1
|
Nie F, Jiang J, Ning J. Exploration of the prognostic value of methylation regulators related to m5C in papillary thyroid carcinoma. Medicine (Baltimore) 2024; 103:e38623. [PMID: 38905403 PMCID: PMC11191899 DOI: 10.1097/md.0000000000038623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 05/28/2024] [Indexed: 06/23/2024] Open
Abstract
The incidence of papillary thyroid carcinoma (PTC) has increased significantly in recent years, and for patients with metastatic and recurrent PTC, the options for treatment currently available are insufficient. To date, the exact molecular mechanism underlying PTC is still not fully understood. 5-Methylcytosine (m5C) RNA methylation is associated with the prognosis of a variety of tumors. However, the molecular mechanisms and biomarkers associated with m5C in the diagnosis, treatment, and prognosis of this disease have not been fully elucidated. Ten m5C regulators with significantly different expression levels were included in this study. Immune infiltration analysis revealed significant negative correlations between most of these regulators and regulatory T cells. TRDMT1, NSUN5, and NSUN6 had high weights and strong correlations in the protein-protein interaction network. Using gene ontology, Kyoto Encyclopedia of Genes and Genomes, and gene set enrichment analysis, 1489 differentially expressed genes were screened from The Cancer Genome Atlas messenger RNA matrix, indicating that these differentially expressed genes were significantly enriched in various pathways and functions related to cancers. Four m5C regulators, NSUN2, NSUN4, NSUN6, and DNMT3B, were screened as prognostic markers by least absolute shrinkage and selection operator regression analysis, and NSUN2 and NSUN6 were identified as risk factors for poor prognosis. We found that the prognostic prediction model constructed using the m5C regulators NSUN2, NSUN4, NSUN6, and DNMT3B showed good prognostic prediction ability and diagnostic ability. This model was applied to predict the survival probability of patients with PTC, the prediction ability of 5-year survival was the best. The multi-factor prognostic prediction model combined with the tumor node metastasis stage and risk score grouping showed better prognostic predictive power.
Collapse
Affiliation(s)
- Furong Nie
- Department of Endocrinology, Shenzhen Longhua District Central Hospital, Shenzhen 518110, Guangdong, China
| | - Jiacheng Jiang
- Department of Hepatology, The First Hospital of Hunan University of Chinese Medicine, Changsha 410007, Hunan, China
| | - Jie Ning
- Department of Endocrinology, Shenzhen Longhua District Central Hospital, Shenzhen 518110, Guangdong, China
| |
Collapse
|
2
|
Brock P, Sevigny M, Liyanarachchi S, Comiskey DF, Li W, Saarinen S, Yilmaz AS, Nieminen AI, Ringel MD, Peltomäki P, Ollila S, Nieminen TT. PDPR Gene Variants Predisposing to Papillary Thyroid Cancer. Thyroid 2024; 34:575-582. [PMID: 38062777 PMCID: PMC11238834 DOI: 10.1089/thy.2023.0560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
Background: Papillary thyroid cancer (PTC) is the predominant subtype of thyroid cancer (THCA), and it can cluster in families with an autosomal dominant (AD) inheritance pattern. The aim of this study was to identify novel genes and mechanisms underlying PTC susceptibility. Methods: Our previous investigation of 17 AD PTC families led us to conduct a deeper analysis on one family (Family Q) with whole-genome sequencing data from 3 PTC-affected individuals. In addition, 323 sporadic THCA cases from Avatar data and 12 familial adenomatous polyposis (FAP) individuals with secondary THCA were screened for pyruvate dehydrogenase phosphatase regulatory (PDPR) variants. CRISPR-Cas9 was used to create PDPR-deficient THCA (TPC1) and transformed normal thyroid cell lines (N-Thyori3-1) to study the metabolic consequences of PDPR loss. Results: We found truncating PDPR splice donor variants (NM_017990.4:c.361 + 1G>C) in all affected PTC Family Q members, and another PDPR splice donor variant (NM_017990.4:c.443 + 1G>C) in a sporadic PTC case. In addition, an ultra-rare missense variant was found in an FAP-PTC patient. The PDPR-deficient cells presented with elevated phosphorylation of pyruvate dehydrogenase and altered glucose metabolism, implying that PDPR plays an essential part in regulating glucose metabolism in thyroid cells. Conclusions: Our finding of novel truncating germline variants in PDPR in Family Q and additional cohorts suggests a role for PDPR loss in PTC predisposition. Also, somatic and RNA sequencing from the thyroid carcinoma (Firehouse Legacy) data showed that PDPR gene expression is much lower in THCA tumor tissue compared with matching normal tissue. Thus, PDPR appears to have a loss of function effect on THCA tumorigenesis.
Collapse
Affiliation(s)
- Pamela Brock
- Division of Human Genetics, Department of Internal Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Myriam Sevigny
- Translational Cancer Medicine Program, University of Helsinki, Helsinki, Finland
| | - Sandya Liyanarachchi
- Division of Endocrinology, Diabetes, and Metabolism, Department of Internal Medicine, Diabetes, and Metabolism, Department of Molecular Medicine and Therapeutics, The Ohio State University College of Medicine and Comprehensive Cancer Center, Columbus, Ohio, USA
- Division of Endocrinology, Diabetes, and Metabolism, Department of Molecular Medicine and Therapeutics, The Ohio State University College of Medicine and Comprehensive Cancer Center, Columbus, Ohio, USA
| | - Daniel F Comiskey
- Division of Endocrinology, Diabetes, and Metabolism, Department of Internal Medicine, Diabetes, and Metabolism, Department of Molecular Medicine and Therapeutics, The Ohio State University College of Medicine and Comprehensive Cancer Center, Columbus, Ohio, USA
- Division of Endocrinology, Diabetes, and Metabolism, Department of Molecular Medicine and Therapeutics, The Ohio State University College of Medicine and Comprehensive Cancer Center, Columbus, Ohio, USA
| | - Wei Li
- Division of Endocrinology, Diabetes, and Metabolism, Department of Internal Medicine, Diabetes, and Metabolism, Department of Molecular Medicine and Therapeutics, The Ohio State University College of Medicine and Comprehensive Cancer Center, Columbus, Ohio, USA
- Division of Endocrinology, Diabetes, and Metabolism, Department of Molecular Medicine and Therapeutics, The Ohio State University College of Medicine and Comprehensive Cancer Center, Columbus, Ohio, USA
| | - Saila Saarinen
- Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland
| | - Ayse Selen Yilmaz
- Department of Biomedical Informatics, The Ohio State University, James Comprehensive Cancer Center, Columbus, Ohio, USA
| | - Anni I Nieminen
- FIMM Metabolomics Unit, Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, Finland
| | - Matthew D Ringel
- Division of Endocrinology, Diabetes, and Metabolism, Department of Internal Medicine, Diabetes, and Metabolism, Department of Molecular Medicine and Therapeutics, The Ohio State University College of Medicine and Comprehensive Cancer Center, Columbus, Ohio, USA
- Division of Endocrinology, Diabetes, and Metabolism, Department of Molecular Medicine and Therapeutics, The Ohio State University College of Medicine and Comprehensive Cancer Center, Columbus, Ohio, USA
| | - Päivi Peltomäki
- Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland
| | - Saara Ollila
- Translational Cancer Medicine Program, University of Helsinki, Helsinki, Finland
| | - Taina T Nieminen
- Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland
| |
Collapse
|
3
|
Bernal YA, Blanco A, Sagredo EA, Oróstica K, Alfaro I, Marcelain K, Armisén R. A Comprehensive Analysis of the Effect of A>I(G) RNA-Editing Sites on Genotoxic Drug Response and Progression in Breast Cancer. Biomedicines 2024; 12:728. [PMID: 38672084 PMCID: PMC11048297 DOI: 10.3390/biomedicines12040728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 03/15/2024] [Accepted: 03/19/2024] [Indexed: 04/28/2024] Open
Abstract
Dysregulated A>I(G) RNA editing, which is mainly catalyzed by ADAR1 and is a type of post-transcriptional modification, has been linked to cancer. A low response to therapy in breast cancer (BC) is a significant contributor to mortality. However, it remains unclear if there is an association between A>I(G) RNA-edited sites and sensitivity to genotoxic drugs. To address this issue, we employed a stringent bioinformatics approach to identify differentially RNA-edited sites (DESs) associated with low or high sensitivity (FDR 0.1, log2 fold change 2.5) according to the IC50 of PARP inhibitors, anthracyclines, and alkylating agents using WGS/RNA-seq data in BC cell lines. We then validated these findings in patients with basal subtype BC. These DESs are mainly located in non-coding regions, but a lesser proportion in coding regions showed predicted deleterious consequences. Notably, some of these DESs are previously reported as oncogenic variants, and in genes related to DNA damage repair, drug metabolism, gene regulation, the cell cycle, and immune response. In patients with BC, we uncovered DESs predominantly in immune response genes, and a subset with a significant association (log-rank test p < 0.05) between RNA editing level in LSR, SMPDL3B, HTRA4, and LL22NC03-80A10.6 genes, and progression-free survival. Our findings provide a landscape of RNA-edited sites that may be involved in drug response mechanisms, highlighting the value of A>I(G) RNA editing in clinical outcomes for BC.
Collapse
Affiliation(s)
- Yanara A. Bernal
- Centro de Genética y Genómica, Instituto de Ciencias e Innovación en Medicina (ICIM), Facultad de Medicina Clínica Alemana, Universidad del Desarrollo, Santiago 7610658, Chile; (Y.A.B.); (A.B.); (I.A.)
| | - Alejandro Blanco
- Centro de Genética y Genómica, Instituto de Ciencias e Innovación en Medicina (ICIM), Facultad de Medicina Clínica Alemana, Universidad del Desarrollo, Santiago 7610658, Chile; (Y.A.B.); (A.B.); (I.A.)
| | - Eduardo A. Sagredo
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Svante Arrhenius väg 20C, SE-106 91 Stockholm, Sweden;
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, SE-171 77 Stockholm, Sweden
- Science for Life Laboratory, SE-171 65 Solna, Sweden
| | - Karen Oróstica
- Instituto de Investigación Interdisciplinaria, Vicerrectoría Académica, Universidad de Talca, Talca 3460000, Chile;
| | - Ivan Alfaro
- Centro de Genética y Genómica, Instituto de Ciencias e Innovación en Medicina (ICIM), Facultad de Medicina Clínica Alemana, Universidad del Desarrollo, Santiago 7610658, Chile; (Y.A.B.); (A.B.); (I.A.)
| | - Katherine Marcelain
- Departamento de Oncología Básico Clínica, Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile;
- Centro de Prevención y Control de Cáncer (CECAN), Universidad de Chile, Santiago 8380453, Chile
| | - Ricardo Armisén
- Centro de Genética y Genómica, Instituto de Ciencias e Innovación en Medicina (ICIM), Facultad de Medicina Clínica Alemana, Universidad del Desarrollo, Santiago 7610658, Chile; (Y.A.B.); (A.B.); (I.A.)
| |
Collapse
|
4
|
Wu S, Zhu J, Jiang T, Cui T, Zuo Q, Zheng G, Li G, Zhou J, Chen X. Long non-coding RNA ACTA2-AS1 suppresses metastasis of papillary thyroid cancer via regulation of miR-4428/KLF9 axis. Clin Epigenetics 2024; 16:10. [PMID: 38195623 PMCID: PMC10775490 DOI: 10.1186/s13148-023-01622-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 12/31/2023] [Indexed: 01/11/2024] Open
Abstract
BACKGROUND Metastasis is the primary cause of recurrence and death in patients with papillary thyroid carcinoma (PTC). LncRNA ACTA2-AS1, a long non-coding RNA, acts as a tumor suppressor in multiple types of human malignancies, while the role of ACTA2-AS1 in PTC metastasis remains unclear. METHODS The ACTA2-AS1 expression in PTC tissues was analyzed. The sponged roles of ACTA2-AS1 via miR-4428/KLF9 axis were identified using starBase tool. The function of ACTA2-AS1 in PTC was performed with in vitro and in vivo experiments. The correlation between DNA methylation and mRNA expressions of these gene in the TCGA dataset was explored. RESULTS ACTA2-AS1 expression was downregulated in PTC tissues without metastasis and further decreased in PTC tissues with lymph node metastasis compared with that in normal tissues. Functionally, the overexpression of ACTA2-AS1 inhibited the growth, proliferation, and invasion of PTC cells, whereas its depletion exerted opposite effect. In vivo, ACTA2-AS1 expression inhibited PTC metastasis. Furthermore, ACTA2-AS1 acted as a competing endogenous RNA for miR-4428, thereby positively regulating the expression of miR-4428 target gene, KLF9. Finally, miR-4428 overexpression enhanced invasive potential of PTC cells and significantly weakened the effects of ACTA2-AS1 on promotion and inhibition of KLF9 expression as well as invasive ability of PTC cells, respectively. In the TCGA dataset, the methylation level of ACTA2-AS1 was significantly correlated with its mRNA expression (r = 0.21, p = 2.1 × e-6). CONCLUSIONS Our findings demonstrate that ACTA2-AS1 functions as a tumor suppressor in PTC progression at least partly by regulating the miR-4428-dependent expression of KLF9.
Collapse
Affiliation(s)
- Shuhui Wu
- Department of Otorhinolaryngology, Shanghai Baoshan Hospital of Integrated Traditional Chinese and Western Medicine, Baoshan Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Jingjing Zhu
- Department of Otorhinolaryngology, Shanghai Baoshan Hospital of Integrated Traditional Chinese and Western Medicine, Baoshan Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Tingting Jiang
- Department of Otorhinolaryngology, Shanghai Baoshan Hospital of Integrated Traditional Chinese and Western Medicine, Baoshan Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Ting Cui
- Department of Thyroid Surgery, Shanghai Baoshan Hospital of Integrated Traditional Chinese and Western Medicine, Baoshan Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Qi Zuo
- Department of Otorhinolaryngology, Shanghai Baoshan Hospital of Integrated Traditional Chinese and Western Medicine, Baoshan Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Guibin Zheng
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
- Department of Thyroid Surgery, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, 264000, Shandong, China
| | - Guojun Li
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Jieyu Zhou
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.
- Ear Institute, Shanghai Jiaotong University School of Medicine, Shanghai, China.
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China.
| | - Xiang Chen
- Department of Thyroid Surgery, Shanghai Baoshan Hospital of Integrated Traditional Chinese and Western Medicine, Baoshan Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China.
| |
Collapse
|
5
|
Ma C, Zhang N, Wang T, Guan H, Huang Y, Huang L, Zheng Y, Zhang L, Han L, Huo Y, Yang Y, Zheng H, Yang M. Inflammatory cytokine-regulated LNCPTCTS suppresses thyroid cancer progression via enhancing Snail nuclear export. Cancer Lett 2023; 575:216402. [PMID: 37741431 DOI: 10.1016/j.canlet.2023.216402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/30/2023] [Accepted: 09/17/2023] [Indexed: 09/25/2023]
Abstract
Lymph node metastases are commonly observed in diverse malignancies where they promote cancer progression and poor outcomes, although the molecular basis is incompletely understood. Thyroid cancer is the most prevalent endocrine neoplasm characterized by high frequency of lymph node metastases. Here, we uncover an inflammatory cytokines-controlled epigenetic program during thyroid cancer progression. LNCPTCTS acts as a novel tumor suppressive lncRNA with remarkably decreased expression in thyroid cancer specimens, especially in metastatic lymph nodes. Inflammatory cytokines TNFα or CXCL10, which are released from tumor microenvironment (TME), impair binding capabilities of the transcription factor (TF) EGR1 to the LNCPTCTS promoter and reduce the lncRNA expression in cells. Notably, LNCPTCTS binds to eEF1A2 protein and facilitates the interaction between eEF1A2 and Snail, which promotes Snail nucleus export via the RanGTP-Exp5-aa-tRNA-eEF1A2 complex. Loss of LNCPTCTS in tumors leads to accumulation of Snail in the nucleus, suppressed transcription of E-cadherin and PEBP1, reduced E-cadherin and PEBP1 protein levels, and activated epithelial-mesenchymal transition and MAPK signaling. Our results reveal what we believe to be a novel paradigm between TME and epigenetic reprogram in cancer cells which drives lymph node metastases, therefore illuminating the suitability of LNCPTCTS as a targetable vulnerability in thyroid cancer.
Collapse
Affiliation(s)
- Chi Ma
- Department of Thyroid Surgery, Yantai Yuhuangding Hospital, Shandong University, Yantai 264000, Shandong Province, China; Shandong University Cancer Center, Jinan 250117, Shandong Province, China
| | - Nasha Zhang
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Jinan 250117, Shandong Province, China; Departemnt of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250117, Shandong Province, China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing 211166, Jiangsu Province, China
| | - Teng Wang
- Shandong University Cancer Center, Jinan 250117, Shandong Province, China; Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Jinan 250117, Shandong Province, China
| | - Haixia Guan
- Department of Endocrinology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, Guangdong Province, China
| | - Yizhou Huang
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Jinan 250117, Shandong Province, China
| | - Linying Huang
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Jinan 250117, Shandong Province, China
| | - Yanxiu Zheng
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Jinan 250117, Shandong Province, China
| | - Long Zhang
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Jinan 250117, Shandong Province, China
| | - Linyu Han
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Jinan 250117, Shandong Province, China
| | - Yanfei Huo
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Jinan 250117, Shandong Province, China
| | - Yanting Yang
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Jinan 250117, Shandong Province, China
| | - Haitao Zheng
- Department of Thyroid Surgery, Yantai Yuhuangding Hospital, Shandong University, Yantai 264000, Shandong Province, China.
| | - Ming Yang
- Shandong University Cancer Center, Jinan 250117, Shandong Province, China; Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Jinan 250117, Shandong Province, China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing 211166, Jiangsu Province, China.
| |
Collapse
|
6
|
Dai L, Zhang W, Wang Y, Yu K, Le Q, Wu X. circAGTPBP1 promotes the progression of papillary thyroid cancer through the notch pathway via the miR-34a-5p/notch1 axis. iScience 2023; 26:107564. [PMID: 37622004 PMCID: PMC10445461 DOI: 10.1016/j.isci.2023.107564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 05/23/2023] [Accepted: 08/02/2023] [Indexed: 08/26/2023] Open
Abstract
The dysregulation of circular RNAs (circRNAs) has been implicated in the development and progression of papillary thyroid cancer (PTC). In this study, we analyzed the dysregulated circRNA profile using PTC tissues and matched adjacent normal tissues by RNA-seq. We conducted in vitro and in vivo experiments to investigate the biological functions of circAGTPBP1 in PTC progression. We found that circAGTPBP1 was upregulated in PTC tissues and cell lines, and its expression was positively correlated with tumor size, lymph node metastasis, and clinical stage. Using RNA-seq and bioinformatic analysis, we identified miR-34a-5p and NOTCH1 as downstream targets of circAGTPBP1. Functionally, circAGTPBP1 knockdown significantly inhibited the migration, invasion, and metastasis of PTC cell lines in vitro, while the miR-34a-5p inhibitor reversed these effects. Additionally, circAGTPBP1 knockdown inhibited tumor growth in vivo. Our findings suggest that circAGTPBP1 may act as a tumor promoter and could be a potential therapeutic target for PTC.
Collapse
Affiliation(s)
- Lei Dai
- Department of Thyroid Surgery, Ningbo No.2 Hospital,No. 41 Xibei Street, Ningbo City 315000, Zhejiang Province, China
| | - Weidong Zhang
- Department of Thyroid Surgery, Ningbo No.2 Hospital,No. 41 Xibei Street, Ningbo City 315000, Zhejiang Province, China
| | - Yinchun Wang
- Department of Thyroid Surgery, Ningbo No.2 Hospital,No. 41 Xibei Street, Ningbo City 315000, Zhejiang Province, China
| | - Kejie Yu
- Department of Thyroid Surgery, Ningbo No.2 Hospital,No. 41 Xibei Street, Ningbo City 315000, Zhejiang Province, China
| | - Qi Le
- Department of Thyroid Surgery, Ningbo No.2 Hospital,No. 41 Xibei Street, Ningbo City 315000, Zhejiang Province, China
| | - Xianjiang Wu
- Department of Thyroid Surgery, Ningbo No.2 Hospital,No. 41 Xibei Street, Ningbo City 315000, Zhejiang Province, China
| |
Collapse
|
7
|
Yang S, Zhu G, He R, Fang D, Feng J. Advances in transcriptomics and proteomics in differentiated thyroid cancer: An updated perspective (Review). Oncol Lett 2023; 26:396. [PMID: 37600346 PMCID: PMC10433702 DOI: 10.3892/ol.2023.13982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 05/25/2023] [Indexed: 08/22/2023] Open
Abstract
Thyroid cancer (TC) is a broad classification of neoplasms that includes differentiated thyroid cancer (DTC) as a common histological subtype. DTC is characterized by an increased mortality rate in advanced stages, which contributes to the overall high mortality rate of DTC. This progression is mainly attributed to alterations in molecular driver genes, resulting in changes in phenotypes such as invasion, metastasis and dedifferentiation. Clinical management of DTC is challenging due to insufficient diagnostic and therapeutic options. The advent of-omics technology has presented a promising avenue for the diagnosis and treatment of DTC. Identifying molecular markers that can predict the early progression of DTC to a late adverse outcome is essential for precise diagnosis and treatment. The present review aimed to enhance our understanding of DTC by integrating big data with biological systems through-omics technology, specifically transcriptomics and proteomics, which can shed light on the molecular mechanisms underlying carcinogenesis.
Collapse
Affiliation(s)
- Shici Yang
- Department of Nuclear Medicine, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| | - Gaohong Zhu
- Department of Nuclear Medicine, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| | - Rui He
- Department of Nuclear Medicine, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| | - Dong Fang
- Department of Nuclear Medicine, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| | - Jiaojiao Feng
- Department of Nuclear Medicine, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| |
Collapse
|
8
|
Huang Z, Lin Y, Zhao M, Li S, Wen Y, Liu Z, Cao X. Bone Marrow Mesenchymal Stem Cells with Long Non-Coding RNA-Growth Arrest Specific 5 (LncRNA-GAS5) Modification Impede the Migration and Invasion Activities of Papillary Thyroid Carcinoma Cells. J BIOMATER TISS ENG 2023. [DOI: 10.1166/jbt.2023.3229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The impact of bone marrow mesenchymal stem cells (BMSCs) on the behaviors of papillary thyroid carcinoma (PTC) cells and LncRNAs remains poorly understood. This study mainly explores the mechanism of LncRNA-GAS5-modified BMSCs on the behaviors of PTC cells, aiming to further elucidate
PTC carcinogenesis and provide evidence for drug development. PTC cell lines were assigned into blank group, BMSCs group (co-culture with BMSCs), GAS5 group (co-culture with LncRNA-GAS5-modified BMSCs) and positive control group (cultured in the presence of 60 μg/mL β-elemene)
followed by analysis of LncRNA-GAS5 expression, the number of migrating and invading PTC cells, the quantity of EMT-related markers, MMP-9 and MMP-2. LncRNA-GAS5 level was lowest in the blank group, while highest in the GAS5 group (P <0.05), followed by positive control group and
BMSCs group. Moreover, the number of migrated and invaded cells was highest in the blank group, while lowest in GAS5 group (P < 0.05), followed by positive control group and BMSCs group. PTC cells exhibited the highest expression of EMT-related markers (N-cadherin and Vimentin) and
MMPs but lowest E-cadherin level in blank group and positive control group. These proteins showed an opposite trend in GAS5 group and BMSCs group. Additionally, a more remarkable difference was recorded in the GAS5 group (P <0.05). LncRNA-GAS5-modified BMSCs can down-regulate Vimentin
and N-cadherin while up-regulate E-cadherin, thereby restraining the expression of MMP-9 and MMP-2. In this way, the EMT process can be manipulated, leading to inhibition of PTC cells behaviors by LncRNA-GAS5-modified BMSCs, indicating that LncRNA-GAS5 might be applied as a therapeutic target
for PTC.
Collapse
Affiliation(s)
- Zicheng Huang
- Department of Interventional Radiology, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, 510180, China
| | - Yun’an Lin
- Department of Medical Oncology, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, 510180, China
| | - Meiling Zhao
- Department of Medical Oncology, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, 510180, China
| | - Simei Li
- Department of Medical Oncology, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, 510180, China
| | - Yajia Wen
- Department of Medical Oncology, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, 510180, China
| | - Zhixiang Liu
- Department of Medical Oncology, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, 510180, China
| | - Xiaofei Cao
- Department of Medical Oncology, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, 510180, China
| |
Collapse
|
9
|
Wang C, Qu Z, Chen L, Pan Y, Tang Y, Hu G, Gao R, Niu R, Liu Q, Gao X, Fang Y. Characterization of Lactate Metabolism Score in Breast and Thyroid Cancers to Assist Immunotherapy via Large-Scale Transcriptomic Data Analysis. Front Pharmacol 2022; 13:928419. [PMID: 35873566 PMCID: PMC9301074 DOI: 10.3389/fphar.2022.928419] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 06/16/2022] [Indexed: 12/31/2022] Open
Abstract
Breast cancer (BC) and thyroid cancer (TC) have the highest rate of incidence, especially in women. Previous studies have revealed that lactate provides energetic and anabolic support to cancer cells, thus serving as an important oncometabolite with both extracellular and intracellular signaling functions. However, the correlation of lactate metabolism scores with thyroid and breast cancer immune characteristics remains to be systematically analyzed. To investigate the role of lactate at the transcriptome level and its correlation with the clinical outcome of BC and TC, transcriptome data of 1,217 patients with breast cancer (BC) and 568 patients with thyroid cancer (TC) were collected from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) datasets with their corresponding clinical and somatic mutation data. The lactate metabolism score was calculated based on a single-sample gene set enrichment analysis (ssGSEA). The results showed that lactate metabolism-related genes and lactate metabolism scores was significantly associated with the survival of patients with BRCA and THCA. Notably, the lactate metabolism scores were strongly correlated with human leukocyte antigen (HLA) expression, tumor-infiltrating lymphocyte (TIL) infiltration, and interferon (IFN) response in BC and TC. Furthermore, the lactate metabolism score was an independent prognostic factor and could serve as a reliable predictor of overall survival, clinical characteristics, and immune cell infiltration, with the potential to be applied in immunotherapy or precise chemotherapy of BC and TC.
Collapse
Affiliation(s)
- Cheng Wang
- Department of Breast Surgery, Huangpu Branch, Shanghai Ninth People’s Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Cheng Wang, ; Yi Fang,
| | - Zheng Qu
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Li Chen
- Department of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Yunhao Pan
- Department of Breast Surgery, Huangpu Branch, Shanghai Ninth People’s Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yiqing Tang
- Department of Breast Surgery, Huangpu Branch, Shanghai Ninth People’s Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guangfu Hu
- Department of Breast Surgery, Huangpu Branch, Shanghai Ninth People’s Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ran Gao
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ruijie Niu
- Department of Breast Surgery, Huangpu Branch, Shanghai Ninth People’s Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qiang Liu
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xingyan Gao
- Department of Breast Surgery, Huangpu Branch, Shanghai Ninth People’s Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yi Fang
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- *Correspondence: Cheng Wang, ; Yi Fang,
| |
Collapse
|