1
|
Kogel A, Voßhage N, Behzadi A, Laufs U, Fikenzer S. ASC speck serum concentrations, a component of sterile cellular inflammation, are associated with individual cardiopulmonary capacity. Front Physiol 2024; 15:1394340. [PMID: 39411514 PMCID: PMC11473406 DOI: 10.3389/fphys.2024.1394340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 09/18/2024] [Indexed: 10/19/2024] Open
Abstract
Aims Exercise-induced cellular stress and sterile inflammation are of increasing interest. ASC specks are a component of the intracellular NLRP3-inflammasome and can be released into the blood. For example, serum ASC specks are increased after marathon running. We therefore tested whether ASC specks are potentially associated with the individual response to physical training and cardiopulmonary capacity. Methods We performed a prospective study in 45 healthy athletes. Blood samples were taken before and after cardiopulmonary exercise testing (CPET). ASC speck concentrations were quantitated using flow cytometry. Results Baseline ASC speck levels correlated with clinical parameters of body composition (height, weight, BMI) and parameters of cardiopulmonary performance (peak VO2, peak oxygen pulse, heart rate after exercise). Athletes with lowest baseline ASC speck concentrations have a significantly lower BMI (22.0 ± 1.8 vs. 24.9 ± 1.6 kg/m2), higher heart rate at rest (72 ± 10 vs. 58 ± 10 beats/min), lower peak VO2 (2692 ± 629 vs. 3404 ± 747 mL/min) and lower peak oxygen pulse (15.6 ± 3.4 vs. 20.7 ± 3.5 mL/heart rate). Overall, ASC speck concentrations showed no significant change after CPET (7.0 ± 4.5 vs. 8.0 ± 5.4 ASC specks/µL, p = 0.3). However, subgroup analysis revealed a significant increase in circulating ASC specks in athletes with the lowest baseline values (2.37 ± 0.84 vs. 8.43 ± 7.52 ASC specks/µL, p < 0.05). Athletes with an increase in ASC speck concentrations in response to CPET had a lower peak oxygen pulse compared to those with a decrease (17.1 ± 4.2 vs. 19.8 ± 4.1, p < 0.05). Conclusion Low ASC speck baseline values as well as an increase in response to exercise are associated with lower peak oxygen pulse in healthy athletes.
Collapse
|
2
|
Dou Y, Fei X, He X, Huan Y, Wei J, Wu X, Lyu W, Fei Z, Li X, Fei F. Homer1a reduces inflammatory response after retinal ischemia/reperfusion injury. Neural Regen Res 2024; 19:1608-1617. [PMID: 38051906 PMCID: PMC10883521 DOI: 10.4103/1673-5374.386490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 08/25/2023] [Indexed: 12/07/2023] Open
Abstract
Abstract
JOURNAL/nrgr/04.03/01300535-202407000-00042/figure1/v/2023-11-20T171125Z/r/image-tiff
Elevated intraocular pressure (IOP) is one of the causes of retinal ischemia/reperfusion injury, which results in NLRP3 inflammasome activation and leads to visual damage. Homer1a is reported to play a protective role in neuroinflammation in the cerebrum. However, the effects of Homer1a on NLRP3 inflammasomes in retinal ischemia/reperfusion injury caused by elevated IOP remain unknown. In our study, animal models were constructed using C57BL/6J and Homer1flox/
–/Homer1a+/
–/Nestin-Cre+/
– mice with elevated IOP-induced retinal ischemia/reperfusion injury. For in vitro experiments, the oxygen-glucose deprivation/reperfusion injury model was constructed with Müller cells. We found that Homer1a overexpression ameliorated the decreases in retinal thickness and Müller cell viability after ischemia/reperfusion injury. Furthermore, Homer1a knockdown promoted NF-κB P65Ser536 activation via caspase-8, NF-κB P65 nuclear translocation, NLRP3 inflammasome formation, and the production and processing of interleukin-1β and interleukin-18. The opposite results were observed with Homer1a overexpression. Finally, the combined administration of Homer1a protein and JSH-23 significantly inhibited the reduction in retinal thickness in Homer1flox/
–/Homer1a+/
–/Nestin-Cre+/
– mice and apoptosis in Müller cells after ischemia/reperfusion injury. Taken together, these studies demonstrate that Homer1a exerts protective effects on retinal tissue and Müller cells via the caspase-8/NF-κB P65/NLRP3 pathway after I/R injury.
Collapse
Affiliation(s)
- Yanan Dou
- Department of Neurosurgery, Xijing Hospital, Air Force Military Medical University, Xi'an, Shaanxi Province, China
| | - Xiaowei Fei
- Department of Neurosurgery, Xijing Hospital, Air Force Military Medical University, Xi'an, Shaanxi Province, China
| | - Xin He
- Department of Neurosurgery, Xijing Hospital, Air Force Military Medical University, Xi'an, Shaanxi Province, China
| | - Yu Huan
- Department of Neurosurgery, Xijing Hospital, Air Force Military Medical University, Xi'an, Shaanxi Province, China
| | - Jialiang Wei
- Department of Neurosurgery, Xijing Hospital, Air Force Military Medical University, Xi'an, Shaanxi Province, China
| | - Xiuquan Wu
- Department of Neurosurgery, Xijing Hospital, Air Force Military Medical University, Xi'an, Shaanxi Province, China
| | - Weihao Lyu
- Department of Neurosurgery, Xijing Hospital, Air Force Military Medical University, Xi'an, Shaanxi Province, China
| | - Zhou Fei
- Department of Neurosurgery, Xijing Hospital, Air Force Military Medical University, Xi'an, Shaanxi Province, China
| | - Xia Li
- Department of Neurosurgery, Xijing Hospital, Air Force Military Medical University, Xi'an, Shaanxi Province, China
| | - Fei Fei
- Department of Ophthalmology, Xijing Hospital, Air Force Military Medical University, Xi'an, Shaanxi Province, China
| |
Collapse
|
3
|
Zhang C, Tang B, Zheng X, Luo Q, Bi Y, Deng H, Yu J, Lu Y, Han L, Chen H, Lu C. Analysis of the potential pyroptosis mechanism in psoriasis and experimental validation of NLRP3 in vitro and in vivo. Int Immunopharmacol 2023; 124:110811. [PMID: 37647679 DOI: 10.1016/j.intimp.2023.110811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 08/07/2023] [Accepted: 08/15/2023] [Indexed: 09/01/2023]
Abstract
Pyroptosis provides new perspectives on the mechanisms underlying psoriasis and the development of new treatment strategies. Here, we aimed to identify pyroptosis-related genes (PRGs) involved in the pathogenesis and progression of psoriasis. Based on the inclusion/exclusion criteria, three gene datasets were downloaded from the Gene Expression Omnibus (GEO) database. Differential gene expression, weighted gene co-expression network analysis (WGCNA), and functional enrichment analyses were performed to identify candidate PRGs for psoriasis. Least absolute shrinkage and selection operator (LASSO) regression was used to identify hub genes, and receiver operating characteristic (ROC) curves were used to determine the clinical value of the hub genes. Imiquimod-inducedpsoriasis-like mice and lipopolysaccharide (LPS)-induced RAW 264.7 cells were employed to verify the pro-inflammatory factors that may drive changes in pyroptosis. In total, 159 skin samples were analysed, and a total of 21 common targets were obtained by crossing PRGs with all the differentially expressed genes (DEGs) in different disease states. 11 genes were identified via LASSO screening. Similarly, the last six PRGs biomarkers and the green module genes were screened. All hub genes with an area under the ROC curve > 0.5 were intersected, and NLRP3 was identified. NLRP3 expression was elevated in imiquimod-induced psoriatic lesions in mice and LPS-stimulated RAW 264.7 cells. The mice exhibited reduced psoriasis area and severity index scores, hyperproliferation, and inflammation after treatment with MCC950 (a specific inhibitor of NLRP3). MCC950 decreased IL-1β, IL-6, and TNF-α mRNA expression, and NLRP3 and p-p65 protein levels in LPS-stimulated RAW 264.7 cells. Our study indicates that NLRP3 may be a promising therapeutic target for the treatment of psoriasis.
Collapse
Affiliation(s)
- Chen Zhang
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China; Department of clinical pharmacy, Guangzhou First People's Hospital, Guangzhou, China
| | - Bin Tang
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China; State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China; Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou, China; Guangdong Provincial Clinical Medicine Research Center for Chinese Medicine Dermatology, Guangzhou, China; Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xuwei Zheng
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qianqian Luo
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yang Bi
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Hao Deng
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China; State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China; Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou, China; Guangdong Provincial Clinical Medicine Research Center for Chinese Medicine Dermatology, Guangzhou, China; Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jingjie Yu
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China; State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China; Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou, China; Guangdong Provincial Clinical Medicine Research Center for Chinese Medicine Dermatology, Guangzhou, China; Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yue Lu
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China; State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China; Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou, China
| | - Ling Han
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China; State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China; Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou, China; Guangdong Provincial Clinical Medicine Research Center for Chinese Medicine Dermatology, Guangzhou, China; Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Haiming Chen
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China; State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China; Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou, China; Guangdong Provincial Clinical Medicine Research Center for Chinese Medicine Dermatology, Guangzhou, China; Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou, China.
| | - Chuanjian Lu
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China; State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China; Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou, China; Guangdong Provincial Clinical Medicine Research Center for Chinese Medicine Dermatology, Guangzhou, China; Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou, China.
| |
Collapse
|
4
|
Accogli T, Hibos C, Vegran F. Canonical and non-canonical functions of NLRP3. J Adv Res 2023; 53:137-151. [PMID: 36610670 PMCID: PMC10658328 DOI: 10.1016/j.jare.2023.01.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 12/22/2022] [Accepted: 01/02/2023] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Since its discovery, NLRP3 is almost never separated from its major role in the protein complex it forms with ASC, NEK7 and Caspase-1, the inflammasome. This key component of the innate immune response mediates the secretion of proinflammatory cytokines IL-1β and IL-18 involved in immune response to microbial infection and cellular damage. However, NLRP3 has also other functions that do not involve the inflammasome assembly nor the innate immune response. These non-canonical functions have been poorly studied. Nevertheless, NLRP3 is associated with different kind of diseases probably through its inflammasome dependent function as through its inflammasome independent functions. AIM OF THE REVIEW The study and understanding of the canonical and non-canonical functions of NLRP3 can help to better understand its involvement in various pathologies. In parallel, the description of the mechanisms of action and regulation of its various functions, can allow the identification of new therapeutic strategies. KEY SCIENTIFIC CONCEPTS OF THE REVIEW NLRP3 functions have mainly been studied in the context of the inflammasome, in myeloid cells and in totally deficient transgenic mice. However, for several year, the work of different teams has proven that NLRP3 is also expressed in other cell types where it has functions that are independent of the inflammasome. If these studies suggest that NLRP3 could play different roles in the cytoplasm or the nucleus of the cells, the mechanisms underlying NLRP3 non-canonical functions remain unclear. This is why we propose in this review an inventory of the canonical and non-canonical functions of NLRP3 and their impact in different pathologies.
Collapse
Affiliation(s)
- Théo Accogli
- Faculté des Sciences de Santé- University of Burgundy, Dijon 21000, FRANCE; CAdIR Team - Centre de Recherche INSERM - UMR 1231, Dijon 21000, FRANCE
| | - Christophe Hibos
- Faculté des Sciences de Santé- University of Burgundy, Dijon 21000, FRANCE; CAdIR Team - Centre de Recherche INSERM - UMR 1231, Dijon 21000, FRANCE; Université de Bourgogne Franche-Comté, Dijon 21000, FRANCE
| | - Frédérique Vegran
- Faculté des Sciences de Santé- University of Burgundy, Dijon 21000, FRANCE; CAdIR Team - Centre de Recherche INSERM - UMR 1231, Dijon 21000, FRANCE; Department of Biology and Pathology of Tumors - Centre anticancéreux GF Leclerc, Dijon 21000, FRANCE.
| |
Collapse
|
5
|
Akhiyat N, Lasho TL, Ganji M, Toya T, Shi CX, Chen X, Braggio E, Ahmad A, Corban MT, Stewart K, Fernandez J, Xie Z, Finke C, Lerman LO, Patnaik MM, Lerman A. Clonal Hematopoiesis of Indeterminate Potential Is Associated With Coronary Microvascular Dysfunction In Early Nonobstructive Coronary Artery Disease. Arterioscler Thromb Vasc Biol 2023; 43:774-783. [PMID: 36951061 PMCID: PMC10133092 DOI: 10.1161/atvbaha.122.318928] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 02/23/2023] [Indexed: 03/24/2023]
Abstract
BACKGROUND Clonal hematopoiesis (CH) of indeterminate potential (CHIP) is a risk factor for cardiovascular disease. The relationship between CHIP and coronary microvascular dysfunction (CMD) is unknown. The current study examines the association between CHIP and CH with CMD and the potential relationships in risk for adverse cardiovascular outcomes. METHODS In this retrospective observational study, targeted next-generation sequencing was performed for 177 participants with no coronary artery disease who presented with chest pain and underwent routine coronary functional angiogram. Patients with somatic mutations in leukemia-associated driver genes in hematopoietic stem and progenitor cells were examined; CHIP was considered at a variant allele fraction ≥2%; CH was considered at a variant allele fraction ≥1%. CMD was defined as coronary flow reserve to intracoronary adenosine of ≤2. Major adverse cardiovascular events considered were myocardial infarction, coronary revascularization, or stroke. RESULTS A total of 177 participants were examined. Mean follow-up was 12±7 years. A total of 17 patients had CHIP and 28 had CH. Cases with CMD (n=19) were compared with controls with no CMD (n=158). Cases were 56±9 years, were 68% women, and had more CHIP (27%; P=0.028) and CH (42%; P=0.001) than controls. CMD was associated with independent risk for major adverse cardiovascular events (hazard ratio, 3.89 [95% CI, 1.21-12.56]; P=0.023), and 32% of this risk was mediated by CH. The risk mediated by CH was ≈0.5× as large as the direct effect of CMD on major adverse cardiovascular events. CONCLUSIONS In humans, we observe patients with CMD are more likely to have CHIP, and nearly one-third of major adverse cardiovascular events in CMD are mediated by CH.
Collapse
Affiliation(s)
- Nadia Akhiyat
- Division of Cardiology, Department of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Terra L Lasho
- Division of Hematology, Department of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Morsaleh Ganji
- Division of Cardiology, Department of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Takumi Toya
- Division of Cardiology, Department of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Chang-Xin Shi
- Division of Hematology, Department of Medicine, Mayo Clinic, Phoenix, AZ, USA
| | - Xianfeng Chen
- Department of Health Sciences Research & Center for Individualized Medicine, Mayo Clinic, Scottsdale, AZ, USA
| | - Esteban Braggio
- Division of Hematology, Department of Medicine, Mayo Clinic, Phoenix, AZ, USA
| | - Ali Ahmad
- Division of Cardiology, Department of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Michel T. Corban
- Division of Cardiology, Department of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Keith Stewart
- Division of Hematology, Department of Medicine, Mayo Clinic, Phoenix, AZ, USA
- Center for Individualized Medicine, Mayo Clinic, Rochester, USA
| | - Jenna Fernandez
- Division of Hematology, Department of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Zhuoer Xie
- Division of Hematology, Department of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Christy Finke
- Division of Hematology, Department of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Lilach O. Lerman
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Mrinal M. Patnaik
- Division of Hematology, Department of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Amir Lerman
- Division of Cardiology, Department of Medicine, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
6
|
Kogel A, Fikenzer S, Uhlmann L, Opitz L, Kneuer JM, Haeusler KG, Endres M, Kratzsch J, Schwarz V, Werner C, Kalwa H, Gaul S, Laufs U. Extracellular Inflammasome Particles Are Released After Marathon Running and Induce Proinflammatory Effects in Endothelial Cells. Front Physiol 2022; 13:866938. [PMID: 35669577 PMCID: PMC9163349 DOI: 10.3389/fphys.2022.866938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 04/05/2022] [Indexed: 11/13/2022] Open
Abstract
Objectives: The intracellular NLRP3 inflammasome is an important regulator of sterile inflammation. Recent data suggest that inflammasome particles can be released into circulation. The effects of exercise on circulating extracellular apoptosis-associated speck-like protein (ASC) particles and their effects on endothelial cells are not known. Methods: We established a flow cytometric method to quantitate extracellular ASC specks in human serum. ASC specks were quantitated in 52 marathon runners 24–72 h before, immediately after, and again 24–58 h after the run. For mechanistic characterization, NLRP3 inflammasome particles were isolated from a stable mutant NLRP3 (p.D303N)-YFP HEK cell line and used to treat primary human coronary artery endothelial cells. Results: Athletes showed a significant increase in serum concentration of circulating ASC specks immediately after the marathon (+52% compared with the baseline, p < 0.05) and a decrease during the follow-up after 24–58 h (12% reduction compared with immediately after the run, p < 0.01). Confocal microscopy revealed that human endothelial cells can internalize extracellular NLRP3 inflammasome particles. After internalization, endothelial cells showed an inflammatory response with a higher expression of the cell adhesion molecule ICAM1 (6.9-fold, p < 0.05) and increased adhesion of monocytes (1.5-fold, p < 0.05). Conclusion: These findings identify extracellular inflammasome particles as novel systemic mediators of cell–cell communication that are transiently increased after acute extensive exercise with a high mechanical muscular load.
Collapse
Affiliation(s)
- Alexander Kogel
- Klinik und Poliklinik für Kardiologie, Universitätsklinikum Leipzig, Leipzig, Germany
| | - Sven Fikenzer
- Klinik und Poliklinik für Kardiologie, Universitätsklinikum Leipzig, Leipzig, Germany
| | - Luisa Uhlmann
- Klinik und Poliklinik für Kardiologie, Universitätsklinikum Leipzig, Leipzig, Germany
| | - Lena Opitz
- Klinik und Poliklinik für Kardiologie, Universitätsklinikum Leipzig, Leipzig, Germany
| | - Jasmin M Kneuer
- Klinik und Poliklinik für Kardiologie, Universitätsklinikum Leipzig, Leipzig, Germany
| | | | - Matthias Endres
- Department of Neurology and Center for Stroke Research Berlin, Charité-Universitätsmedizin Berlin, Berlin, Germany.,German Center for Neurodegenerative Diseases (DZNE) and German Centre for Cardiovascular Research (DZHK), Berlin, Germany
| | - Jürgen Kratzsch
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University of Leipzig, Leipzig, Germany
| | - Viktoria Schwarz
- Department for Internal Medicine III, Cardiology, Angiology and Intensive Care Medicine, Saarland University, Saarbrücken, Germany
| | - Christian Werner
- Department for Internal Medicine III, Cardiology, Angiology and Intensive Care Medicine, Saarland University, Saarbrücken, Germany
| | - Hermann Kalwa
- Rudolf-Boehm-Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Universität Leipzig, Leipzig, Germany
| | - Susanne Gaul
- Klinik und Poliklinik für Kardiologie, Universitätsklinikum Leipzig, Leipzig, Germany
| | - Ulrich Laufs
- Klinik und Poliklinik für Kardiologie, Universitätsklinikum Leipzig, Leipzig, Germany
| |
Collapse
|
7
|
Reyes-Alcaraz A, Lucero Garcia-Rojas EY, Merlinsky EA, Seong JY, Bond RA, McConnell BK. A NanoBiT assay to monitor membrane proteins trafficking for drug discovery and drug development. Commun Biol 2022; 5:212. [PMID: 35260793 PMCID: PMC8904512 DOI: 10.1038/s42003-022-03163-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 02/09/2022] [Indexed: 12/11/2022] Open
Abstract
Internalization of membrane proteins plays a key role in many physiological functions; however, highly sensitive and versatile technologies are lacking to study such processes in real-time living systems. Here we describe an assay based on bioluminescence able to quantify membrane receptor trafficking for a wide variety of internalization mechanisms such as GPCR internalization/recycling, antibody-mediated internalization, and SARS-CoV2 viral infection. This study represents an alternative drug discovery tool to accelerate the drug development for a wide range of physiological processes, such as cancer, neurological, cardiopulmonary, metabolic, and infectious diseases including COVID-19. Membrane protein trafficking is monitored using split nanoluciferase. Receptor internalization leads to complementation on the early endosome and a bioluminescent response, and is applied to receptor internalization/recycling, antibody-mediated internalization and SARS-CoV2 entry.
Collapse
Affiliation(s)
- Arfaxad Reyes-Alcaraz
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX, 77204-5037, USA.
| | - Emilio Y Lucero Garcia-Rojas
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX, 77204-5037, USA
| | - Elizabeth A Merlinsky
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX, 77204-5037, USA
| | - Jae Young Seong
- Korea University, College of Medicine, Anam-dong, Seongbuk-gu, Seol, 136-701, Republic of Korea
| | - Richard A Bond
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX, 77204-5037, USA
| | - Bradley K McConnell
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX, 77204-5037, USA.
| |
Collapse
|
8
|
Dubuisson N, Versele R, Davis-López de Carrizosa MA, Selvais CM, Brichard SM, Abou-Samra M. Walking down Skeletal Muscle Lane: From Inflammasome to Disease. Cells 2021; 10:cells10113023. [PMID: 34831246 PMCID: PMC8616386 DOI: 10.3390/cells10113023] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 10/29/2021] [Accepted: 11/02/2021] [Indexed: 12/14/2022] Open
Abstract
Over the last decade, innate immune system receptors and sensors called inflammasomes have been identified to play key pathological roles in the development and progression of numerous diseases. Among them, the nucleotide-binding oligomerization domain (NOD-), leucine-rich repeat (LRR-) and pyrin domain-containing protein 3 (NLRP3) inflammasome is probably the best characterized. To date, NLRP3 has been extensively studied in the heart, where its effects and actions have been broadly documented in numerous cardiovascular diseases. However, little is still known about NLRP3 implications in muscle disorders affecting non-cardiac muscles. In this review, we summarize and present the current knowledge regarding the function of NLRP3 in diseased skeletal muscle, and discuss the potential therapeutic options targeting the NLRP3 inflammasome in muscle disorders.
Collapse
Affiliation(s)
- Nicolas Dubuisson
- Endocrinology, Diabetes and Nutrition Unit, Institute of Experimental and Clinical Research, Medical Sector, Université Catholique de Louvain, 1200 Brussels, Belgium; (R.V.); (M.A.D.-L.d.C.); (C.M.S.); (S.M.B.); (M.A.-S.)
- Neuromuscular Reference Center, Cliniques Universitaires Saint-Luc, Avenue Hippocrate 10, 1200 Brussels, Belgium
- Correspondence:
| | - Romain Versele
- Endocrinology, Diabetes and Nutrition Unit, Institute of Experimental and Clinical Research, Medical Sector, Université Catholique de Louvain, 1200 Brussels, Belgium; (R.V.); (M.A.D.-L.d.C.); (C.M.S.); (S.M.B.); (M.A.-S.)
| | - María A. Davis-López de Carrizosa
- Endocrinology, Diabetes and Nutrition Unit, Institute of Experimental and Clinical Research, Medical Sector, Université Catholique de Louvain, 1200 Brussels, Belgium; (R.V.); (M.A.D.-L.d.C.); (C.M.S.); (S.M.B.); (M.A.-S.)
- Departamento de Fisiología, Facultad de Biología, Universidad de Sevilla, 41012 Seville, Spain
| | - Camille M. Selvais
- Endocrinology, Diabetes and Nutrition Unit, Institute of Experimental and Clinical Research, Medical Sector, Université Catholique de Louvain, 1200 Brussels, Belgium; (R.V.); (M.A.D.-L.d.C.); (C.M.S.); (S.M.B.); (M.A.-S.)
| | - Sonia M. Brichard
- Endocrinology, Diabetes and Nutrition Unit, Institute of Experimental and Clinical Research, Medical Sector, Université Catholique de Louvain, 1200 Brussels, Belgium; (R.V.); (M.A.D.-L.d.C.); (C.M.S.); (S.M.B.); (M.A.-S.)
| | - Michel Abou-Samra
- Endocrinology, Diabetes and Nutrition Unit, Institute of Experimental and Clinical Research, Medical Sector, Université Catholique de Louvain, 1200 Brussels, Belgium; (R.V.); (M.A.D.-L.d.C.); (C.M.S.); (S.M.B.); (M.A.-S.)
| |
Collapse
|