1
|
Paulhus K, Glasscock E. Seizures and premature death in mice with targeted Kv1.1 deficiency in corticolimbic circuits. Brain Commun 2025; 7:fcae444. [PMID: 39822954 PMCID: PMC11735082 DOI: 10.1093/braincomms/fcae444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 10/29/2024] [Accepted: 12/04/2024] [Indexed: 01/19/2025] Open
Abstract
Sudden unexpected death in epilepsy (SUDEP) is the leading cause of epilepsy-related death, likely stemming from seizure activity disrupting vital brain centres controlling heart and breathing function. However, understanding of SUDEP's anatomical basis and mechanisms remains limited, hampering risk evaluation and prevention strategies. Prior studies using a neuron-specific Kcna1 conditional knockout mouse model of SUDEP identified the primary importance of brain-driven mechanisms contributing to sudden death and cardiorespiratory dysregulation; yet, the underlying neurocircuits have not been identified. Using the Emx1-Cre driver, we generated a new conditional knockout mouse model lacking Kcna1 in excitatory neurons of the cortex, hippocampus, amygdala and select vagal afferents. To test whether the absence of Kv1.1 in forebrain corticolimbic circuits is sufficient to induce spontaneous seizures, premature mortality and cardiorespiratory dysfunction, we performed survival studies and EEG, ECG, and plethysmography (EEG-ECG-Pleth) recordings. We demonstrate premature death and epilepsy in corticolimbic conditional knockout mice. During monitoring, we fortuitously captured one SUDEP event, which showed a generalized tonic-clonic seizure that initiated respiratory dysfunction culminating in cardiorespiratory failure. In addition, we observed that cardiorespiratory abnormalities are common during non-fatal seizures in conditional knockout mice, but mostly absent during interictal periods, implying ictal, not interictal, cardiorespiratory impairment as a more reliable indicator of SUDEP risk. These results point to corticolimbic excitatory neurons as critical neural substrates in SUDEP and affirm seizure-related respiratory and cardiac failure as a likely cause of death.
Collapse
Affiliation(s)
- Kelsey Paulhus
- Department of Biological Sciences, Southern Methodist University, Dallas, TX 75275, USA
| | - Edward Glasscock
- Department of Biological Sciences, Southern Methodist University, Dallas, TX 75275, USA
| |
Collapse
|
2
|
Maksour S, Finol-Urdaneta RK, Hulme AJ, Cabral-da-Silva MEC, Targa Dias Anastacio H, Balez R, Berg T, Turner C, Sanz Muñoz S, Engel M, Kalajdzic P, Lisowski L, Sidhu K, Sachdev PS, Dottori M, Ooi L. Alzheimer's disease induced neurons bearing PSEN1 mutations exhibit reduced excitability. Front Cell Neurosci 2024; 18:1406970. [PMID: 39444394 PMCID: PMC11497635 DOI: 10.3389/fncel.2024.1406970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 09/23/2024] [Indexed: 10/25/2024] Open
Abstract
Alzheimer's disease (AD) is a devastating neurodegenerative condition that affects memory and cognition, characterized by neuronal loss and currently lacking a cure. Mutations in PSEN1 (Presenilin 1) are among the most common causes of early-onset familial AD (fAD). While changes in neuronal excitability are believed to be early indicators of AD progression, the link between PSEN1 mutations and neuronal excitability remains to be fully elucidated. This study examined iPSC-derived neurons (iNs) from fAD patients with PSEN1 mutations S290C or A246E, alongside CRISPR-corrected isogenic cell lines, to investigate early changes in excitability. Electrophysiological profiling revealed reduced excitability in both PSEN1 mutant iNs compared to their isogenic controls. Neurons bearing S290C and A246E mutations exhibited divergent passive membrane properties compared to isogenic controls, suggesting distinct effects of PSEN1 mutations on neuronal excitability. Additionally, both PSEN1 backgrounds exhibited higher current density of voltage-gated potassium (Kv) channels relative to their isogenic iNs, while displaying comparable voltage-gated sodium (Nav) channel current density. This suggests that the Nav/Kv imbalance contributes to impaired neuronal firing in fAD iNs. Deciphering these early cellular and molecular changes in AD is crucial for understanding disease pathogenesis.
Collapse
Affiliation(s)
- Simon Maksour
- School of Chemistry and Molecular Bioscience and Molecular Horizons, University of Wollongong, Wollongong, NSW, Australia
| | - Rocio K. Finol-Urdaneta
- School of Medical and Indigenous Health Science and Molecular Horizons, University of Wollongong, Wollongong, NSW, Australia
| | - Amy J. Hulme
- School of Medical and Indigenous Health Science and Molecular Horizons, University of Wollongong, Wollongong, NSW, Australia
| | | | - Helena Targa Dias Anastacio
- School of Chemistry and Molecular Bioscience and Molecular Horizons, University of Wollongong, Wollongong, NSW, Australia
| | - Rachelle Balez
- School of Chemistry and Molecular Bioscience and Molecular Horizons, University of Wollongong, Wollongong, NSW, Australia
| | - Tracey Berg
- School of Chemistry and Molecular Bioscience and Molecular Horizons, University of Wollongong, Wollongong, NSW, Australia
| | - Calista Turner
- School of Chemistry and Molecular Bioscience and Molecular Horizons, University of Wollongong, Wollongong, NSW, Australia
| | - Sonia Sanz Muñoz
- School of Chemistry and Molecular Bioscience and Molecular Horizons, University of Wollongong, Wollongong, NSW, Australia
| | - Martin Engel
- School of Chemistry and Molecular Bioscience and Molecular Horizons, University of Wollongong, Wollongong, NSW, Australia
| | - Predrag Kalajdzic
- Translational Vectorology Research Unit, Children’s Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW, Australia
| | - Leszek Lisowski
- Translational Vectorology Research Unit, Children’s Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW, Australia
- Australian Genome Therapeutics Centre, Children’s Medical Research Institute and Sydney Children’s Hospitals Network, Westmead, NSW, Australia
- Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine – National Research Institute, Warsaw, Poland
| | - Kuldip Sidhu
- Centre for Healthy Brain Ageing, School of Clinical Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Perminder S. Sachdev
- Centre for Healthy Brain Ageing, School of Clinical Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Mirella Dottori
- School of Medical and Indigenous Health Science and Molecular Horizons, University of Wollongong, Wollongong, NSW, Australia
| | - Lezanne Ooi
- School of Chemistry and Molecular Bioscience and Molecular Horizons, University of Wollongong, Wollongong, NSW, Australia
| |
Collapse
|
3
|
Gu J, Shao W, Liu L, Wang Y, Yang Y, Zhang Z, Wu Y, Xu Q, Gu L, Zhang Y, Shen Y, Zhao H, Zeng C, Zhang H. Challenges and future directions of SUDEP models. Lab Anim (NY) 2024; 53:226-243. [PMID: 39187733 DOI: 10.1038/s41684-024-01426-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 08/02/2024] [Indexed: 08/28/2024]
Abstract
Sudden unexpected death in epilepsy (SUDEP) is the leading cause of death among patients with epilepsy, causing a global public health burden. The underlying mechanisms of SUDEP remain elusive, and effective prevention or treatment strategies require further investigation. A major challenge in current SUDEP research is the lack of an ideal model that maximally mimics the human condition. Animal models are important for revealing the potential pathogenesis of SUDEP and preventing its occurrence; however, they have potential limitations due to species differences that prevent them from precisely replicating the intricate physiological and pathological processes of human disease. This Review provides a comprehensive overview of several available SUDEP animal models, highlighting their pros and cons. More importantly, we further propose the establishment of an ideal model based on brain-computer interfaces and artificial intelligence, hoping to offer new insights into potential advancements in SUDEP research. In doing so, we hope to provide valuable information for SUDEP researchers, offer new insights into the pathogenesis of SUDEP and open new avenues for the development of strategies to prevent SUDEP.
Collapse
Affiliation(s)
- JiaXuan Gu
- Department of Anesthesiology, the Fourth Clinical School of Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - WeiHui Shao
- Department of Anesthesiology, the Fourth Clinical School of Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Lu Liu
- Department of Anesthesiology, Zhejiang University School of Medicine, Hangzhou, China
| | - YuLing Wang
- Department of Anesthesiology, the Fourth Clinical School of Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yue Yang
- Department of Anesthesiology, the Fourth Clinical School of Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - ZhuoYue Zhang
- Department of Anesthesiology, Zhejiang University School of Medicine, Hangzhou, China
| | - YaXuan Wu
- Department of Anesthesiology, the Fourth Clinical School of Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Qing Xu
- Department of Anesthesiology, Zhejiang University School of Medicine, Hangzhou, China
| | - LeYuan Gu
- Department of Anesthesiology, the Fourth Clinical School of Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - YuanLi Zhang
- Department of Anesthesiology, the Fourth Clinical School of Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yue Shen
- Department of Anesthesiology, Affiliated Hangzhou First People's Hospital, Westlake University School of Medicine, Hangzhou, China
| | - HaiTing Zhao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Chang Zeng
- Health Management Center, Xiangya Hospital, Central South University, Changsha, China
| | - HongHai Zhang
- Department of Anesthesiology, the Fourth Clinical School of Medicine, Zhejiang Chinese Medical University, Hangzhou, China.
- Department of Anesthesiology, Zhejiang University School of Medicine, Hangzhou, China.
- Department of Anesthesiology, Affiliated Hangzhou First People's Hospital, Westlake University School of Medicine, Hangzhou, China.
| |
Collapse
|
4
|
Pinheiro-Junior EL, Alirahimi E, Peigneur S, Isensee J, Schiffmann S, Erkoc P, Fürst R, Vilcinskas A, Sennoner T, Koludarov I, Hempel BF, Tytgat J, Hucho T, von Reumont BM. Diversely evolved xibalbin variants from remipede venom inhibit potassium channels and activate PKA-II and Erk1/2 signaling. BMC Biol 2024; 22:164. [PMID: 39075558 PMCID: PMC11288129 DOI: 10.1186/s12915-024-01955-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 07/09/2024] [Indexed: 07/31/2024] Open
Abstract
BACKGROUND The identification of novel toxins from overlooked and taxonomically exceptional species bears potential for various pharmacological applications. The remipede Xibalbanus tulumensis, an underwater cave-dwelling crustacean, is the only crustacean for which a venom system has been described. Its venom contains several xibalbin peptides that have an inhibitor cysteine knot (ICK) scaffold. RESULTS Our screenings revealed that all tested xibalbin variants particularly inhibit potassium channels. Xib1 and xib13 with their eight-cysteine domain similar to spider knottins also inhibit voltage-gated sodium channels. No activity was noted on calcium channels. Expanding the functional testing, we demonstrate that xib1 and xib13 increase PKA-II and Erk1/2 sensitization signaling in nociceptive neurons, which may initiate pain sensitization. Our phylogenetic analysis suggests that xib13 either originates from the common ancestor of pancrustaceans or earlier while xib1 is more restricted to remipedes. The ten-cysteine scaffolded xib2 emerged from xib1, a result that is supported by our phylogenetic and machine learning-based analyses. CONCLUSIONS Our functional characterization of synthesized variants of xib1, xib2, and xib13 elucidates their potential as inhibitors of potassium channels in mammalian systems. The specific interaction of xib2 with Kv1.6 channels, which are relevant to treating variants of epilepsy, shows potential for further studies. At higher concentrations, xib1 and xib13 activate the kinases PKA-II and ERK1/2 in mammalian sensory neurons, suggesting pain sensitization and potential applications related to pain research and therapy. While tested insect channels suggest that all probably act as neurotoxins, the biological function of xib1, xib2, and xib13 requires further elucidation. A novel finding on their evolutionary origin is the apparent emergence of X. tulumensis-specific xib2 from xib1. Our study is an important cornerstone for future studies to untangle the origin and function of these enigmatic proteins as important components of remipede but also other pancrustacean and arthropod venoms.
Collapse
Affiliation(s)
- Ernesto Lopes Pinheiro-Junior
- Toxicology and Pharmacology - Campus Gasthuisberg, University of Leuven (KU Leuven), Herestraat 49, PO Box 922, 3000, Louvain, Belgium
| | - Ehsan Alirahimi
- Department of Anesthesiology and Intensive Care Medicine, University Cologne, Translational Pain Research, University Hospital of Cologne, Cologne, Germany
| | - Steve Peigneur
- Toxicology and Pharmacology - Campus Gasthuisberg, University of Leuven (KU Leuven), Herestraat 49, PO Box 922, 3000, Louvain, Belgium
| | - Jörg Isensee
- Department of Anesthesiology and Intensive Care Medicine, University Cologne, Translational Pain Research, University Hospital of Cologne, Cologne, Germany
| | - Susanne Schiffmann
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Theodor-Stern-Kai 7, 60596, Frankfurt Am Main, Germany
| | - Pelin Erkoc
- Institute of Pharmaceutical Biology, Goethe University Frankfurt, Max-Von-Laue-Str. 9, 60438, Frankfurt, Germany
- LOEWE Center for Translational Biodiversity Genomics (LOEWE-TBG), Senckenberganlage 25, 60325, Frankfurt, Germany
| | - Robert Fürst
- Institute of Pharmaceutical Biology, Goethe University Frankfurt, Max-Von-Laue-Str. 9, 60438, Frankfurt, Germany
- LOEWE Center for Translational Biodiversity Genomics (LOEWE-TBG), Senckenberganlage 25, 60325, Frankfurt, Germany
| | - Andreas Vilcinskas
- LOEWE Center for Translational Biodiversity Genomics (LOEWE-TBG), Senckenberganlage 25, 60325, Frankfurt, Germany
- Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology (IME-BR), Ohlebergsweg 14, 35394, Giessen, Germany
| | - Tobias Sennoner
- Department of Informatics, Bioinformatics and Computational Biology, i12, Technical University of Munich, Boltzmannstr. 3, 85748, Garching, Munich, Germany
| | - Ivan Koludarov
- Department of Informatics, Bioinformatics and Computational Biology, i12, Technical University of Munich, Boltzmannstr. 3, 85748, Garching, Munich, Germany
| | - Benjamin-Florian Hempel
- Freie Unveristät Berlin, Veterinary Centre for Resistance Research (TZR), Robert-Von-Ostertag Str. 8, 14163, Berlin, Germany
| | - Jan Tytgat
- Toxicology and Pharmacology - Campus Gasthuisberg, University of Leuven (KU Leuven), Herestraat 49, PO Box 922, 3000, Louvain, Belgium
| | - Tim Hucho
- Department of Anesthesiology and Intensive Care Medicine, University Cologne, Translational Pain Research, University Hospital of Cologne, Cologne, Germany
| | - Björn M von Reumont
- LOEWE Center for Translational Biodiversity Genomics (LOEWE-TBG), Senckenberganlage 25, 60325, Frankfurt, Germany.
- Faculty of Biological Sciences, Institute of Cell Biology and Neuroscience, Goethe, Frankfurt, Max-Von-Laue-Str 13, 60438, Frankfurt, Germany.
| |
Collapse
|
5
|
Ciancone-Chama AG, Bonaldo V, Biasini E, Bozzi Y, Balasco L. Gene Expression Profiling in Trigeminal Ganglia from Cntnap2 -/- and Shank3b -/- Mouse Models of Autism Spectrum Disorder. Neuroscience 2023; 531:75-85. [PMID: 37699442 DOI: 10.1016/j.neuroscience.2023.08.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 08/19/2023] [Accepted: 08/22/2023] [Indexed: 09/14/2023]
Abstract
Sensory difficulties represent a crucial issue in the life of autistic individuals. The diagnostic and statistical manual of mental disorders describes both hyper- and hypo-responsiveness to sensory stimulation as a criterion for the diagnosis autism spectrum disorders (ASD). Among the sensory domain affected in ASD, altered responses to tactile stimulation represent the most commonly reported sensory deficits. Although tactile abnormalities have been reported in monogenic cohorts of patients and genetic mouse models of ASD, the underlying mechanisms are still unknown. Traditionally, autism research has focused on the central nervous system as the target to infer the neurobiological bases of such tactile abnormalities. Nonetheless, the peripheral nervous system represents the initial site of processing of sensory information and a potential site of dysfunction in the sensory cascade. Here we investigated the gene expression deregulation in the trigeminal ganglion (which directly receives tactile information from whiskers) in two genetic models of syndromic autism (Shank3b and Cntnap2 mutant mice) at both adult and juvenile ages. We found several neuronal and non-neuronal markers involved in inhibitory, excitatory, neuroinflammatory and sensory neurotransmission to be differentially regulated within the trigeminal ganglia of both adult and juvenile Shank3b and Cntnap2 mutant mice. These results may help in disentangling the multifaced complexity of sensory abnormalities in autism and open avenues for the development of peripherally targeted treatments for tactile sensory deficits exhibited in ASD.
Collapse
Affiliation(s)
- Alessandra G Ciancone-Chama
- Center for Mind/Brain Sciences - CIMeC, University of Trento, Piazza della Manifattura 1, 38068 Rovereto, TN, Italy
| | - Valerio Bonaldo
- Department of Cellular, Computational and Integrative Biology - CIBIO, University of Trento, Via Sommarive 9, 38123 Povo, TN, Italy
| | - Emiliano Biasini
- Department of Cellular, Computational and Integrative Biology - CIBIO, University of Trento, Via Sommarive 9, 38123 Povo, TN, Italy
| | - Yuri Bozzi
- Center for Mind/Brain Sciences - CIMeC, University of Trento, Piazza della Manifattura 1, 38068 Rovereto, TN, Italy; CNR Neuroscience Institute, via Moruzzi 1, 56124 Pisa, Italy.
| | - Luigi Balasco
- Center for Mind/Brain Sciences - CIMeC, University of Trento, Piazza della Manifattura 1, 38068 Rovereto, TN, Italy.
| |
Collapse
|
6
|
Dogra D, Meza-Santoscoy PL, Gavrilovici C, Rehak R, de la Hoz CLR, Ibhazehiebo K, Rho JM, Kurrasch DM. kcna1a mutant zebrafish model episodic ataxia type 1 (EA1) with epilepsy and show response to first-line therapy carbamazepine. Epilepsia 2023; 64:2186-2199. [PMID: 37209379 DOI: 10.1111/epi.17659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 05/18/2023] [Accepted: 05/18/2023] [Indexed: 05/22/2023]
Abstract
OBJECTIVE KCNA1 mutations are associated with a rare neurological movement disorder known as episodic ataxia type 1 (EA1), and epilepsy is a common comorbidity. Current medications provide only partial relief for ataxia and/or seizures, making new drugs needed. Here, we characterized zebrafish kcna1a-/- as a model of EA1 with epilepsy and compared the efficacy of the first-line therapy carbamazepine in kcna1a-/- zebrafish to Kcna1-/- rodents. METHODS CRISPR/Cas9 mutagenesis was used to introduce a mutation in the sixth transmembrane segment of the zebrafish Kcna1 protein. Behavioral and electrophysiological assays were performed on kcna1a-/- larvae to assess ataxia- and epilepsy-related phenotypes. Real-time quantitative polymerase chain reaction (qPCR) was conducted to measure mRNA levels of brain hyperexcitability markers in kcna1a-/- larvae, followed by bioenergetics profiling to evaluate metabolic function. Drug efficacies were tested using behavioral and electrophysiological assessments, as well as seizure frequency in kcna1a-/- zebrafish and Kcna1-/- mice, respectively. RESULTS Zebrafish kcna1a-/- larvae showed uncoordinated movements and locomotor deficits, along with scoliosis and increased mortality. The mutants also exhibited impaired startle responses when exposed to light-dark flashes and acoustic stimulation as well as hyperexcitability as measured by extracellular field recordings and upregulated fosab transcripts. Neural vglut2a and gad1b transcript levels were disrupted in kcna1a-/- larvae, indicative of a neuronal excitatory/inhibitory imbalance, as well as a significant reduction in cellular respiration in kcna1a-/- , consistent with dysregulation of neurometabolism. Notably, carbamazepine suppressed the impaired startle response and brain hyperexcitability in kcna1a-/- zebrafish but had no effect on the seizure frequency in Kcna1-/- mice, suggesting that this EA1 zebrafish model might better translate to humans than rodents. SIGNIFICANCE We conclude that zebrafish kcna1a-/- show ataxia and epilepsy-related phenotypes and are responsive to carbamazepine treatment, consistent with EA1 patients. These findings suggest that kcna1-/- zebrafish are a useful model for drug screening as well as studying the underlying disease biology.
Collapse
Affiliation(s)
- Deepika Dogra
- Department of Medical Genetics, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Paola L Meza-Santoscoy
- Department of Medical Genetics, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Cezar Gavrilovici
- Department of Medical Genetics, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Departments of Pediatrics, Clinical Neurosciences, Physiology & Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Departments of Neurosciences, Pediatrics, and Pharmacology, Rady Children's Hospital San Diego, University of California San Diego, San Diego, California, USA
| | - Renata Rehak
- Department of Medical Genetics, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Cristiane L R de la Hoz
- Department of Medical Genetics, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Kingsley Ibhazehiebo
- Department of Medical Genetics, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Jong M Rho
- Department of Medical Genetics, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Departments of Pediatrics, Clinical Neurosciences, Physiology & Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Departments of Neurosciences, Pediatrics, and Pharmacology, Rady Children's Hospital San Diego, University of California San Diego, San Diego, California, USA
| | - Deborah M Kurrasch
- Department of Medical Genetics, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
7
|
Orlov NA, Kryukova EV, Efremenko AV, Yakimov SA, Toporova VA, Kirpichnikov MP, Nekrasova OV, Feofanov AV. Interactions of the Kv1.1 Channel with Peptide Pore Blockers: A Fluorescent Analysis on Mammalian Cells. MEMBRANES 2023; 13:645. [PMID: 37505011 PMCID: PMC10383195 DOI: 10.3390/membranes13070645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 06/23/2023] [Accepted: 06/27/2023] [Indexed: 07/29/2023]
Abstract
The voltage-gated potassium channel Kv1.1, which is abundant in the CNS and peripheral nervous system, controls neuronal excitability and neuromuscular transmission and mediates a number of physiological functions in non-excitable cells. The development of some diseases is accompanied by changes in the expression level and/or activity of the channels in particular types of cells. To meet the requirements of studies related to the expression and localization of the Kv1.1 channels, we report on the subnanomolar affinity of hongotoxin 1 N-terminally labeled with Atto 488 fluorophore (A-HgTx) for the Kv1.1 channel and its applicability for fluorescent imaging of the channel in living cells. Taking into consideration the pharmacological potential of the Kv1.1 channel, a fluorescence-based analytical system was developed for the study of peptide ligands that block the ion conductivity of Kv1.1 and are potentially able to correct abnormal activity of the channel. The system is based on analysis of the competitive binding of the studied compounds and A-HgTx to the mKate2-tagged human Kv1.1 (S369T) channel, expressed in the plasma membrane of Neuro2a cells. The system was validated by measuring the affinities of the known Kv1.1-channel peptide blockers, such as agitoxin 2, kaliotoxin 1, hongotoxin 1, and margatoxin. Peptide pore blocker Ce1, from the venom of the scorpion Centruroides elegans, was shown to possess a nanomolar affinity for the Kv1.1 channel. It is reported that interactions of the Kv1.1 channel with the studied peptide blockers are not affected by the transition of the channel from the closed to open state. The conclusion is made that the structural rearrangements accompanying the channel transition into the open state do not change the conformation of the P-loop (including the selectivity filter) involved in the formation of the binding site of the peptide pore blockers.
Collapse
Affiliation(s)
- Nikita A Orlov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
- Faculty of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Elena V Kryukova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - Anastasia V Efremenko
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - Sergey A Yakimov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - Victoria A Toporova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - Mikhail P Kirpichnikov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
- Faculty of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Oksana V Nekrasova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - Alexey V Feofanov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
- Faculty of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
| |
Collapse
|
8
|
Nimitvilai-Roberts S, Gioia D, Lopez MF, Glaser CM, Woodward JJ. Chronic intermittent ethanol exposure differentially alters the excitability of neurons in the orbitofrontal cortex and basolateral amygdala that project to the dorsal striatum. Neuropharmacology 2023; 228:109463. [PMID: 36792030 PMCID: PMC10006395 DOI: 10.1016/j.neuropharm.2023.109463] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 02/09/2023] [Accepted: 02/10/2023] [Indexed: 02/15/2023]
Abstract
Alcohol use disorder is associated with altered neuron function including those in orbitofrontal cortex (OFC) and basolateral amygdala (BLA) that send glutamatergic inputs to areas of the dorsal striatum (DS) that mediate goal and habit directed actions. Previous studies reported that chronic intermittent (CIE) exposure to ethanol alters the electrophysiological properties of OFC and BLA neurons, although projection targets for these neurons were not identified. In this study, we used male and female mice and recorded current-evoked spiking of retrobead labeled DS-projecting OFC and BLA neurons in the same animals following air or CIE treatment. DS-projecting OFC neurons were hyperexcitable 3- and 7-days following CIE exposure and spiking returned to control levels after 14 days of withdrawal. In contrast, firing was decreased in DS-projecting BLA neurons at 3-days withdrawal, increased at 7- and 14-days and returned to baseline at 28 days post-CIE. CIE exposure enhanced the amplitude and frequency of spontaneous excitatory postsynaptic currents (sEPSCs) of DS-projecting OFC neurons but had no effect on inhibitory postsynaptic currents (sIPSCs). In DS-projecting BLA neurons, the amplitude and frequency of sIPSCs was enhanced 3 days post-CIE with no change in sEPSCs while at 7-days post-withdrawal, sEPSC amplitude and frequency were increased and sIPSCs had returned to normal. Finally, in CIE-treated mice, acute ethanol no longer inhibited spike firing of DS-projecting OFC and BLA neurons. Overall, these results suggest that CIE-induced changes in the excitability of DS-projecting OFC and BLA neurons could underlie deficits in behavioral control often observed in alcohol-dependent individuals.
Collapse
Affiliation(s)
| | - Dominic Gioia
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Marcelo F Lopez
- Department of Psychiatry and Behavioral Sciences, Addiction Sciences Division, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Christina M Glaser
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - John J Woodward
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, 29425, USA; Department of Psychiatry and Behavioral Sciences, Addiction Sciences Division, Medical University of South Carolina, Charleston, SC, 29425, USA.
| |
Collapse
|
9
|
Sun X, Lv Y, Lin J. The mechanism of sudden unexpected death in epilepsy: A mini review. Front Neurol 2023; 14:1137182. [PMID: 36815002 PMCID: PMC9939452 DOI: 10.3389/fneur.2023.1137182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 01/20/2023] [Indexed: 02/08/2023] Open
Abstract
Sudden unexpected death in epilepsy (SUDEP) is defined as a sudden, unexpected, non-traumatic, non-drowning death in a person with epilepsy. SUDEP is generally considered to result from seizure-related cardiac dysfunction, respiratory depression, autonomic nervous dysfunction, or brain dysfunction. Frequency of generalized tonic clonic seizures (GTCS), prone posture, and refractory epilepsy are considered risk factors. SUDEP has also been associated with inherited cardiac ion channel disease and severe obstructive sleep apnea. Most previous studies of SUDEP mechanisms have focused on cardiac and respiratory dysfunction and imbalance of the neural regulatory system. Cardiac-related mechanisms include reduction in heart rate variability and prolongation of QT interval, which can lead to arrhythmias. Laryngospasm and amygdala activation may cause obstructive and central apnea, respectively. Neural mechanisms include impairment of 5-HT and adenosine neuromodulation. The research to date regarding molecular mechanisms of SUDEP is relatively limited. Most studies have focused on p-glycoprotein, catecholamines, potassium channels, and the renin-angiotensin system, all of which affect cardiac and respiratory function.
Collapse
Affiliation(s)
- Xinyi Sun
- School of Basic Medical Sciences, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Yehui Lv
- School of Basic Medical Sciences, Shanghai University of Medicine and Health Sciences, Shanghai, China,Institute of Wound Prevention and Treatment, Shanghai University of Medicine and Health Sciences, Shanghai, China,*Correspondence: Yehui Lv ✉
| | - Jian Lin
- Institute of Wound Prevention and Treatment, Shanghai University of Medicine and Health Sciences, Shanghai, China,Chongming Hospital Affiliated to Shanghai University of Medicine and Health Sciences, Shanghai, China
| |
Collapse
|
10
|
Bauer J, Devinsky O, Rothermel M, Koch H. Autonomic dysfunction in epilepsy mouse models with implications for SUDEP research. Front Neurol 2023; 13:1040648. [PMID: 36686527 PMCID: PMC9853197 DOI: 10.3389/fneur.2022.1040648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 12/12/2022] [Indexed: 01/09/2023] Open
Abstract
Epilepsy has a high prevalence and can severely impair quality of life and increase the risk of premature death. Sudden unexpected death in epilepsy (SUDEP) is the leading cause of death in drug-resistant epilepsy and most often results from respiratory and cardiac impairments due to brainstem dysfunction. Epileptic activity can spread widely, influencing neuronal activity in regions outside the epileptic network. The brainstem controls cardiorespiratory activity and arousal and reciprocally connects to cortical, diencephalic, and spinal cord areas. Epileptic activity can propagate trans-synaptically or via spreading depression (SD) to alter brainstem functions and cause cardiorespiratory dysfunction. The mechanisms by which seizures propagate to or otherwise impair brainstem function and trigger the cascading effects that cause SUDEP are poorly understood. We review insights from mouse models combined with new techniques to understand the pathophysiology of epilepsy and SUDEP. These techniques include in vivo, ex vivo, invasive and non-invasive methods in anesthetized and awake mice. Optogenetics combined with electrophysiological and optical manipulation and recording methods offer unique opportunities to study neuronal mechanisms under normal conditions, during and after non-fatal seizures, and in SUDEP. These combined approaches can advance our understanding of brainstem pathophysiology associated with seizures and SUDEP and may suggest strategies to prevent SUDEP.
Collapse
Affiliation(s)
- Jennifer Bauer
- Department of Epileptology and Neurology, RWTH Aachen University, Aachen, Germany,Institute for Physiology and Cell Biology, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Orrin Devinsky
- Departments of Neurology, Neurosurgery and Psychiatry, NYU Langone School of Medicine, New York, NY, United States
| | - Markus Rothermel
- Institute for Physiology and Cell Biology, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Henner Koch
- Department of Epileptology and Neurology, RWTH Aachen University, Aachen, Germany,*Correspondence: Henner Koch ✉
| |
Collapse
|
11
|
Stankiewicz AM, Jaszczyk A, Goscik J, Juszczak GR. Stress and the brain transcriptome: Identifying commonalities and clusters in standardized data from published experiments. Prog Neuropsychopharmacol Biol Psychiatry 2022; 119:110558. [PMID: 35405299 DOI: 10.1016/j.pnpbp.2022.110558] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 03/17/2022] [Accepted: 04/04/2022] [Indexed: 12/28/2022]
Abstract
Interpretation of transcriptomic experiments is hindered by many problems including false positives/negatives inherent to big-data methods and changes in gene nomenclature. To find the most consistent effect of stress on brain transcriptome, we retrieved data from 79 studies applying animal models and 3 human studies investigating post-traumatic stress disorder (PTSD). The analyzed data were obtained either with microarrays or RNA sequencing applied to samples collected from more than 1887 laboratory animals and from 121 human subjects. Based on the initial database containing a quarter million differential expression effect sizes representing transcripts in three species, we identified the most frequently reported genes in 223 stress-control comparisons. Additionally, the analysis considers sex, individual vulnerability and contribution of glucocorticoids. We also found an overlap between gene expression in PTSD patients and animals which indicates relevance of laboratory models for human stress response. Our analysis points to genes that, as far as we know, were not specifically tested for their role in stress response (Pllp, Arrdc2, Midn, Mfsd2a, Ccn1, Htra1, Csrnp1, Tenm4, Tnfrsf25, Sema3b, Fmo2, Adamts4, Gjb1, Errfi1, Fgf18, Galnt6, Slc25a42, Ifi30, Slc4a1, Cemip, Klf10, Tom1, Dcdc2c, Fancd2, Luzp2, Trpm1, Abcc12, Osbpl1a, Ptp4a2). Provided transcriptomic resource will be useful for guiding the new research.
Collapse
Affiliation(s)
- Adrian M Stankiewicz
- Department of Molecular Biology, Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, Jastrzebiec, Poland
| | - Aneta Jaszczyk
- Department of Animal Behavior and Welfare, Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, Jastrzebiec, Poland
| | - Joanna Goscik
- Faculty of Computer Science, Bialystok University of Technology, Bialystok, Poland
| | - Grzegorz R Juszczak
- Department of Animal Behavior and Welfare, Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, Jastrzebiec, Poland.
| |
Collapse
|
12
|
Aussel A, Ranta R, Aron O, Colnat-Coulbois S, Maillard L, Buhry L. Cell to network computational model of the epileptic human hippocampus suggests specific roles of network and channel dysfunctions in the ictal and interictal oscillations. J Comput Neurosci 2022; 50:519-535. [PMID: 35971033 DOI: 10.1007/s10827-022-00829-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 07/03/2022] [Accepted: 07/12/2022] [Indexed: 10/15/2022]
Abstract
The mechanisms underlying the generation of hippocampal epileptic seizures and interictal events and their interactions with the sleep-wake cycle are not yet fully understood. Indeed, medial temporal lobe epilepsy is associated with hippocampal abnormalities both at the neuronal (channelopathies, impaired potassium and chloride dynamics) and network level (neuronal and axonal loss, mossy fiber sprouting), with more frequent seizures during wakefulness compared with slow-wave sleep. In this article, starting from our previous computational modeling work of the hippocampal formation based on realistic topology and synaptic connectivity, we study the role of micro- and mesoscale pathological conditions of the epileptic hippocampus in the generation and maintenance of seizure-like theta and interictal oscillations. We show, through the simulations of hippocampal activity during slow-wave sleep and wakefulness that: (i) both mossy fiber sprouting and sclerosis account for seizure-like theta activity, (ii) but they have antagonist effects (seizure-like activity occurrence increases with sprouting but decreases with sclerosis), (iii) though impaired potassium and chloride dynamics have little influence on the generation of seizure-like activity, they do play a role on the generation of interictal patterns, and (iv) seizure-like activity and fast ripples are more likely to occur during wakefulness and interictal spikes during sleep.
Collapse
Affiliation(s)
- Amélie Aussel
- Laboratoire Lorrain de Recherche en Informatique et ses applications (LORIA UMR 7503), University of Lorraine, 54506, Nancy, France. .,Centre de Recherche en Automatique de Nancy, University of Lorraine, CRAN-CNRS UMR 7039, Nancy, France.
| | - Radu Ranta
- Centre de Recherche en Automatique de Nancy, University of Lorraine, CRAN-CNRS UMR 7039, Nancy, France
| | - Olivier Aron
- Centre de Recherche en Automatique de Nancy, University of Lorraine, CRAN-CNRS UMR 7039, Nancy, France.,Department of Neurology, CHU de Nancy, Nancy, France
| | - Sophie Colnat-Coulbois
- Centre de Recherche en Automatique de Nancy, University of Lorraine, CRAN-CNRS UMR 7039, Nancy, France.,Department of Neurology, CHU de Nancy, Nancy, France
| | - Louise Maillard
- Centre de Recherche en Automatique de Nancy, University of Lorraine, CRAN-CNRS UMR 7039, Nancy, France.,Department of Neurology, CHU de Nancy, Nancy, France
| | - Laure Buhry
- Laboratoire Lorrain de Recherche en Informatique et ses applications (LORIA UMR 7503), University of Lorraine, 54506, Nancy, France
| |
Collapse
|
13
|
Molecular Mechanisms of Epilepsy: The Role of the Chloride Transporter KCC2. J Mol Neurosci 2022; 72:1500-1515. [PMID: 35819636 DOI: 10.1007/s12031-022-02041-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 06/07/2022] [Indexed: 10/17/2022]
Abstract
Epilepsy is a neurological disease characterized by abnormal or synchronous brain activity causing seizures, which may produce convulsions, minor physical signs, or a combination of symptoms. These disorders affect approximately 65 million people worldwide, from all ages and genders. Seizures apart, epileptic patients present a high risk to develop neuropsychological comorbidities such as cognitive deficits, emotional disturbance, and psychiatric disorders, which severely impair quality of life. Currently, the treatment for epilepsy includes the administration of drugs or surgery, but about 30% of the patients treated with antiepileptic drugs develop time-dependent pharmacoresistence. Therefore, further investigation about epilepsy and its causes is needed to find new pharmacological targets and innovative therapeutic strategies. Pharmacoresistance is associated to changes in neuronal plasticity and alterations of GABAA receptor-mediated neurotransmission. The downregulation of GABA inhibitory activity may arise from a positive shift in GABAA receptor reversal potential, due to an alteration in chloride homeostasis. In this paper, we review the contribution of K+-Cl--cotransporter (KCC2) to the alterations in the Cl- gradient observed in epileptic condition, and how these alterations are coupled to the increase in the excitability.
Collapse
|
14
|
da Silva Fiorin F, de Araújo E Silva M, Rodrigues AC. Electrical stimulation in animal models of epilepsy: A review on cellular and electrophysiological aspects. Life Sci 2021; 285:119972. [PMID: 34560081 DOI: 10.1016/j.lfs.2021.119972] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 09/02/2021] [Accepted: 09/17/2021] [Indexed: 01/24/2023]
Abstract
Epilepsy is a debilitating condition, primarily refractory individuals, leading to the search for new efficient therapies. Electrical stimulation is an important method used for years to treat several neurological disorders. Currently, electrical stimulation is used to reduce epileptic crisis in patients and shows promising results. Even though the use of electricity to treat neurological disorders has grown worldwide, there are still many caveats that must be clarified, such as action mechanisms and more efficient stimulation treatment parameters. Thus, this review aimed to explore the comprehension of the main stimulation methods in animal models of epilepsy using rodents to develop new experimental protocols and therapeutic approaches.
Collapse
Affiliation(s)
- Fernando da Silva Fiorin
- Graduate Program in Neuroengineering, Edmond and Lily Safra International Institute of Neuroscience, Santos Dumont Institute, Brazil.
| | - Mariane de Araújo E Silva
- Graduate Program in Neuroengineering, Edmond and Lily Safra International Institute of Neuroscience, Santos Dumont Institute, Brazil
| | - Abner Cardoso Rodrigues
- Graduate Program in Neuroengineering, Edmond and Lily Safra International Institute of Neuroscience, Santos Dumont Institute, Brazil
| |
Collapse
|