queiroz
- Laboratório de Pesquisa em Malária, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro 21041-361, Brazil
| | - Jacqueline de Aguiar Barros
- Laboratório de Pesquisa em Malária, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro 21041-361, Brazil
- Núcleo de Controle da Malária/Departamento de Vigilância Epidemiológica/Coordenação Geral de Vigilância em Saúde/SESAU-RR, Boa Vista 69305-080, Brazil
| | | | - Rodrigo Medeiros de Souza
- Centro de Pesquisa em Doenças Infecciosas, Universidade Federal do Acre, Rio Branco 69920-900, Brazil
| | - Lilian Rose Pratt-Riccio
- Laboratório de Pesquisa em Malária, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro 21041-361, Brazil
| | - Patrícia Brasil
- Centro de Pesquisa, Diagnóstico e Treinamento em Malária (CPD-Mal), Reference Laboratory for Malaria in the Extra-Amazonian Region for the Brazilian Ministry of Health, Secretaria de Vigilância Sanitária & Fiocruz, Rio de Janeiro 21041-361, Brazil
- Instituto Nacional de Infectologia Evandro Chagas, Fiocruz, Rio de Janeiro 21040-361, Brazil
| | - Cláudio Tadeu Daniel-Ribeiro
- Laboratório de Pesquisa em Malária, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro 21041-361, Brazil
- Centro de Pesquisa, Diagnóstico e Treinamento em Malária (CPD-Mal), Reference Laboratory for Malaria in the Extra-Amazonian Region for the Brazilian Ministry of Health, Secretaria de Vigilância Sanitária & Fiocruz, Rio de Janeiro 21041-361, Brazil
| | - Maria de Fátima Ferreira-da-Cruz
- Laboratório de Pesquisa em Malária, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro 21041-361, Brazil
- Centro de Pesquisa, Diagnóstico e Treinamento em Malária (CPD-Mal), Reference Laboratory for Malaria in the Extra-Amazonian Region for the Brazilian Ministry of Health, Secretaria de Vigilância Sanitária & Fiocruz, Rio de Janeiro 21041-361, Brazil
| |
Collapse
|
7
|
Chaorattanakawee S, Kosaisavee V, Bunsermyos W, Aonsri C, Imaram W, Suwannasin K, Kunasol C, Thamnurak C, Boonyalai N, Saunders D, Dondorp AM, Mungthin M, Imwong M. In vitro activity of rhinacanthin analogues against drug resistant Plasmodium falciparum isolates from Northeast Thailand. Malar J 2023; 22:105. [PMID: 36959593 PMCID: PMC10035203 DOI: 10.1186/s12936-023-04532-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 03/13/2023] [Indexed: 03/25/2023] Open
Abstract
BACKGROUND New anti-malarial drugs are needed urgently to address the increasing challenges of drug-resistant falciparum malaria. Two rhinacanthin analogues containing a naphthoquinone moiety resembling atovaquone showed promising in-vitro activity against a P. falciparum laboratory reference strain (K1). The anti-malarial activity of these 2 compounds was further evaluated for P. falciparum field isolates from an area of multi-drug resistance in Northeast Thailand. METHODS Using a pLDH enzyme-linked immunosorbent assay, four P. falciparum isolates from Northeast Thailand in 2018 were tested for in vitro sensitivity to the two synthetic rhinacanthin analogues 1 and 2 as well as established anti-malarials. Mutations in the P. falciparum cytochrome b gene, a marker for atovaquone (ATQ) resistance, were genotyped in all four field isolates as well as 100 other clinical isolates from the same area using PCR-artificial Restriction Fragment Length Polymorphisms. Pfkelch13 mutations, a marker for artemisinin (ART) resistance, were also examined in all isolates. RESULTS The 50% inhibitory concentrations (IC50) of P. falciparum field isolates for rhinacanthin analogue 1 was 321.9-791.1 nM (median = 403.1 nM). Parasites were more sensitive to analogue 2: IC50 48.6-63.3 nM (median = 52.2 nM). Similar results were obtained against P. falciparum reference laboratory strains 3D7 and W2. The ART-resistant IPC-5202 laboratory strain was more sensitive to these compounds with a median IC50 45.9 and 3.3 nM for rhinacanthin analogues 1 and 2, respectively. The ATQ-resistant C2B laboratory strain showed high-grade resistance towards both compounds (IC50 > 15,000 nM), and there was a strong positive correlation between the IC50 values for these compounds and ATQ (r = 0.83-0.97, P < 0.001). There were no P. falciparum cytochrome b mutations observed in the field isolates, indicating that P. falciparum isolates from this area remained ATQ-sensitive. Pfkelch13 mutations and the ring-stage survival assay confirmed that most isolates were resistant to ART. CONCLUSIONS Two rhinacanthin analogues showed parasiticidal activity against multi-drug resistant P. falciparum isolates, although less potent than ATQ. Rhinacanthin analogue 2 was more potent than analogue 1, and can be a lead compound for further optimization as an anti-malarial in areas with multidrug resistance.
Collapse
Affiliation(s)
- Suwanna Chaorattanakawee
- Department of Parasitology and Entomology, Faculty of Public Health, Mahidol University, Bangkok, Thailand
| | - Varakorn Kosaisavee
- Department of Parasitology and Entomology, Faculty of Public Health, Mahidol University, Bangkok, Thailand
| | - Watanyu Bunsermyos
- Department of Parasitology and Entomology, Faculty of Public Health, Mahidol University, Bangkok, Thailand
| | - Chaiyawat Aonsri
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Mahidol University, Bangkok, 10400, Thailand
| | - Witcha Imaram
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Kasetsart University, Bangkok, Thailand
| | - Kanokon Suwannasin
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Chanon Kunasol
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Chatchadaporn Thamnurak
- Department of Bacterial and Parasitic Diseases, Armed Forces Research Institute of Medical Science (AFRIMS), Bangkok, Thailand
| | - Nonlawat Boonyalai
- Department of Bacterial and Parasitic Diseases, Armed Forces Research Institute of Medical Science (AFRIMS), Bangkok, Thailand
| | - David Saunders
- Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Arjen M Dondorp
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Mathirut Mungthin
- Department of Parasitology, Phramongkutklao College of Medicine, 317 Ratchawithi Road, Ratchathewi, Bangkok, 10400, Thailand
| | - Mallika Imwong
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.
| |
Collapse
|
8
|
Win KN, Manopwisedjaroen K, Phumchuea K, Suansomjit C, Chotivanich K, Lawpoolsri S, Cui L, Sattabongkot J, Nguitragool W. Molecular markers of dihydroartemisinin-piperaquine resistance in northwestern Thailand. Malar J 2022; 21:352. [PMID: 36437462 PMCID: PMC9701414 DOI: 10.1186/s12936-022-04382-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 11/11/2022] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Dihydroartemisinin-piperaquine (DHA-PPQ) combination therapy is the current first-line treatment for Plasmodium falciparum malaria in Thailand. Since its introduction in 2015, resistance to this drug combination has emerged in the eastern part of the Greater Mekong Subregion including the eastern part of Thailand near Cambodia. This study aimed to assess whether the resistance genotypes have arisen the western part of country. METHODS Fifty-seven P. falciparum-infected blood samples were collected in Tak province of northwestern Thailand between 2013 and 2019. Resistance to DHA was examined through the single nucleotide polymorphisms (SNPs) of kelch13. PPQ resistance was examined through the copy number plasmepsin-2 and the SNPs of Pfcrt. RESULTS Among the samples whose kelch13 were successfully sequenced, approximately half (31/55; 56%) had mutation associated with artemisinin resistance, including G533S (23/55; 42%), C580Y (6/55; 11%), and G538V (2/55; 4%). During the study period, G533S mutation appeared and increased from 20% (4/20) in 2014 to 100% (9/9) in 2019. No plasmepsin-2 gene amplification was observed, but one sample (1/54) had the Pfcrt F145I mutation previously implicated in PPQ resistance. CONCLUSIONS Kelch13 mutation was common in Tak Province in 2013-2019. A new mutation G533S emerged in 2014 and rose to dominance in 2019. PPQ resistance marker Pfcrt F145I was also detected in 2019. Continued surveillance of treatment efficacy and drug resistance markers is warranted.
Collapse
Affiliation(s)
- Khine Nwe Win
- grid.10223.320000 0004 1937 0490Department of Tropical Hygiene, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400 Thailand
| | - Khajohnpong Manopwisedjaroen
- grid.10223.320000 0004 1937 0490Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400 Thailand
| | - Kanit Phumchuea
- grid.10223.320000 0004 1937 0490Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400 Thailand
| | - Chayanut Suansomjit
- grid.10223.320000 0004 1937 0490Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400 Thailand
| | - Kesinee Chotivanich
- grid.10223.320000 0004 1937 0490Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400 Thailand
| | - Saranath Lawpoolsri
- grid.10223.320000 0004 1937 0490Department of Tropical Hygiene, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400 Thailand
| | - Liwang Cui
- grid.170693.a0000 0001 2353 285XDepartment of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612 USA
| | - Jetsumon Sattabongkot
- grid.10223.320000 0004 1937 0490Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400 Thailand
| | - Wang Nguitragool
- grid.10223.320000 0004 1937 0490Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400 Thailand ,grid.10223.320000 0004 1937 0490Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, 420/6 Ratchawithi Rd, Ratchathewi, Bangkok, 10400 Thailand
| |
Collapse
|
9
|
Okombo J, Mok S, Qahash T, Yeo T, Bath J, Orchard LM, Owens E, Koo I, Albert I, Llinás M, Fidock DA. Piperaquine-resistant PfCRT mutations differentially impact drug transport, hemoglobin catabolism and parasite physiology in Plasmodium falciparum asexual blood stages. PLoS Pathog 2022; 18:e1010926. [PMID: 36306287 PMCID: PMC9645663 DOI: 10.1371/journal.ppat.1010926] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 11/09/2022] [Accepted: 10/10/2022] [Indexed: 11/11/2022] Open
Abstract
The emergence of Plasmodium falciparum parasite resistance to dihydroartemisinin + piperaquine (PPQ) in Southeast Asia threatens plans to increase the global use of this first-line antimalarial combination. High-level PPQ resistance appears to be mediated primarily by novel mutations in the P. falciparum chloroquine resistance transporter (PfCRT), which enhance parasite survival at high PPQ concentrations in vitro and increase the risk of dihydroartemisinin + PPQ treatment failure in patients. Using isogenic Dd2 parasites expressing contemporary pfcrt alleles with differential in vitro PPQ susceptibilities, we herein characterize the molecular and physiological adaptations that define PPQ resistance in vitro. Using drug uptake and cellular heme fractionation assays we report that the F145I, M343L, and G353V PfCRT mutations differentially impact PPQ and chloroquine efflux. These mutations also modulate proteolytic degradation of host hemoglobin and the chemical inactivation of reactive heme species. Peptidomic analyses reveal significantly higher accumulation of putative hemoglobin-derived peptides in the PPQ-resistant mutant PfCRT isoforms compared to parental PPQ-sensitive Dd2. Joint transcriptomic and metabolomic profiling of late trophozoites from PPQ-resistant or -sensitive isogenic lines reveals differential expression of genes involved in protein translation and cellular metabolism. PPQ-resistant parasites also show increased susceptibility to an inhibitor of the P. falciparum M17 aminopeptidase that operates on short globin-derived peptides. These results reveal unique physiological changes caused by the gain of PPQ resistance and highlight the potential therapeutic value of targeting peptide metabolism in P. falciparum.
Collapse
Affiliation(s)
- John Okombo
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, New York, United States of America
| | - Sachel Mok
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, New York, United States of America
- Center for Malaria Therapeutics and Antimicrobial Resistance, Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, New York, United States of America
| | - Tarrick Qahash
- Department of Biochemistry & Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, United States of America
- Huck Center for Malaria Research, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Tomas Yeo
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, New York, United States of America
| | - Jade Bath
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, New York, United States of America
| | - Lindsey M. Orchard
- Department of Biochemistry & Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, United States of America
- Huck Center for Malaria Research, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Edward Owens
- Department of Biochemistry & Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, United States of America
- Huck Center for Malaria Research, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Imhoi Koo
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, Pennsylvania, United States of America
- The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Istvan Albert
- Department of Biochemistry & Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Manuel Llinás
- Department of Biochemistry & Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, United States of America
- Huck Center for Malaria Research, The Pennsylvania State University, University Park, Pennsylvania, United States of America
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - David A. Fidock
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, New York, United States of America
- Center for Malaria Therapeutics and Antimicrobial Resistance, Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, New York, United States of America
| |
Collapse
|
10
|
Shah JA. Learnings from Thailand in building strong surveillance for malaria elimination. Nat Commun 2022; 13:2677. [PMID: 35562343 PMCID: PMC9106678 DOI: 10.1038/s41467-022-30267-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 04/20/2022] [Indexed: 12/02/2022] Open
Affiliation(s)
- Jui A Shah
- RTI International, Unit 406, 208 Wireless Road, Lumpini, Pathumwan, Bangkok, 10330, Thailand.
| |
Collapse
|
11
|
Roh ME, Lausatianragit K, Chaitaveep N, Jongsakul K, Sudathip P, Raseebut C, Tabprasit S, Nonkaew P, Spring M, Arsanok M, Boonyarangka P, Sriwichai S, Sai-Ngam P, Chaisatit C, Pokpong P, Prempree P, Rossi S, Feldman M, Wojnarski M, Bennett A, Gosling R, Jearakul D, Lausatianragit W, Smith PL, Martin NJ, Lover AA, Fukuda MM. Civilian-military malaria outbreak response in Thailand: an example of multi-stakeholder engagement for malaria elimination. Malar J 2021; 20:458. [PMID: 34876133 PMCID: PMC8650387 DOI: 10.1186/s12936-021-03995-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 11/25/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND In April 2017, the Thai Ministry of Public Health (MoPH) was alerted to a potential malaria outbreak among civilians and military personnel in Sisaket Province, a highly forested area bordering Cambodia. The objective of this study was to present findings from the joint civilian-military outbreak response. METHODS A mixed-methods approach was used to assess risk factors among cases reported during the 2017 Sisaket malaria outbreak. Routine malaria surveillance data from January 2013 to March 2018 obtained from public and military medical reporting systems and key informant interviews (KIIs) (n = 72) were used to develop hypotheses about potential factors contributing to the outbreak. Joint civilian-military response activities included entomological surveys, mass screen and treat (MSAT) and vector control campaigns, and scale-up of the "1-3-7" reactive case detection approach among civilians alongside a pilot "1-3-7" study conducted by the Royal Thai Army (RTA). RESULTS Between May-July 2017, the monthly number of MoPH-reported cases surpassed the epidemic threshold. Outbreak cases detected through the MoPH mainly consisted of Thai males (87%), working as rubber tappers (62%) or military/border police (15%), and Plasmodium vivax infections (73%). Compared to cases from the previous year (May-July 2016), outbreak cases were more likely to be rubber tappers (OR = 14.89 [95% CI: 5.79-38.29]; p < 0.001) and infected with P. vivax (OR=2.32 [1.27-4.22]; p = 0.006). Themes from KIIs were congruent with findings from routine surveillance data. Though limited risk factor information was available from military cases, findings from RTA's "1-3-7" study indicated transmission was likely occurring outside military bases. Data from entomological surveys and MSAT campaigns support this hypothesis, as vectors were mostly exophagic and parasite prevalence from MSAT campaigns was very low (range: 0-0.7% by PCR/microscopy). CONCLUSIONS In 2017, an outbreak of mainly P. vivax occurred in Sisaket Province, affecting mainly military and rubber tappers. Vector control use was limited to the home/military barracks, indicating that additional interventions were needed during high-risk forest travel periods. Importantly, this outbreak catalyzed joint civilian-military collaborations and integration of the RTA into the national malaria elimination strategy (NMES). The Sisaket outbreak response serves as an example of how civilian and military public health systems can collaborate to advance national malaria elimination goals in Southeast Asia and beyond.
Collapse
Affiliation(s)
- Michelle E Roh
- Malaria Elimination Initiative, Institute of Global Health Sciences, University of California, San Francisco, San Francisco, California, USA.
| | | | - Nithinart Chaitaveep
- Royal Thai Army, Armed Forces Research Institute of Medical Sciences (AFRIMS), Bangkok, Thailand
| | - Krisada Jongsakul
- US Army Medical Directorate, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Prayuth Sudathip
- Division of Vector Borne Disease, Department of Disease Control, Ministry of Public Health, Nonthaburi, Thailand
| | - Chatree Raseebut
- Office of Disease Prevention and Control 10, Ministry of Public Health, Ubon Ratchathani Province, Thailand
| | - Sutchana Tabprasit
- Royal Thai Army, Armed Forces Research Institute of Medical Sciences (AFRIMS), Bangkok, Thailand
| | - Prasert Nonkaew
- Office of Disease Prevention and Control 10, Ministry of Public Health, Ubon Ratchathani Province, Thailand
| | - Michele Spring
- US Army Medical Directorate, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Montri Arsanok
- US Army Medical Directorate, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Parat Boonyarangka
- US Army Medical Directorate, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Sabaithip Sriwichai
- US Army Medical Directorate, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Piyaporn Sai-Ngam
- US Army Medical Directorate, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Chaiyaporn Chaisatit
- US Army Medical Directorate, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Peerapol Pokpong
- Royal Thai Army, Armed Forces Research Institute of Medical Sciences (AFRIMS), Bangkok, Thailand
| | - Preecha Prempree
- Division of Vector Borne Disease, Department of Disease Control, Ministry of Public Health, Nonthaburi, Thailand
| | - Sara Rossi
- Malaria Elimination Initiative, Institute of Global Health Sciences, University of California, San Francisco, San Francisco, California, USA
| | - Mitra Feldman
- US Army Medical Directorate, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Mariusz Wojnarski
- US Army Medical Directorate, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Adam Bennett
- Malaria Elimination Initiative, Institute of Global Health Sciences, University of California, San Francisco, San Francisco, California, USA
| | - Roly Gosling
- Malaria Elimination Initiative, Institute of Global Health Sciences, University of California, San Francisco, San Francisco, California, USA
| | - Danai Jearakul
- Office of Disease Prevention and Control 10, Ministry of Public Health, Ubon Ratchathani Province, Thailand
| | | | - Philip L Smith
- US Army Medical Directorate, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Nicholas J Martin
- US Army Medical Directorate, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Andrew A Lover
- Department of Biostatistics and Epidemiology, School of Public Health and Health Sciences, University of Massachusetts-Amherst, Amherst, Massachusetts, USA
| | - Mark M Fukuda
- US Army Medical Directorate, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| |
Collapse
|