1
|
Chen C, Zhao LL, Lang Q, Xu Y. A Novel Detection and Classification Framework for Diagnosing of Cerebral Microbleeds Using Transformer and Language. Bioengineering (Basel) 2024; 11:993. [PMID: 39451369 PMCID: PMC11504022 DOI: 10.3390/bioengineering11100993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/24/2024] [Accepted: 09/27/2024] [Indexed: 10/26/2024] Open
Abstract
The detection of Cerebral Microbleeds (CMBs) is crucial for diagnosing cerebral small vessel disease. However, due to the small size and subtle appearance of CMBs in susceptibility-weighted imaging (SWI), manual detection is both time-consuming and labor-intensive. Meanwhile, the presence of similar-looking features in SWI images demands significant expertise from clinicians, further complicating this process. Recently, there has been a significant advancement in automated detection of CMBs using a Convolutional Neural Network (CNN) structure, aiming at enhancing diagnostic efficiency for neurologists. However, existing methods still show discrepancies when compared to the actual clinical diagnostic process. To bridge this gap, we introduce a novel multimodal detection and classification framework for CMBs' diagnosis, termed MM-UniCMBs. This framework includes a light-weight detection model and a multi-modal classification network. Specifically, we proposed a new CMBs detection network, CMBs-YOLO, designed to capture the salient features of CMBs in SWI images. Additionally, we design an innovative language-vision classification network, CMBsFormer (CF), which integrates patient textual descriptions-such as gender, age, and medical history-with image data. The MM-UniCMBs framework is designed to closely align with the diagnostic workflow of clinicians, offering greater interpretability and flexibility compared to existing methods. Extensive experimental results show that MM-UniCMBs achieves a sensitivity of 94% in CMBs' classification and can process a patient's data within 5 s.
Collapse
Affiliation(s)
- Cong Chen
- School of Clinical Medicine, College of Medicine, Nanjing Medical University, Nanjing 211166, China
- Department of Neurology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Lin-Lin Zhao
- Department of Computer Science and Technology, Shanghai University, 99 Shangda Road, Baoshan District, Shanghai 200444, China
| | - Qin Lang
- Department of Neurology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Yun Xu
- School of Clinical Medicine, College of Medicine, Nanjing Medical University, Nanjing 211166, China
- Department of Neurology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 321 Zhongshan Road, Nanjing 210008, China
| |
Collapse
|
2
|
Noroozi M, Gholami M, Sadeghsalehi H, Behzadi S, Habibzadeh A, Erabi G, Sadatmadani SF, Diyanati M, Rezaee A, Dianati M, Rasoulian P, Khani Siyah Rood Y, Ilati F, Hadavi SM, Arbab Mojeni F, Roostaie M, Deravi N. Machine and deep learning algorithms for classifying different types of dementia: A literature review. APPLIED NEUROPSYCHOLOGY. ADULT 2024:1-15. [PMID: 39087520 DOI: 10.1080/23279095.2024.2382823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
The cognitive impairment known as dementia affects millions of individuals throughout the globe. The use of machine learning (ML) and deep learning (DL) algorithms has shown great promise as a means of early identification and treatment of dementia. Dementias such as Alzheimer's Dementia, frontotemporal dementia, Lewy body dementia, and vascular dementia are all discussed in this article, along with a literature review on using ML algorithms in their diagnosis. Different ML algorithms, such as support vector machines, artificial neural networks, decision trees, and random forests, are compared and contrasted, along with their benefits and drawbacks. As discussed in this article, accurate ML models may be achieved by carefully considering feature selection and data preparation. We also discuss how ML algorithms can predict disease progression and patient responses to therapy. However, overreliance on ML and DL technologies should be avoided without further proof. It's important to note that these technologies are meant to assist in diagnosis but should not be used as the sole criteria for a final diagnosis. The research implies that ML algorithms may help increase the precision with which dementia is diagnosed, especially in its early stages. The efficacy of ML and DL algorithms in clinical contexts must be verified, and ethical issues around the use of personal data must be addressed, but this requires more study.
Collapse
Affiliation(s)
- Masoud Noroozi
- Department of Biomedical Engineering, Faculty of Engineering, University of Isfahan, Isfahan, Iran
| | - Mohammadreza Gholami
- Department of Electrical and Computer Engineering, Tarbiat Modares Univeristy, Tehran, Iran
| | - Hamidreza Sadeghsalehi
- Department of Artificial Intelligence in Medical Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Saleh Behzadi
- Student Research Committee, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Adrina Habibzadeh
- Student Research Committee, Fasa University of Medical Sciences, Fasa, Iran
- USERN Office, Fasa University of Medical Sciences, Fasa, Iran
| | - Gisou Erabi
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
| | | | - Mitra Diyanati
- Paul M. Rady Department of Mechanical Engineering, University of Colorado Boulder, Boulder, CO, USA
| | - Aryan Rezaee
- Student Research Committee, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Maryam Dianati
- Student Research Committee, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Pegah Rasoulian
- Sports Medicine Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Yashar Khani Siyah Rood
- Faculty of Engineering, Computer Engineering, Islamic Azad University of Bandar Abbas, Bandar Abbas, Iran
| | - Fatemeh Ilati
- Student Research Committee, Faculty of Medicine, Islamic Azad University of Mashhad, Mashhad, Iran
| | | | - Fariba Arbab Mojeni
- Student Research Committee, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Minoo Roostaie
- School of Medicine, Islamic Azad University Tehran Medical Branch, Tehran, Iran
| | - Niloofar Deravi
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Hu X, Liu L, Xiong M, Lu J. Application of artificial intelligence-based magnetic resonance imaging in diagnosis of cerebral small vessel disease. CNS Neurosci Ther 2024; 30:e14841. [PMID: 39045778 PMCID: PMC11267174 DOI: 10.1111/cns.14841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/15/2024] [Accepted: 06/21/2024] [Indexed: 07/25/2024] Open
Abstract
Cerebral small vessel disease (CSVD) is an important cause of stroke, cognitive impairment, and other diseases, and its early quantitative evaluation can significantly improve patient prognosis. Magnetic resonance imaging (MRI) is an important method to evaluate the occurrence, development, and severity of CSVD. However, the diagnostic process lacks quantitative evaluation criteria and is limited by experience, which may easily lead to missed diagnoses and misdiagnoses. With the development of artificial intelligence technology based on deep learning, the extraction of high-dimensional features in imaging can assist doctors in clinical decision-making, and it has been widely used in brain function and mental disorders, and cardiovascular and cerebrovascular diseases. This paper summarizes the global research results in recent years and briefly describes the application of deep learning in evaluating CSVD signs in MRI imaging, including recent small subcortical infarcts, lacunes of presumed vascular origin, vascular white matter hyperintensity, enlarged perivascular spaces, cerebral microbleeds, brain atrophy, cortical superficial siderosis, and cortical cerebral microinfarct.
Collapse
Affiliation(s)
- Xiaofei Hu
- Xuanwu HospitalCapital Medical UniversityBeijingChina
- Department of Nuclear Medicine, Southwest HospitalThird Military Medical University (Army Medical University)ChongqingChina
| | - Li Liu
- Department of Digital Medicine, School of Biomedical Engineering and Medical ImagingThird Military Medical University (Army Medical University)ChongqingChina
| | - Ming Xiong
- Department of Digital Medicine, School of Biomedical Engineering and Medical ImagingThird Military Medical University (Army Medical University)ChongqingChina
| | - Jie Lu
- Xuanwu HospitalCapital Medical UniversityBeijingChina
| |
Collapse
|
4
|
Zaman A, Hassan H, Zeng X, Khan R, Lu J, Yang H, Miao X, Cao A, Yang Y, Huang B, Guo Y, Kang Y. Adaptive Feature Medical Segmentation Network: an adaptable deep learning paradigm for high-performance 3D brain lesion segmentation in medical imaging. Front Neurosci 2024; 18:1363930. [PMID: 38680446 PMCID: PMC11047127 DOI: 10.3389/fnins.2024.1363930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 03/04/2024] [Indexed: 05/01/2024] Open
Abstract
Introduction In neurological diagnostics, accurate detection and segmentation of brain lesions is crucial. Identifying these lesions is challenging due to its complex morphology, especially when using traditional methods. Conventional methods are either computationally demanding with a marginal impact/enhancement or sacrifice fine details for computational efficiency. Therefore, balancing performance and precision in compute-intensive medical imaging remains a hot research topic. Methods We introduce a novel encoder-decoder network architecture named the Adaptive Feature Medical Segmentation Network (AFMS-Net) with two encoder variants: the Single Adaptive Encoder Block (SAEB) and the Dual Adaptive Encoder Block (DAEB). A squeeze-and-excite mechanism is employed in SAEB to identify significant data while disregarding peripheral details. This approach is best suited for scenarios requiring quick and efficient segmentation, with an emphasis on identifying key lesion areas. In contrast, the DAEB utilizes an advanced channel spatial attention strategy for fine-grained delineation and multiple-class classifications. Additionally, both architectures incorporate a Segmentation Path (SegPath) module between the encoder and decoder, refining segmentation, enhancing feature extraction, and improving model performance and stability. Results AFMS-Net demonstrates exceptional performance across several notable datasets, including BRATs 2021, ATLAS 2021, and ISLES 2022. Its design aims to construct a lightweight architecture capable of handling complex segmentation challenges with high precision. Discussion The proposed AFMS-Net addresses the critical balance issue between performance and computational efficiency in the segmentation of brain lesions. By introducing two tailored encoder variants, the network adapts to varying requirements of speed and feature. This approach not only advances the state-of-the-art in lesion segmentation but also provides a scalable framework for future research in medical image processing.
Collapse
Affiliation(s)
- Asim Zaman
- School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, China
- College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen, China
- School of Applied Technology, Shenzhen University, Shenzhen, China
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Medical School, Shenzhen University, Shenzhen, China
| | - Haseeb Hassan
- College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen, China
| | - Xueqiang Zeng
- College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen, China
- School of Applied Technology, Shenzhen University, Shenzhen, China
| | - Rashid Khan
- School of Applied Technology, Shenzhen University, Shenzhen, China
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Medical School, Shenzhen University, Shenzhen, China
- College of Big Data and Internet, Shenzhen Technology University, Shenzhen, China
| | - Jiaxi Lu
- College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen, China
- School of Applied Technology, Shenzhen University, Shenzhen, China
| | - Huihui Yang
- College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen, China
- School of Applied Technology, Shenzhen University, Shenzhen, China
| | - Xiaoqiang Miao
- College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen, China
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, China
| | - Anbo Cao
- College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen, China
- School of Applied Technology, Shenzhen University, Shenzhen, China
| | - Yingjian Yang
- Shenzhen Lanmage Medical Technology Co., Ltd, Shenzhen, China
| | - Bingding Huang
- College of Big Data and Internet, Shenzhen Technology University, Shenzhen, China
| | - Yingwei Guo
- College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen, China
- School of Electrical and Information Engineering, Northeast Petroleum University, Daqing, China
| | - Yan Kang
- School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, China
- College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen, China
- School of Applied Technology, Shenzhen University, Shenzhen, China
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Medical School, Shenzhen University, Shenzhen, China
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, China
| |
Collapse
|
5
|
Qumsiyeh E, Salah Z, Yousef M. miRGediNET: A comprehensive examination of common genes in miRNA-Target interactions and disease associations: Insights from a grouping-scoring-modeling approach. Heliyon 2023; 9:e22666. [PMID: 38090011 PMCID: PMC10711121 DOI: 10.1016/j.heliyon.2023.e22666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 11/15/2023] [Accepted: 11/16/2023] [Indexed: 06/15/2024] Open
Abstract
In the broad and complex field of biological data analysis, researchers frequently gather information from a single source or database. Despite being a widespread practice, this has disadvantages. Relying exclusively on a single source can limit our comprehension as it may omit various perspectives that could be obtained by combining multiple knowledge bases. Acknowledging this shortcoming, we report on miRGediNET, a novel approach combining information from three biological databases. Our investigation focuses on microRNAs (miRNAs), small non-coding RNA molecules that regulate gene expression post-transcriptionally. We delve deeply into the knowledge of these miRNA's interactions with genes and the possible effects these interactions may have on different diseases. The scientific community has long recognized a direct correlation between the progression of specific diseases and miRNAs, as well as the genes they target. By using miRGediNET, we go beyond simply acknowledging this relationship. Rather, we actively look for the critical genes that could act as links between the actions of miRNAs and the mechanisms underlying disease. Our methodology, which carefully identifies and investigates these important genes, is supported by a strategic framework that may open up new possibilities for comprehending diseases and creating treatments. We have developed a tool on the Knime platform as a concrete application of our research. This tool serves as both a validation of our study and an invitation to the larger community to interact with, investigate, and build upon our findings. miRGediNET is publicly accessible on GitHub at https://github.com/malikyousef/miRGediNET, providing a collaborative environment for additional research and innovation for enthusiasts and fellow researchers.
Collapse
Affiliation(s)
- Emma Qumsiyeh
- Department of Computer Science and Information Technology, Al-Quds University, Palestine
| | - Zaidoun Salah
- Molecular Genetics and Genetic Toxicology, Arab American University, Ramallah, Palestine
| | - Malik Yousef
- Information Technology Engineering, Al-Quds University, Abu Dis, Palestine
| |
Collapse
|
6
|
Sundaresan V, Arthofer C, Zamboni G, Murchison AG, Dineen RA, Rothwell PM, Auer DP, Wang C, Miller KL, Tendler BC, Alfaro-Almagro F, Sotiropoulos SN, Sprigg N, Griffanti L, Jenkinson M. Automated detection of cerebral microbleeds on MR images using knowledge distillation framework. Front Neuroinform 2023; 17:1204186. [PMID: 37492242 PMCID: PMC10363739 DOI: 10.3389/fninf.2023.1204186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 06/19/2023] [Indexed: 07/27/2023] Open
Abstract
Introduction Cerebral microbleeds (CMBs) are associated with white matter damage, and various neurodegenerative and cerebrovascular diseases. CMBs occur as small, circular hypointense lesions on T2*-weighted gradient recalled echo (GRE) and susceptibility-weighted imaging (SWI) images, and hyperintense on quantitative susceptibility mapping (QSM) images due to their paramagnetic nature. Accurate automated detection of CMBs would help to determine quantitative imaging biomarkers (e.g., CMB count) on large datasets. In this work, we propose a fully automated, deep learning-based, 3-step algorithm, using structural and anatomical properties of CMBs from any single input image modality (e.g., GRE/SWI/QSM) for their accurate detections. Methods In our method, the first step consists of an initial candidate detection step that detects CMBs with high sensitivity. In the second step, candidate discrimination step is performed using a knowledge distillation framework, with a multi-tasking teacher network that guides the student network to classify CMB and non-CMB instances in an offline manner. Finally, a morphological clean-up step further reduces false positives using anatomical constraints. We used four datasets consisting of different modalities specified above, acquired using various protocols and with a variety of pathological and demographic characteristics. Results On cross-validation within datasets, our method achieved a cluster-wise true positive rate (TPR) of over 90% with an average of <2 false positives per subject. The knowledge distillation framework improves the cluster-wise TPR of the student model by 15%. Our method is flexible in terms of the input modality and provides comparable cluster-wise TPR and better cluster-wise precision compared to existing state-of-the-art methods. When evaluating across different datasets, our method showed good generalizability with a cluster-wise TPR >80 % with different modalities. The python implementation of the proposed method is openly available.
Collapse
Affiliation(s)
- Vaanathi Sundaresan
- Department of Computational and Data Sciences, Indian Institute of Science, Bengaluru, Karnataka, India
- Wellcome Centre for Integrative Neuroimaging, Oxford Centre for Functional MRI of the Brain, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Christoph Arthofer
- Wellcome Centre for Integrative Neuroimaging, Oxford Centre for Functional MRI of the Brain, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
- National Institute for Health and Care Research (NIHR) Nottingham Biomedical Research Centre, Queen's Medical Centre, University of Nottingham, Nottingham, United Kingdom
- Sir Peter Mansfield Imaging Centre, University of Nottingham, Nottingham, United Kingdom
| | - Giovanna Zamboni
- Wellcome Centre for Integrative Neuroimaging, Oxford Centre for Functional MRI of the Brain, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
- Centre for Prevention of Stroke and Dementia, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
- Dipartimento di Scienze Biomediche, Metaboliche e Neuroscienze, Universitá di Modena e Reggio Emilia, Modena, Italy
| | - Andrew G. Murchison
- Department of Neuroradiology, Oxford University Hospitals National Health Service (NHS) Foundation Trust, Oxford, United Kingdom
| | - Robert A. Dineen
- National Institute for Health and Care Research (NIHR) Nottingham Biomedical Research Centre, Queen's Medical Centre, University of Nottingham, Nottingham, United Kingdom
- Sir Peter Mansfield Imaging Centre, University of Nottingham, Nottingham, United Kingdom
- Radiological Sciences, Mental Health and Clinical Neurosciences, School of Medicine, University of Nottingham, Nottingham, United Kingdom
| | - Peter M. Rothwell
- Centre for Prevention of Stroke and Dementia, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Dorothee P. Auer
- National Institute for Health and Care Research (NIHR) Nottingham Biomedical Research Centre, Queen's Medical Centre, University of Nottingham, Nottingham, United Kingdom
- Sir Peter Mansfield Imaging Centre, University of Nottingham, Nottingham, United Kingdom
- Radiological Sciences, Mental Health and Clinical Neurosciences, School of Medicine, University of Nottingham, Nottingham, United Kingdom
| | - Chaoyue Wang
- Wellcome Centre for Integrative Neuroimaging, Oxford Centre for Functional MRI of the Brain, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Karla L. Miller
- Wellcome Centre for Integrative Neuroimaging, Oxford Centre for Functional MRI of the Brain, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Benjamin C. Tendler
- Wellcome Centre for Integrative Neuroimaging, Oxford Centre for Functional MRI of the Brain, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Fidel Alfaro-Almagro
- Wellcome Centre for Integrative Neuroimaging, Oxford Centre for Functional MRI of the Brain, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Stamatios N. Sotiropoulos
- Wellcome Centre for Integrative Neuroimaging, Oxford Centre for Functional MRI of the Brain, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
- National Institute for Health and Care Research (NIHR) Nottingham Biomedical Research Centre, Queen's Medical Centre, University of Nottingham, Nottingham, United Kingdom
- Sir Peter Mansfield Imaging Centre, University of Nottingham, Nottingham, United Kingdom
| | - Nikola Sprigg
- Stroke Trials Unit, Mental Health and Clinical Neuroscience, University of Nottingham, Nottingham, United Kingdom
| | - Ludovica Griffanti
- Wellcome Centre for Integrative Neuroimaging, Oxford Centre for Functional MRI of the Brain, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
- Wellcome Centre for Integrative Neuroimaging, Oxford Centre for Human Brain Activity, Department of Psychiatry, University of Oxford, Oxford, United Kingdom
| | - Mark Jenkinson
- Wellcome Centre for Integrative Neuroimaging, Oxford Centre for Functional MRI of the Brain, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
- South Australian Health and Medical Research Institute, Adelaide, SA, Australia
- Australian Institute for Machine Learning, School of Computer Science, The University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
7
|
Wang D, Honnorat N, Fox PT, Ritter K, Eickhoff SB, Seshadri S, Habes M. Deep neural network heatmaps capture Alzheimer's disease patterns reported in a large meta-analysis of neuroimaging studies. Neuroimage 2023; 269:119929. [PMID: 36740029 PMCID: PMC11155416 DOI: 10.1016/j.neuroimage.2023.119929] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 01/06/2023] [Accepted: 02/02/2023] [Indexed: 02/05/2023] Open
Abstract
Deep neural networks currently provide the most advanced and accurate machine learning models to distinguish between structural MRI scans of subjects with Alzheimer's disease and healthy controls. Unfortunately, the subtle brain alterations captured by these models are difficult to interpret because of the complexity of these multi-layer and non-linear models. Several heatmap methods have been proposed to address this issue and analyze the imaging patterns extracted from the deep neural networks, but no quantitative comparison between these methods has been carried out so far. In this work, we explore these questions by deriving heatmaps from Convolutional Neural Networks (CNN) trained using T1 MRI scans of the ADNI data set and by comparing these heatmaps with brain maps corresponding to Support Vector Machine (SVM) activation patterns. Three prominent heatmap methods are studied: Layer-wise Relevance Propagation (LRP), Integrated Gradients (IG), and Guided Grad-CAM (GGC). Contrary to prior studies where the quality of heatmaps was visually or qualitatively assessed, we obtained precise quantitative measures by computing overlap with a ground-truth map from a large meta-analysis that combined 77 voxel-based morphometry (VBM) studies independently from ADNI. Our results indicate that all three heatmap methods were able to capture brain regions covering the meta-analysis map and achieved better results than SVM activation patterns. Among them, IG produced the heatmaps with the best overlap with the independent meta-analysis.
Collapse
Affiliation(s)
- Di Wang
- Neuroimage Analytics Laboratory and Biggs Institute Neuroimaging Core, Glenn Biggs Institute for Neurodegenerative Disorders, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Nicolas Honnorat
- Neuroimage Analytics Laboratory and Biggs Institute Neuroimaging Core, Glenn Biggs Institute for Neurodegenerative Disorders, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Peter T Fox
- Biomedical Image Analytics Division, Research Imaging Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Kerstin Ritter
- Department of Psychiatry and Neurosciences, Charite - University of Medicine Berlin and Humboldt-University Berlin, Berlin, Germany
| | - Simon B Eickhoff
- Institute of Neuroscience and Medicine, Brain & Behaviour (INM-7), Research Centre Jülich, Jülich, Germany; Institute of Systems Neuroscience, Heinrich-Heine University Düsseldorf, Germany
| | - Sudha Seshadri
- Neuroimage Analytics Laboratory and Biggs Institute Neuroimaging Core, Glenn Biggs Institute for Neurodegenerative Disorders, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Mohamad Habes
- Neuroimage Analytics Laboratory and Biggs Institute Neuroimaging Core, Glenn Biggs Institute for Neurodegenerative Disorders, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA; Biomedical Image Analytics Division, Research Imaging Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.
| |
Collapse
|
8
|
Hou L, Li R, Mafarja M, Heidari AA, Liu L, Jin C, Zhou S, Chen H, Cai Z, Li C. Image segmentation of Intracerebral hemorrhage patients based on enhanced hunger Games search Optimizer. Biomed Signal Process Control 2023. [DOI: 10.1016/j.bspc.2022.104511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
9
|
Rashid T, Liu H, Ware JB, Li K, Romero JR, Fadaee E, Nasrallah IM, Hilal S, Bryan RN, Hughes TM, Davatzikos C, Launer L, Seshadri S, Heckbert SR, Habes M. Deep Learning Based Detection of Enlarged Perivascular Spaces on Brain MRI. NEUROIMAGE. REPORTS 2023; 3:100162. [PMID: 37035520 PMCID: PMC10078801 DOI: 10.1016/j.ynirp.2023.100162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
Deep learning has been demonstrated effective in many neuroimaging applications. However, in many scenarios, the number of imaging sequences capturing information related to small vessel disease lesions is insufficient to support data-driven techniques. Additionally, cohort-based studies may not always have the optimal or essential imaging sequences for accurate lesion detection. Therefore, it is necessary to determine which imaging sequences are crucial for precise detection. This study introduces a deep learning framework to detect enlarged perivascular spaces (ePVS) and aims to find the optimal combination of MRI sequences for deep learning-based quantification. We implemented an effective lightweight U-Net adapted for ePVS detection and comprehensively investigated different combinations of information from SWI, FLAIR, T1-weighted (T1w), and T2-weighted (T2w) MRI sequences. The experimental results showed that T2w MRI is the most important for accurate ePVS detection, and the incorporation of SWI, FLAIR and T1w MRI in the deep neural network had minor improvements in accuracy and resulted in the highest sensitivity and precision (sensitivity =0.82, precision =0.83). The proposed method achieved comparable accuracy at a minimal time cost compared to manual reading. The proposed automated pipeline enables robust and time-efficient readings of ePVS from MR scans and demonstrates the importance of T2w MRI for ePVS detection and the potential benefits of using multimodal images. Furthermore, the model provides whole-brain maps of ePVS, enabling a better understanding of their clinical correlates compared to the clinical rating methods within only a couple of brain regions.
Collapse
Affiliation(s)
- Tanweer Rashid
- Neuroimage Analytics Laboratory and Biggs Institute Neuroimaging Core, Glenn Biggs Institute for Neurodegenerative Disorders, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
- Center for Biomedical Image Computing and Analytics, University of Pennsylvania, Philadelphia, PA, USA
| | - Hangfan Liu
- Neuroimage Analytics Laboratory and Biggs Institute Neuroimaging Core, Glenn Biggs Institute for Neurodegenerative Disorders, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
- Center for Biomedical Image Computing and Analytics, University of Pennsylvania, Philadelphia, PA, USA
| | - Jeffrey B. Ware
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, USA
| | - Karl Li
- Neuroimage Analytics Laboratory and Biggs Institute Neuroimaging Core, Glenn Biggs Institute for Neurodegenerative Disorders, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Jose Rafael Romero
- Department of Neurology, School of Medicine, Boston University, Boston, MA, USA
| | - Elyas Fadaee
- Neuroimage Analytics Laboratory and Biggs Institute Neuroimaging Core, Glenn Biggs Institute for Neurodegenerative Disorders, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Ilya M. Nasrallah
- Center for Biomedical Image Computing and Analytics, University of Pennsylvania, Philadelphia, PA, USA
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, USA
| | - Saima Hilal
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore
| | - R. Nick Bryan
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, USA
- Department of Diagnostic Medicine, Dell Medical School, University of Texas at Austin, Austin, TX, USA
| | - Timothy M. Hughes
- Department of Internal Medicine and Department of Epidemiology and Prevention, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Christos Davatzikos
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, USA
| | - Lenore Launer
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Sudha Seshadri
- Neuroimage Analytics Laboratory and Biggs Institute Neuroimaging Core, Glenn Biggs Institute for Neurodegenerative Disorders, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Susan R. Heckbert
- Department of Epidemiology and Cardiovascular Health Research Unit, University of Washington, Seattle, WA, USA
| | - Mohamad Habes
- Neuroimage Analytics Laboratory and Biggs Institute Neuroimaging Core, Glenn Biggs Institute for Neurodegenerative Disorders, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
- Center for Biomedical Image Computing and Analytics, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
10
|
Austin TR, Jensen PN, Nasrallah IM, Habes M, Rashid T, Ware JB, Chen LY, Greenland P, Hughes TM, Post WS, Shea SJ, Watson KE, Sitlani CM, Floyd JS, Kronmal RA, Longstreth WT, Bertoni AG, Shah SJ, Bryan RN, Heckbert SR. Left Atrial Function and Arrhythmias in Relation to Small Vessel Disease on Brain MRI: The Multi-Ethnic Study of Atherosclerosis. J Am Heart Assoc 2022; 11:e026460. [PMID: 36250665 PMCID: PMC9673671 DOI: 10.1161/jaha.122.026460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 09/12/2022] [Indexed: 11/29/2022]
Abstract
Background Atrial fibrillation (AF) is associated with increased stroke risk and accelerated cognitive decline, but the association of early manifestations of left atrial (LA) impairment with subclinical changes in brain structure is unclear. We investigated whether abnormal LA structure and function, greater supraventricular ectopy, and intermittent AF are associated with small vessel disease on magnetic resonance imaging of the brain. Methods and Results In the Multi-Ethnic Study of Atherosclerosis, 967 participants completed 14-day ambulatory electrocardiographic monitoring, speckle tracking echocardiography and, a median 17 months later, magnetic resonance imaging of the brain. We assessed associations of LA volume index and reservoir strain, supraventricular ectopy, and prevalent AF with brain magnetic resonance imaging measures of small vessel disease and atrophy. The mean age of participants was 72 years; 53% were women. In multivariable models, LA enlargement was associated with lower white matter fractional anisotropy and greater prevalence of microbleeds; reduced LA strain, indicating worse LA function, was associated with more microbleeds. More premature atrial contractions were associated with lower total gray matter volume. Compared with no AF, intermittent AF (prevalent AF with <100% AF during electrocardiographic monitoring) was associated with lower white matter fractional anisotropy (-0.25 SDs [95% CI, -0.44 to -0.07]) and greater prevalence of microbleeds (prevalence ratio: 1.42 [95% CI, 1.12-1.79]). Conclusions In individuals without a history of stroke or transient ischemic attack, alterations of LA structure and function, including enlargement, reduced strain, frequent premature atrial contractions, and intermittent AF, were associated with increased markers of small vessel disease. Detailed assessment of LA structure and function and extended ECG monitoring may enable early identification of individuals at greater risk of small vessel disease.
Collapse
Affiliation(s)
| | | | - Ilya M. Nasrallah
- Center for Biomedical Image Computing and Analytics, Department of RadiologyUniversity of PennsylvaniaPhiladelphiaPA
| | - Mohamad Habes
- Neuroimage Analytics Laboratory and the Biggs Institute Neuroimaging CoreGlenn Biggs Institute for Alzheimer’s & Neurodegenerative Diseases, University of Texas Health Science Center, San AntonioTX
| | - Tanweer Rashid
- Neuroimage Analytics Laboratory and the Biggs Institute Neuroimaging CoreGlenn Biggs Institute for Alzheimer’s & Neurodegenerative Diseases, University of Texas Health Science Center, San AntonioTX
| | - Jeffrey B. Ware
- Department of RadiologyUniversity of PennsylvaniaPhiladelphiaPA
| | - Lin Yee Chen
- Cardiovascular Division, Department of MedicineUniversity of Minnesota Medical SchoolMinneapolisMN
| | - Philip Greenland
- Department of Preventive MedicineNorthwestern University Feinberg School of MedicineChicagoIL
- Division of Cardiology, Department of MedicineNorthwestern University Feinberg School of MedicineChicagoIL
| | - Timothy M. Hughes
- Department of Internal MedicineWake Forest School of MedicineWinston‐SalemNC
| | - Wendy S. Post
- Division of Cardiology, Department of MedicineJohns Hopkins UniversityBaltimoreMD
| | - Steven J. Shea
- Departments of Medicine and EpidemiologyColumbia UniversityNew YorkNY
| | - Karol E. Watson
- Department of Medicine, David Geffen School of MedicineUniversity of CaliforniaLos AngelesCA
| | | | - James S. Floyd
- Department of EpidemiologyUniversity of WashingtonSeattleWA
- Department of MedicineUniversity of WashingtonSeattleWA
| | | | - W. T. Longstreth
- Department of EpidemiologyUniversity of WashingtonSeattleWA
- Department of NeurologyUniversity of WashingtonSeattleWA
| | - Alain G. Bertoni
- Department of Epidemiology and PreventionWake Forest School of MedicineWinston‐SalemNC
| | - Sanjiv J. Shah
- Division of Cardiology, Department of MedicineNorthwestern University Feinberg School of MedicineChicagoIL
| | - R. Nick Bryan
- Department of RadiologyUniversity of PennsylvaniaPhiladelphiaPA
| | | |
Collapse
|
11
|
Jiang J, Wang D, Song Y, Sachdev PS, Wen W. Computer-Aided Extraction of Select MRI Markers of Cerebral Small Vessel Disease: A Systematic Review. Neuroimage 2022; 261:119528. [PMID: 35914668 DOI: 10.1016/j.neuroimage.2022.119528] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 07/18/2022] [Accepted: 07/28/2022] [Indexed: 11/30/2022] Open
Abstract
Cerebral small vessel disease (CSVD) is a major vascular contributor to cognitive impairment in ageing, including dementias. Imaging remains the most promising method for in vivo studies of CSVD. To replace the subjective and laborious visual rating approaches, emerging studies have applied state-of-the-art artificial intelligence to extract imaging biomarkers of CSVD from MRI scans. We aimed to summarise published computer-aided methods for the examination of three imaging biomarkers of CSVD, namely cerebral microbleeds (CMB), dilated perivascular spaces (PVS), and lacunes of presumed vascular origin. Seventy classical image processing, classical machine learning, and deep learning studies were identified. Transfer learning and weak supervision techniques have been applied to accommodate the limitations in the training data. While good performance metrics were achieved in local datasets, there have not been generalisable pipelines validated in different research and/or clinical cohorts. Future studies could consider pooling data from multiple sources to increase data size and diversity, and evaluating performance using both image processing metrics and associations with clinical measures.
Collapse
Affiliation(s)
- Jiyang Jiang
- Centre for Healthy Brain Ageing, Discipline of Psychiatry and Mental Health, School of Clinical Medicine, Faculty of Medicine, University of New South Wales, NSW 2052, Australia.
| | - Dadong Wang
- Quantitative Imaging Research Team, Data61, CSIRO, Marsfield, NSW 2122, Australia
| | - Yang Song
- School of Computer Science and Engineering, University of New South Wales, NSW 2052, Australia
| | - Perminder S Sachdev
- Centre for Healthy Brain Ageing, Discipline of Psychiatry and Mental Health, School of Clinical Medicine, Faculty of Medicine, University of New South Wales, NSW 2052, Australia; Neuropsychiatric Institute, Prince of Wales Hospital, Randwick, NSW 2031, Australia
| | - Wei Wen
- Centre for Healthy Brain Ageing, Discipline of Psychiatry and Mental Health, School of Clinical Medicine, Faculty of Medicine, University of New South Wales, NSW 2052, Australia; Neuropsychiatric Institute, Prince of Wales Hospital, Randwick, NSW 2031, Australia
| |
Collapse
|
12
|
Wei Z, Chen X, Huang J, Wang Z, Yao T, Gao C, Wang H, Li P, Ye W, Li Y, Yao N, Zhang R, Tang N, Wang F, Hu J, Yi D, Wu Y. Construction of a Medical Micro-Object Cascade Network for Automated Segmentation of Cerebral Microbleeds in Susceptibility Weighted Imaging. Front Bioeng Biotechnol 2022; 10:937314. [PMID: 35935490 PMCID: PMC9350526 DOI: 10.3389/fbioe.2022.937314] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 06/20/2022] [Indexed: 11/20/2022] Open
Abstract
Aim: The detection and segmentation of cerebral microbleeds (CMBs) images are the focus of clinical diagnosis and treatment. However, segmentation is difficult in clinical practice, and missed diagnosis may occur. Few related studies on the automated segmentation of CMB images have been performed, and we provide the most effective CMB segmentation to date using an automated segmentation system. Materials and Methods: From a research perspective, we focused on the automated segmentation of CMB targets in susceptibility weighted imaging (SWI) for the first time and then constructed a deep learning network focused on the segmentation of micro-objects. We collected and marked clinical datasets and proposed a new medical micro-object cascade network (MMOC-Net). In the first stage, U-Net was utilized to select the region of interest (ROI). In the second stage, we utilized a full-resolution network (FRN) to complete fine segmentation. We also incorporated residual atrous spatial pyramid pooling (R-ASPP) and a new joint loss function. Results: The most suitable segmentation result was achieved with a ROI size of 32 × 32. To verify the validity of each part of the method, ablation studies were performed, which showed that the best segmentation results were obtained when FRN, R-ASPP and the combined loss function were used simultaneously. Under these conditions, the obtained Dice similarity coefficient (DSC) value was 87.93% and the F2-score (F2) value was 90.69%. We also innovatively developed a visual clinical diagnosis system that can provide effective support for clinical diagnosis and treatment decisions. Conclusions: We created the MMOC-Net method to perform the automated segmentation task of CMBs in an SWI and obtained better segmentation performance; hence, this pioneering method has research significance.
Collapse
Affiliation(s)
- Zeliang Wei
- Department of Health Statistics, College of Preventive Medicine, Army Medical University, Chongqing, China
| | - Xicheng Chen
- Department of Health Statistics, College of Preventive Medicine, Army Medical University, Chongqing, China
| | - Jialu Huang
- Department of Neurology, Southwest Hospital, Army Medical University, Chongqing, China
| | - Zhenyan Wang
- Department of Health Statistics, College of Preventive Medicine, Army Medical University, Chongqing, China
| | - Tianhua Yao
- Department of Health Statistics, College of Preventive Medicine, Army Medical University, Chongqing, China
| | - Chengcheng Gao
- Department of Health Statistics, College of Preventive Medicine, Army Medical University, Chongqing, China
| | - Haojia Wang
- Department of Health Statistics, College of Preventive Medicine, Army Medical University, Chongqing, China
| | - Pengpeng Li
- Department of Health Statistics, College of Preventive Medicine, Army Medical University, Chongqing, China
| | - Wei Ye
- Department of Health Statistics, College of Preventive Medicine, Army Medical University, Chongqing, China
| | - Yang Li
- Department of Health Statistics, College of Preventive Medicine, Army Medical University, Chongqing, China
| | - Ning Yao
- Department of Health Statistics, College of Preventive Medicine, Army Medical University, Chongqing, China
| | - Rui Zhang
- Department of Health Statistics, College of Preventive Medicine, Army Medical University, Chongqing, China
| | - Ning Tang
- Department of Medical Engineering, The 953 Hospital of the Chinese People’s Liberation Army, Shigatse, China
| | - Fei Wang
- Medical Big Data and Artificial Intelligence Center, Southwest Hospital, Army Medical University, Chongqing, China
| | - Jun Hu
- Department of Neurology, Southwest Hospital, Army Medical University, Chongqing, China
- *Correspondence: Jun Hu, ; Dong Yi, ; Yazhou Wu,
| | - Dong Yi
- Department of Health Statistics, College of Preventive Medicine, Army Medical University, Chongqing, China
- *Correspondence: Jun Hu, ; Dong Yi, ; Yazhou Wu,
| | - Yazhou Wu
- Department of Health Statistics, College of Preventive Medicine, Army Medical University, Chongqing, China
- *Correspondence: Jun Hu, ; Dong Yi, ; Yazhou Wu,
| |
Collapse
|
13
|
A Comprehensive Analysis of Deep Neural-Based Cerebral Microbleeds Detection System. ELECTRONICS 2021. [DOI: 10.3390/electronics10182208] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Machine learning-based systems are gaining interest in the field of medicine, mostly in medical imaging and diagnosis. In this paper, we address the problem of automatic cerebral microbleeds (CMB) detection in magnetic resonance images. It is challenging due to difficulty in distinguishing a true CMB from its mimics, however, if successfully solved, it would streamline the radiologists work. To deal with this complex three-dimensional problem, we propose a machine learning approach based on a 2D Faster RCNN network. We aimed to achieve a reliable system, i.e., with balanced sensitivity and precision. Therefore, we have researched and analysed, among others, impact of the way the training data are provided to the system, their pre-processing, the choice of model and its structure, and also the ways of regularisation. Furthermore, we also carefully analysed the network predictions and proposed an algorithm for its post-processing. The proposed approach enabled for obtaining high precision (89.74%), sensitivity (92.62%), and F1 score (90.84%). The paper presents the main challenges connected with automatic cerebral microbleeds detection, its deep analysis and developed system. The conducted research may significantly contribute to automatic medical diagnosis.
Collapse
|