1
|
Kali B, Bekkuzhina S, Tussipkan D, Manabayeva S. A First Approach for the In Vitro Cultivation, Storage, and DNA Barcoding of the Endangered Endemic Species Euonymus koopmannii. PLANTS (BASEL, SWITZERLAND) 2024; 13:2174. [PMID: 39204610 PMCID: PMC11359811 DOI: 10.3390/plants13162174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/31/2024] [Accepted: 08/01/2024] [Indexed: 09/04/2024]
Abstract
Euonymus koopmannii is a rare and protected species in Kazakhstan, valued for its ecological role in soil stabilization and its ornamental properties. This study presents the first use of micropropagation and phylogenetic analysis for the endemic plant E. koopmannii. Seedlings of E. koopmannii proved to be more effective than internodes as primary explants for plant micropropagation of in vitro culture, with a multiplication coefficient of 28.5 from seedlings and 6.1 from internodes. On MSR I medium supplemented with 0.5 mg/L IBA and 0.05 mg/L IAA, a higher success rate of 67% was achieved for root formation of test tube-grown E. koopmannii plants. Using mannitol as an osmotic agent at a concentration of 8 mg/L prolonged the storage time of E. koopmannii under slow growth conditions when compared to CCC and abscisic acid. Phylogenetic relationships and species identification were analyzed using four DNA-barcoding markers, comparing E. koopmannii with species from NCBI. All candidate barcoding markers showed sufficient levels of interspecific genetic variation among Euonymus species. In addition, ITS region and rbcL gene sequences effectively distinguished E. koopmannii from other species. These results provide fundamental information that will be valuable for future biotechnological and molecular studies.
Collapse
Affiliation(s)
- Balnur Kali
- Plant Genetic Engineering Laboratory, National Center for Biotechnology, Astana 010000, Kazakhstan; (B.K.); (S.B.); (D.T.)
| | - Sara Bekkuzhina
- Plant Genetic Engineering Laboratory, National Center for Biotechnology, Astana 010000, Kazakhstan; (B.K.); (S.B.); (D.T.)
| | - Dilnur Tussipkan
- Plant Genetic Engineering Laboratory, National Center for Biotechnology, Astana 010000, Kazakhstan; (B.K.); (S.B.); (D.T.)
| | - Shuga Manabayeva
- Plant Genetic Engineering Laboratory, National Center for Biotechnology, Astana 010000, Kazakhstan; (B.K.); (S.B.); (D.T.)
- Faculty of Natural Sciences, L.N. Gumilyov Eurasian National University, Astana 010000, Kazakhstan
| |
Collapse
|
2
|
Hao Z, Shi J, Wu H, Yan Y, Xing K, Zheng R, Shi J, Chen J. Phytosulfokine contributes to suspension culture of Cunninghamia lanceolata through its impact on redox homeostasis. BMC PLANT BIOLOGY 2023; 23:480. [PMID: 37814230 PMCID: PMC10561472 DOI: 10.1186/s12870-023-04496-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 09/28/2023] [Indexed: 10/11/2023]
Abstract
BACKGROUND Suspension culture is widely used in the establishment of efficient plant regeneration systems, as well as in the mass production of plant secondary metabolites. However, the establishment of a suspension culture system of Cunninghamia lanceolata is genotype-dependent given that proembryogenic masses (PEMs) are prone to browning during this process in recalcitrant genotypes. Previously, we reported that the plant peptide hormone phytosulfokine (PSK) can tremendously decrease the hydrogen peroxide (H2O2) level and help to initiate somatic embryogenesis (SE) in recalcitrant C. lanceolata genotypes. However, to date, no studies have revealed whether or how PSK may contribute to the establishment of a suspension culture system in these recalcitrant genotypes. RESULTS Here, we demonstrated that exogenous application of PSK effectively inhibited PEM browning during suspension culture in a recalcitrant genotype of C. lanceolata. Comparative time-series transcriptome profiling showed that redox homeostasis underwent drastic fluctuations when PEMs were cultured in liquid medium, while additional PSK treatment helped to maintain a relatively stable redox homeostasis. Interestingly, PSK seemed to have a dual effect on peroxidases (PRXs), with PSK simultaneously transcriptionally repressing ROS-producing PRXs and activating ROS-scavenging PRXs. Furthermore, determination of H2O2 and MDA content, as well as cell viability, showed that exogenous PSK treatment inhibited PEM browning and safeguarded PEM suspension culture by decreasing the H2O2 level and increasing PEM activity. CONCLUSIONS Collectively, these findings provide a valuable tool for the future establishment of large-scale C. lanceolata PEM suspension culture without genotype limitations.
Collapse
Affiliation(s)
- Zhaodong Hao
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
- Key Laboratory of Forest Genetics and Biotechnology of Ministry of Education, Nanjing Forestry University, Nanjing, 210037, China
| | - Jinyu Shi
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
- Key Laboratory of Forest Genetics and Biotechnology of Ministry of Education, Nanjing Forestry University, Nanjing, 210037, China
| | - Hua Wu
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
- Key Laboratory of Forest Genetics and Biotechnology of Ministry of Education, Nanjing Forestry University, Nanjing, 210037, China
| | - Yiqing Yan
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
- Key Laboratory of Forest Genetics and Biotechnology of Ministry of Education, Nanjing Forestry University, Nanjing, 210037, China
| | - Kaifei Xing
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
- Key Laboratory of Forest Genetics and Biotechnology of Ministry of Education, Nanjing Forestry University, Nanjing, 210037, China
| | - Renhua Zheng
- Fujian Academy of Forestry, Fuzhou, 350012, Fujian, China
| | - Jisen Shi
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
- Key Laboratory of Forest Genetics and Biotechnology of Ministry of Education, Nanjing Forestry University, Nanjing, 210037, China
| | - Jinhui Chen
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China.
- Key Laboratory of Forest Genetics and Biotechnology of Ministry of Education, Nanjing Forestry University, Nanjing, 210037, China.
| |
Collapse
|
3
|
Mukami A, Juma BS, Mweu C, Ngugi M, Oduor R, Mbinda WM. Plant regeneration from leaf mesophyll derived protoplasts of cassava (Manihot esculenta Crantz). PLoS One 2022; 17:e0278717. [PMID: 36454974 PMCID: PMC9714804 DOI: 10.1371/journal.pone.0278717] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 11/22/2022] [Indexed: 12/05/2022] Open
Abstract
A high yield of isolated protoplast and reliable regeneration system are prerequisite for successful somatic hybridization and genome editing research. However, reproducible plant regeneration from protoplasts remains a bottleneck for many crops, including cassava. We evaluated several factors that influence isolation of viable protoplasts form leaf mesophyll, induction of embryogenic calli, and regeneration of plants in three cassava cultivars; Muchericheri, TMS60444 and Karibuni. A relatively higher protoplast yield was obtained with enzyme mixture containing 5 g/L Macerozyme and 10 g/L cellulase. Muchericheri recorded relatively higher protoplast yield of 20.50±0.50×106 whereas TMS60444 (10.25±0.25×106) had the least protoplast yield in 10 g/L cellulase and 4 g/L cellulase. Freshly isolated protoplast cells were plated on callus induction medium (CIM) solid medium containing MS basal salt, 60 g/L D-glucose, 30 g/L sucrose, B5 vitamins, 100 mg/L myo-inositol, 0.5 mg/L copper sulphate, 100 mg/L casein hydrolysate, 4.55 g/L mannitol, 0.1 g/L MES, 10 mg/L picloram and 3 g/L gelrite to induce protoplast growth and development. The three cultivars reached colony formation but no further development was observed in this culture method. Protoplast growth and development was further evaluated in suspension culture using varying cell densities (1, 2 and 3× 105 p/mL). Development with highest number of minicalli was observed in cell density of 3× 105 p/mL. Minicalli obtained were cultured on CIM supplemented with 10mg/L picloram. Callus induction was observed in all cell densities with the cultivars. Highest somatic embryogenesis was observed in 2× 105 p/ml while no somatic embryogenesis was observed in cell density of 1×105 p/mL. Somatic embryos were matured in EMM medium supplemented with 1 mg/L BAP, 0.02 mg/L NAA and 1.5 mg/L GA3 then germinated in hormone free medium for plant regeneration. This protocol which used simple mixture of commercial enzymes is highly reproducible and can be applied in biotechnology research on cassava.
Collapse
Affiliation(s)
- Asunta Mukami
- Department of Life Sciences, South Eastern Kenya University, Kitui, Kenya
| | - Bicko Steve Juma
- Institute for Biotechnology Research, Jomo Kenyatta University of Agriculture Technology, Nairobi, Kenya
| | - Cecilia Mweu
- Institute for Biotechnology Research, Jomo Kenyatta University of Agriculture Technology, Nairobi, Kenya
| | - Mathew Ngugi
- Department of Biochemistry, Microbiology and Biotechnology, Kenyatta University, Nairobi, Kenya
| | - Richard Oduor
- Department of Biochemistry, Microbiology and Biotechnology, Kenyatta University, Nairobi, Kenya
| | - Wilton Mwema Mbinda
- Department of Biochemistry and Biotechnology, Pwani University, Kilifi, Kenya
- Pwani University Biosciences Research Centre (PUBReC), Pwani University, Kilifi, Kenya
- * E-mail: ,
| |
Collapse
|
4
|
Abstract
Somatic embryogenesis is a natural phenomenon through which somatic embryos are produced from somatic cells although. It is considered the most efficient morphogenic pathways for plant multiplication. One of the key features of somatic embryogenesis is the use of cellular totipotency, where dedifferentiation is induced to foster cell proliferation, followed by the induction of differentiation using plant growth regulators to produce new plants. There is a cell group with the potential to undergo the somatic embryogenesis pathway through adequate stimulation (plant growth regulators, incubation conditions, and supplementation of the culture medium). There are two somatic embryogenesis pathways in plants: direct and indirect embryogenesis. Direct somatic embryogenesis consists of the formation of embryos directly from isolated cells, without the formation of "callous" tissue. Indirect somatic embryogenesis is characterized by the formation of a callus as a stage that precedes the formation of somatic embryos. It should be stressed that not all plant cells have this morphogenic capacity; consequently, determining the type of factors that drive this type of response has been challenging. This book provides the reader with updated available information on the techniques, relevant protocols, and tools to perform somatic embryogenesis in different plant species for economic purposes.
Collapse
Affiliation(s)
- Marco A Ramírez-Mosqueda
- Facultad de Ciencias Biológicas y Agropecuarias, Universidad Veracruzana, Amatlán de los Reyes, Veracruz, Mexico.
| |
Collapse
|
5
|
Motolinía-Alcántara EA, Castillo-Araiza CO, Rodríguez-Monroy M, Román-Guerrero A, Cruz-Sosa F. Engineering Considerations to Produce Bioactive Compounds from Plant Cell Suspension Culture in Bioreactors. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10122762. [PMID: 34961231 PMCID: PMC8707313 DOI: 10.3390/plants10122762] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/03/2021] [Accepted: 12/06/2021] [Indexed: 06/14/2023]
Abstract
The large-scale production of plant-derived secondary metabolites (PDSM) in bioreactors to meet the increasing demand for bioactive compounds for the treatment and prevention of degenerative diseases is nowadays considered an engineering challenge due to the large number of operational factors that need to be considered during their design and scale-up. The plant cell suspension culture (CSC) has presented numerous benefits over other technologies, such as the conventional whole-plant extraction, not only for avoiding the overexploitation of plant species, but also for achieving better yields and having excellent scaling-up attributes. The selection of the bioreactor configuration depends on intrinsic cell culture properties and engineering considerations related to the effect of operating conditions on thermodynamics, kinetics, and transport phenomena, which together are essential for accomplishing the large-scale production of PDSM. To this end, this review, firstly, provides a comprehensive appraisement of PDSM, essentially those with demonstrated importance and utilization in pharmaceutical industries. Then, special attention is given to PDSM obtained out of CSC. Finally, engineering aspects related to the bioreactor configuration for CSC stating the effect of the operating conditions on kinetics and transport phenomena and, hence, on the cell viability and production of PDSM are presented accordingly. The engineering analysis of the reviewed bioreactor configurations for CSC will pave the way for future research focused on their scaling up, to produce high value-added PDSM.
Collapse
Affiliation(s)
| | - Carlos Omar Castillo-Araiza
- Departamento de Ingeniería de Procesos e Hidráulica, Universidad Autónoma Metropolitana-Iztapalapa, Av. Ferrocarril de San Rafael Atlixco 186, Ciudad de México 09310, Mexico;
| | - Mario Rodríguez-Monroy
- Centro de Desarrollo de Productos Bióticos (CEPROBI), Departamento de Biotecnología, Instituto Politécnico Nacional (IPN), Yautepec 62731, Mexico;
| | - Angélica Román-Guerrero
- Departamento de Biotecnología, Universidad Autónoma Metropolitana-Iztapalapa, Av. Ferrocarril de San Rafael Atlixco 186, Ciudad de México 09310, Mexico;
| | - Francisco Cruz-Sosa
- Departamento de Biotecnología, Universidad Autónoma Metropolitana-Iztapalapa, Av. Ferrocarril de San Rafael Atlixco 186, Ciudad de México 09310, Mexico;
| |
Collapse
|