1
|
McKenna ZJ, Atkins WC, Wallace T, Jarrard CP, Crandall CG, Foster J. Gastrointestinal permeability and kidney injury risk during hyperthermia in young and older adults. Exp Physiol 2025; 110:79-92. [PMID: 39417775 DOI: 10.1113/ep092204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 09/30/2024] [Indexed: 10/19/2024]
Abstract
We tested whether older adults, compared with young adults, exhibit greater gastrointestinal permeability and kidney injury during heat stress. Nine young (32 ± 3 years) and nine older (72 ± 3 years) participants were heated using a model of controlled hyperthermia (increasing core temperature by 2°C via a water-perfused suit). Gastrointestinal permeability was assessed using a multi-sugar drink test containing lactulose, sucrose and rhamnose. Blood and urine samples were assayed for markers of intestinal barrier injury [plasma intestinal fatty acid binding protein (I-FABP), plasma lipopolysaccharide binding protein (LBP) and plasma soluble cluster of differentiation 14 (sCD14)], inflammation (serum cytokines), kidney function (plasma creatinine and cystatin C) and kidney injury [urine arithmetic product of IGFBP7 and TIMP-2 (TIMP-2 × IGFBP7), neutrophil gelatinase-associated lipocalin and kidney injury molecule-1]. The lactulose-to-rhamnose ratio was increased in both young and older adults (group-wide: Δ0.11 ± 0.11), but the excretion of sucrose was increased only in older adults (Δ1.7 ± 1.5). Young and older adults showed similar increases in plasma LBP (group-wide: Δ0.65 ± 0.89 µg/mL), but no changes were observed for I-FABP or sCD14. Heat stress caused similar increases in plasma creatinine (group-wide: Δ0.08 ± 0.07 mg/dL), cystatin C (group-wide: Δ0.16 ± 0.18 mg/L) and urinary IGFBP7 × TIMP-2 [group-wide: Δ0.64 ± 0.95 (pg/min)2] in young and older adults. Thus, the level of heat stress used herein caused modest increases in gastrointestinal permeability, resulting in a mild inflammatory response in young and older adults. Furthermore, our data indicate that older adults might be more at risk for increases in gastroduodenal permeability, as evidenced by the larger increases in sucrose excretion in response to heat stress. Finally, our findings show that heat stress impairs kidney function and elevates markers of kidney injury; however, these responses are not modulated by age.
Collapse
Affiliation(s)
- Zachary J McKenna
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, Dallas, Texas, USA
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Whitley C Atkins
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, Dallas, Texas, USA
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Department of Health, Exercise and Sports Sciences, University of New Mexico, Albuquerque, New Mexico, USA
| | - Taysom Wallace
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, Dallas, Texas, USA
| | - Caitlin P Jarrard
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, Dallas, Texas, USA
- Applied Clinical Research Department, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Craig G Crandall
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, Dallas, Texas, USA
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Josh Foster
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, Dallas, Texas, USA
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Centre for Human and Applied Physiological Sciences, King's College London, London, UK
| |
Collapse
|
2
|
König J, Roca Rubio MF, Forsgård RA, Rode J, Axelsson J, Grompone G, Brummer RJ. The effects of a 6-week intervention with Limosilactobacillus reuteri ATCC PTA 6475 alone and in combination with L. reuteri DSM 17938 on gut barrier function, immune markers, and symptoms in patients with IBS-D-An exploratory RCT. PLoS One 2024; 19:e0312464. [PMID: 39485760 PMCID: PMC11530048 DOI: 10.1371/journal.pone.0312464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 10/05/2024] [Indexed: 11/03/2024] Open
Abstract
BACKGROUND An increased intestinal permeability is a common feature in patients with diarrhoea-predominant irritable bowel syndrome (IBS-D). Probiotics have shown to improve IBS symptoms and might also affect intestinal barrier function. AIM The aim of this study was to investigate the effects of a 6-week intervention with Limosilactobacillus reuteri ATCC PTA 6475 alone (single strain) or in combination with Limosilactobacillus reuteri DSM 17938 (dual strain) on gut barrier function, immune markers, and symptoms in IBS-D patients (ClinicalTrials.gov registration number: NCT03986476). METHODS 65 IBS-D patients were randomised into three groups (placebo, single strain, dual strain). Small and large intestinal permeability were assessed using a multi-sugar urinary recovery test. Blood, saliva, faecal samples, and several symptom scales were collected before, and after three and six weeks of intervention. RESULTS Small and large intestinal permeability as well as other markers of gut barrier function were not significantly affected by the probiotic interventions. Serum IL-6 levels showed a tendency to be reduced in the single strain group (descriptive p = 0.052). In addition, high-sensitivity C-reactive protein was significantly reduced in the dual strain group (p = 0.041). The participants in both treatment groups reported less gastrointestinal symptoms after three weeks, but this reached significance only in the dual strain group (total score: p = 0.032, pain subscore: p = 0.028). After six weeks, none of the assessed symptoms were significantly different from the placebo. CONCLUSION The probiotic compounds investigated in this study did not seem to affect IBS-D patients' gut barrier function, but showed potential anti-inflammatory and symptom-improving properties, which need to be confirmed in larger study cohorts.
Collapse
Affiliation(s)
- Julia König
- Nutrition-Gut-Brain Interactions Research Centre, Faculty of Health and Medicine, School of Medical Sciences, Örebro University, Örebro, Sweden
| | - María Fernanda Roca Rubio
- Nutrition-Gut-Brain Interactions Research Centre, Faculty of Health and Medicine, School of Medical Sciences, Örebro University, Örebro, Sweden
| | - Richard A Forsgård
- Nutrition-Gut-Brain Interactions Research Centre, Faculty of Health and Medicine, School of Medical Sciences, Örebro University, Örebro, Sweden
| | - Julia Rode
- Nutrition-Gut-Brain Interactions Research Centre, Faculty of Health and Medicine, School of Medical Sciences, Örebro University, Örebro, Sweden
| | | | | | - Robert J Brummer
- Nutrition-Gut-Brain Interactions Research Centre, Faculty of Health and Medicine, School of Medical Sciences, Örebro University, Örebro, Sweden
| |
Collapse
|
3
|
Liang M, Sun X, Guo M, Wu H, Zhao L, Zhang J, He J, Ma X, Yu Z, Yong Y, Gooneratne R, Ju X, Liu X. Baicalin methyl ester prevents the LPS - induced mice intestinal barrier damage in vivo and in vitro via P65/TNF-α/MLCK/ZO-1 signal pathway. Biomed Pharmacother 2024; 180:117417. [PMID: 39298909 DOI: 10.1016/j.biopha.2024.117417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 08/30/2024] [Accepted: 09/04/2024] [Indexed: 09/22/2024] Open
Abstract
The effect of baicalin methyl ester (BME) on the regulation of mice intestinal barrier in the inflammatory response was studied in vivo and in vitro. Thirty six C57/BL mice were randomly divided into six groups (n = 6): control group; LPS group (LPS 3.5 mg/kg given intraperitoneal [ip] on day 7 of the study only), PBS group, and three BME groups (low: 50 mg/kg; medium: 100 mg/kg; high: 200 mg/kg) orally dosed with BME for 7d and LPS ip on day 7. All mice were sacrificed on day 8, and jejunum tissue collected for histopathology (H&E and PAS staining), protein expression of pro-inflammatory factors (TNF-α, IL-6, IL-8, IFN-γ) by ELISA, and intestinal tight junction proteins (ZO-1, occludin, claudin-1 and claudin-4) by Western Blot. Compared with the control group, LPS significantly increased the serum cytokines DAO (p < 0.01) and DLA (p < 0.01), upregulated the expression of pro-inflammatory factors, MLCK proteins (p <0.05) and increased the MLCK/ZO-1ratio (p <0.001). LPS also decreased the expression of claudin-4 (p < 0.01) in the jejunum and induced an inflammatory response damaging the jejunal mucosal barrier. Pretreatment with BME (100-200 mg/kg) significantly decreased the cytokines DAO (p < 0.05) and DLA (p < 0.01) in the serum, pro-inflammatory factors in the jejunum, significantly down-regulated the expression of MLCK (p <0.05) and the ratio of MLCK/ZO-1(p <0.001) but upregulated the expressions of ZO-1(p < 0.01), occludin (p < 0.05), claudin-1(p < 0.05) and claudin-4 (p < 0.05), and thereby restored the intestinal tissue structure, suggestive of alleviation of LPS-induced intestinal inflammation by BME. In vitro, MODE-K cells (derived from mice intestinal epithelium) were exposed to BME at 0 (control group-No LPS), 10, 20 and 40 μM BME for 24 h prior to LPS addition at 50 μg/mL for 2 h. LPS significantly increased the expression of pro-inflammatory factors, MLCK (p < 0.01) and the ratio of MLCK/ZO-1(p <0.001), decreased the expressions of ZO-1 (p < 0.05), occludin (p < 0.01), claudin-1 (p < 0.01) and claudin-4 (p < 0.01) in MODE-K cells compared with the control group. Compared with the LPS group, BME (10 - 40 μM) significantly decreased the expression of pro-inflammatory factors, MLCK (p < 0.05) and the ratio of MLCK/ZO-1(p <0.01) but increased the expressions of ZO-1(p < 0.01), occludin (p < 0.05) and claudin-4(p < 0.01) indicating an up-regulation of the expression of tight junction proteins by BME. On addition of extrinsic TNF-α plus LPS, the TNF- α level increased (p < 0.001) in MODE-K cells and the protein expression of MLCK (p < 0.01) was markedly up-regulated. Molecular docking predicted BME interacted with P65 by forming hydrogen bonds. IP-WB further confirmed that BME was directly bound to P65 protein in MODE-K cells. In conclusion, BME was able to restore the intestinal barrier through the P65 / TNF-α / MLCK / ZO-1 signaling pathway.
Collapse
Affiliation(s)
- Mei Liang
- Department of Veterinary Medicine, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Xinyi Sun
- Department of Veterinary Medicine, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Mengru Guo
- Department of Veterinary Medicine, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Huining Wu
- Department of Veterinary Medicine, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Linlu Zhao
- Department of Veterinary Medicine, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Jin Zhang
- Department of Veterinary Medicine, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Jieyi He
- Department of Veterinary Medicine, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Xingbin Ma
- Department of Veterinary Medicine, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Zhichao Yu
- Department of Veterinary Medicine, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Yanhong Yong
- Department of Veterinary Medicine, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Ravi Gooneratne
- Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln 7647, New Zealand
| | - Xianghong Ju
- Department of Veterinary Medicine, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Xiaoxi Liu
- Department of Veterinary Medicine, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, PR China.
| |
Collapse
|
4
|
Foster J, Mckenna ZJ, Atkins WC, Jarrard CP, Crandall CG. Aging Increases Enterocyte Damage during a 3-Hour Exposure to Very Hot and Dry Heat: A Preliminary Study. BIOLOGY 2023; 12:1088. [PMID: 37626974 PMCID: PMC10451985 DOI: 10.3390/biology12081088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/01/2023] [Accepted: 08/02/2023] [Indexed: 08/27/2023]
Abstract
Profound heat stress can damage the gastrointestinal barrier, leading to microbial translocation from the gut and subsequent systemic inflammation. Despite the greater vulnerability of older people to heat wave-related morbidity and mortality, it is unknown if age modulates gastrointestinal barrier damage and inflammation during heat stress. Therefore, the aim of this study was to determine if aging impacted enterocyte damage and systemic inflammatory responses to a 3-h exposure to very hot and dry (47 °C, 15% humidity) heat with accompanying activities of daily living (intermittent activity at 3 METS). Data from 16 young (age 21 to 39 years) and 16 older (age 65 to 76 years) humans were used to address this aim. In each group, log-transformed plasma concentrations of intestinal fatty acid binding protein (I-FABPlog), interleukin-8 (IL-8log), and tissue factor (TFlog) were assessed as indices of enterocyte damage, systemic inflammation, and blood coagulation, respectively, before and after the 3-h heat exposure. In the younger cohort, I-FABPlog concentration did not increase from pre to post heat exposure (p = 0.264, d = 0.20), although it was elevated in the older group (p = 0.014, d = 0.67). The magnitude of the increase in I-FABPlog was greater in the older participants (p = 0.084, d = 0.55). Across all participants, there was no correlation between the change in core temperature and the change in IFABPlog. There was no change in IL-8log in the younger group (p = 0.193, d = 0.23) following heat exposure, but we observed a decrease in IL-8log in the older group (p = 0.047, d = 0.48). TFlog decreased in the younger group (p = 0.071, d = 0.41), but did not change in the older group (p = 0.193, d = 0.15). Our data indicate that I-FABPlog concentration (an index of enterocyte damage) is increased in older humans during a 3-h extreme heat exposure. Future studies should determine whether this marker reflects increased gastrointestinal barrier permeability in older individuals during heat exposure.
Collapse
Affiliation(s)
- Josh Foster
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, The University of Texas Southwestern Medical Center, Dallas, TX 75231, USA; (Z.J.M.); (W.C.A.); (C.P.J.); (C.G.C.)
- Centre for Human and Applied Physiological Sciences, Faculty of Life Sciences and Medicine, King’s College London, London SE1 1UL, UK
| | - Zachary J. Mckenna
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, The University of Texas Southwestern Medical Center, Dallas, TX 75231, USA; (Z.J.M.); (W.C.A.); (C.P.J.); (C.G.C.)
| | - Whitley C. Atkins
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, The University of Texas Southwestern Medical Center, Dallas, TX 75231, USA; (Z.J.M.); (W.C.A.); (C.P.J.); (C.G.C.)
| | - Caitlin P. Jarrard
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, The University of Texas Southwestern Medical Center, Dallas, TX 75231, USA; (Z.J.M.); (W.C.A.); (C.P.J.); (C.G.C.)
| | - Craig G. Crandall
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, The University of Texas Southwestern Medical Center, Dallas, TX 75231, USA; (Z.J.M.); (W.C.A.); (C.P.J.); (C.G.C.)
| |
Collapse
|
5
|
Cheibub AM, Muniz-Santos R, Murgu M, Avezum J, Abidão-Neto B, Cameron LC. A burst of fenoterol excretion during the recovery of a weight loss protocol. J Pharm Biomed Anal 2023; 225:115209. [PMID: 36592541 DOI: 10.1016/j.jpba.2022.115209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 12/16/2022] [Accepted: 12/17/2022] [Indexed: 12/24/2022]
Abstract
Fenoterol is a sympathomimetic β2 receptor agonist primarily used as a bronchodilator. Due to its sympathomimetic actions, the World Anti-Doping Agency (WADA) has banned it. Multiple acute weight loss protocols (WLP) are used by Olympic athletes for sports that segregate athletes by weight; these generally involve caloric and water deprivation combined with heat exposure. Athletes use WLP before weigh-in, then transition to different body acute weight regain protocols (WRP) before competitions. Here, we studied the pharmacokinetics of fenoterol under WLP conditions: energetic dietary restriction, decreased water intake, and exposure to a dry sauna (80 ± 2 °C), followed by a WRP. Five elite-level female judo athletes participated in the study. Four received fenoterol (200 μg; n = 2 or 400 μg; n = 2), while one was a control receiving placebo under identical conditions. We measured excretion of the fenoterol parent molecule and presented qualitative data of its sulfated metabolite using QqQ tandem quadrupole mass spectrometry for 118 h. The fenoterol parent appeared earlier in urine than did its conjugated metabolite; excretion profiles were similar among all subjects. The centers of mass for fenoterol parent curves were (time, fenoterol): athlete A (10.9, 7.3); athlete B (9.2, 27.3); athlete C (8.5, 6.9); athlete D (9.7, 5.0). After initiating WRP, we observed a burst in urinary fenoterol excretion once in complete decay. This trend was observed for all four athletes who received fenoterol. Our results suggest that during hypohydration, some of the unmetabolized fenoterol accumulates in tissues, then is released during rehydration. These findings can be important for detecting fenoterol use in athletes.
Collapse
Affiliation(s)
- Ana Maria Cheibub
- Laboratory of Protein Biochemistry,The Federal University of State of Rio de Janeiro (UNIRIO), Brazil.
| | - Renan Muniz-Santos
- Laboratory of Protein Biochemistry,The Federal University of State of Rio de Janeiro (UNIRIO), Brazil.
| | | | | | | | - L C Cameron
- Laboratory of Protein Biochemistry,The Federal University of State of Rio de Janeiro (UNIRIO), Brazil.
| |
Collapse
|
6
|
Davis KM, Rosinger AY, Murdock KW. Ex vivo LPS-stimulated cytokine production is associated with hydration status in community-dwelling middle-to-older-aged adults. Eur J Nutr 2023; 62:1681-1690. [PMID: 36790579 DOI: 10.1007/s00394-023-03105-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 01/31/2023] [Indexed: 02/16/2023]
Abstract
PURPOSE Suboptimal hydration has been linked to a variety of adverse health outcomes. Few studies have examined the impact of hydration status on immune function, a plausible physiological mechanism underlying these associations. Therefore, we tested how variation in hydration status was associated with circulating pro-inflammatory cytokine levels and ex vivo lipopolysaccharide (LPS)-stimulated pro-inflammatory cytokine production. METHODS Blood samples were obtained from a community sample of healthy middle-to-older-aged adults (N = 72). These samples were used to assess serum osmolality, a biomarker of hydration status, and markers of immune function including circulating pro-inflammatory cytokines and stimulated pro-inflammatory cytokine production after 4 and 24 h of incubation with LPS. Multiple linear regressions were used to test the association between serum osmolality (as a continuous variable) and markers of immune function at baseline and after 4 and 24 h adjusting for age, sex, and BMI. These models were re-estimated with serum osmolality dichotomized at the cut-off for dehydration (> 300 mOsm/kg). RESULTS While not significantly associated with circulating cytokines (B = - 0.03, p = 0.09), serum osmolality was negatively associated with both 4 h (B = - 0.05, p = 0.048) and 24 h (B = - 0.05, p = 0.03) stimulated cytokine production when controlling for age, sex, and BMI. Similarly, dehydration was associated with significantly lower cytokine production at both 4 h (B = - 0.54, p = 0.02) and 24 h (B = - 0.51, p = 0.02) compared to adequate hydration. CONCLUSION These findings suggest that dehydration may be associated with suppressed immune function in generally healthy middle-to-older aged community-dwelling adults. Further longitudinal research is needed to more clearly define the role of hydration in immune function.
Collapse
Affiliation(s)
- Kristin M Davis
- Department of Biobehavioral Health, Pennsylvania State University, 219 Biobehavioral Health Building, University Park, PA, 16802, USA
| | - Asher Y Rosinger
- Department of Biobehavioral Health, Pennsylvania State University, 219 Biobehavioral Health Building, University Park, PA, 16802, USA.,Department of Anthropology, Pennsylvania State University, University Park, PA, USA
| | - Kyle W Murdock
- Department of Biobehavioral Health, Pennsylvania State University, 219 Biobehavioral Health Building, University Park, PA, 16802, USA.
| |
Collapse
|
7
|
Zhang J, Ren Z, Zhang Q, Zhang R, Zhang C, Liu J. Lower hydration status increased diabetic retinopathy among middle-aged adults and older adults: Results from NHANES 2005-2008. Front Public Health 2022; 10:1023747. [PMID: 36388275 PMCID: PMC9643860 DOI: 10.3389/fpubh.2022.1023747] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 10/10/2022] [Indexed: 01/28/2023] Open
Abstract
Background Diabetic retinopathy (DR) is a common complication of diabetic patients. Retinal physiological function is affected by hydration status. We aimed to explore the association between hydration status and DR. Methods National Health and Nutrition Examination Survey (NHANES) 2005-2008 was used to perform this cross-sectional study. Serum osmolality was used to assess hydration status for all participants and calculated osmolality was evaluated for only older people. DR and its severity were evaluated and graded into mild non-proliferative retinopathy, moderate/severe non-proliferative retinopathy, and proliferative diabetic retinopathy by the Early Treatment for Diabetic Retinopathy Study protocol and NHANES Digital Grading Protocol. Fully adjusted multivariable logistic regression models were used by SAS OnDemand for Academics. Results Among the 5,220 United States adults aged 40 or older, compared with the lowest osmolality group, participants with the highest quartile of serum osmolarity had higher odds of DR (OR: 1.371, 95% CI: 1.001-1.876). For participants with DR, the adjusted OR (95 % CI) of moderate/severe non-proliferative retinopathy and proliferative diabetic retinopathy in the higher serum osmolarity group was 2.119 (1.200-3.741) and 7.001 (3.175-15.438), respectively. Furthermore, in older people, higher calculated osmolarity was significantly associated with increased occurrence of DR (OR: 2.039, 95% CI: 1.305-3.186). Conclusions Adults with lower hydration status had higher risk of DR, moderate/severe non-proliferative retinopathy, and proliferative diabetic retinopathy. Dehydration in older adults, classified by calculated osmolality, is associated with a higher rate of DR. There was consistent trend in the results between the two methods.
Collapse
Affiliation(s)
- Jiayu Zhang
- Department of Nutrition, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Ziyang Ren
- Institute of Reproductive and Child Health/National Health Commission Key Laboratory of Reproductive Health, Peking University, Beijing, China,Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
| | - Qiang Zhang
- Department of Nutrition, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Rui Zhang
- Department of Nutrition, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Chunmei Zhang
- Department of Nutrition, Beijing Luhe Hospital, Capital Medical University, Beijing, China,*Correspondence: Chunmei Zhang
| | - Jufen Liu
- Institute of Reproductive and Child Health/National Health Commission Key Laboratory of Reproductive Health, Peking University, Beijing, China,Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China,Jufen Liu
| |
Collapse
|
8
|
Higashida H, Furuhara K, Lopatina O, Gerasimenko M, Hori O, Hattori T, Hayashi Y, Cherepanov SM, Shabalova AA, Salmina AB, Minami K, Yuhi T, Tsuji C, Fu P, Liu Z, Luo S, Zhang A, Yokoyama S, Shuto S, Watanabe M, Fujiwara K, Munesue SI, Harashima A, Yamamoto Y. Oxytocin Dynamics in the Body and Brain Regulated by the Receptor for Advanced Glycation End-Products, CD38, CD157, and Nicotinamide Riboside. Front Neurosci 2022; 16:858070. [PMID: 35873827 PMCID: PMC9301327 DOI: 10.3389/fnins.2022.858070] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 05/31/2022] [Indexed: 12/21/2022] Open
Abstract
Investigating the neurocircuit and synaptic sites of action of oxytocin (OT) in the brain is critical to the role of OT in social memory and behavior. To the same degree, it is important to understand how OT is transported to the brain from the peripheral circulation. To date, of these, many studies provide evidence that CD38, CD157, and receptor for advanced glycation end-products (RAGE) act as regulators of OT concentrations in the brain and blood. It has been shown that RAGE facilitates the uptake of OT in mother’s milk from the digestive tract to the cell surface of intestinal epithelial cells to the body fluid and subsequently into circulation in male mice. RAGE has been shown to recruit circulatory OT into the brain from blood at the endothelial cell surface of neurovascular units. Therefore, it can be said that extracellular OT concentrations in the brain (hypothalamus) could be determined by the transport of OT by RAGE from the circulation and release of OT from oxytocinergic neurons by CD38 and CD157 in mice. In addition, it has recently been found that gavage application of a precursor of nicotinamide adenine dinucleotide, nicotinamide riboside, for 12 days can increase brain OT in mice. Here, we review the evaluation of the new concept that RAGE is involved in the regulation of OT dynamics at the interface between the brain, blood, and intestine in the living body, mainly by summarizing our recent results due to the limited number of publications on related topics. And we also review other possible routes of OT recruitment to the brain.
Collapse
Affiliation(s)
- Haruhiro Higashida
- Department of Basic Research on Social Recognition and Memory, Research Center for Child Mental Development, Kanazawa University, Kanazawa, Japan
- Laboratory of Social Brain Study, Research Institute of Molecular Medicine and Pathobiochemistry, Krasnoyarsk State Medical University named after Professor V.F. Voino-Yasenetsky, Krasnoyarsk, Russia
- *Correspondence: Haruhiro Higashida,
| | - Kazumi Furuhara
- Department of Basic Research on Social Recognition and Memory, Research Center for Child Mental Development, Kanazawa University, Kanazawa, Japan
| | - Olga Lopatina
- Department of Basic Research on Social Recognition and Memory, Research Center for Child Mental Development, Kanazawa University, Kanazawa, Japan
- Laboratory of Social Brain Study, Research Institute of Molecular Medicine and Pathobiochemistry, Krasnoyarsk State Medical University named after Professor V.F. Voino-Yasenetsky, Krasnoyarsk, Russia
| | - Maria Gerasimenko
- Department of Basic Research on Social Recognition and Memory, Research Center for Child Mental Development, Kanazawa University, Kanazawa, Japan
| | - Osamu Hori
- Department of Neuroanatomy, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | - Tsuyoshi Hattori
- Department of Neuroanatomy, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | - Yasuhiko Hayashi
- Department of Neurosurgery, Kanazawa Medical University, Kanazawa, Japan
| | - Stanislav M. Cherepanov
- Department of Basic Research on Social Recognition and Memory, Research Center for Child Mental Development, Kanazawa University, Kanazawa, Japan
| | - Anna A. Shabalova
- Department of Basic Research on Social Recognition and Memory, Research Center for Child Mental Development, Kanazawa University, Kanazawa, Japan
| | - Alla B. Salmina
- Department of Basic Research on Social Recognition and Memory, Research Center for Child Mental Development, Kanazawa University, Kanazawa, Japan
- Laboratory of Social Brain Study, Research Institute of Molecular Medicine and Pathobiochemistry, Krasnoyarsk State Medical University named after Professor V.F. Voino-Yasenetsky, Krasnoyarsk, Russia
| | - Kana Minami
- Department of Basic Research on Social Recognition and Memory, Research Center for Child Mental Development, Kanazawa University, Kanazawa, Japan
| | - Teruko Yuhi
- Department of Basic Research on Social Recognition and Memory, Research Center for Child Mental Development, Kanazawa University, Kanazawa, Japan
| | - Chiharu Tsuji
- Department of Basic Research on Social Recognition and Memory, Research Center for Child Mental Development, Kanazawa University, Kanazawa, Japan
| | - PinYue Fu
- Department of Basic Research on Social Recognition and Memory, Research Center for Child Mental Development, Kanazawa University, Kanazawa, Japan
| | - Zhongyu Liu
- Department of Basic Research on Social Recognition and Memory, Research Center for Child Mental Development, Kanazawa University, Kanazawa, Japan
| | - Shuxin Luo
- Department of Basic Research on Social Recognition and Memory, Research Center for Child Mental Development, Kanazawa University, Kanazawa, Japan
| | - Anpei Zhang
- Department of Basic Research on Social Recognition and Memory, Research Center for Child Mental Development, Kanazawa University, Kanazawa, Japan
| | - Shigeru Yokoyama
- Department of Basic Research on Social Recognition and Memory, Research Center for Child Mental Development, Kanazawa University, Kanazawa, Japan
| | - Satoshi Shuto
- Faculty of Pharmaceutical Sciences, Center for Research and Education on Drug Discovery, Hokkaido University, Sapporo, Japan
| | - Mizuki Watanabe
- Faculty of Pharmaceutical Sciences, Center for Research and Education on Drug Discovery, Hokkaido University, Sapporo, Japan
| | - Koichi Fujiwara
- Faculty of Pharmaceutical Sciences, Center for Research and Education on Drug Discovery, Hokkaido University, Sapporo, Japan
| | - Sei-ichi Munesue
- Department of Biochemistry and Molecular Vascular Biology, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | - Ai Harashima
- Department of Biochemistry and Molecular Vascular Biology, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | - Yasuhiko Yamamoto
- Department of Biochemistry and Molecular Vascular Biology, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| |
Collapse
|
9
|
Karolkiewicz J, Nieman DC, Cisoń T, Szurkowska J, Gałęcka M, Sitkowski D, Szygula Z. No effects of a 4-week post-exercise sauna bathing on targeted gut microbiota and intestinal barrier function, and hsCRP in healthy men: a pilot randomized controlled trial. BMC Sports Sci Med Rehabil 2022; 14:107. [PMID: 35710395 PMCID: PMC9202095 DOI: 10.1186/s13102-022-00497-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 05/31/2022] [Indexed: 12/02/2022]
Abstract
Background Body temperature fluctuations induced by acute exercise bouts may influence the intestinal barrier with related effects on epithelial permeability, immune responses, and release of metabolites produced by the gut microbiota. This study evaluated the effects of post-exercise sauna bathing in young men undergoing endurance training on gut bacteria inflammation and intestinal barrier function. Methods Fifteen (15) untrained males aged 22 ± 1.5 years were randomly assigned to exercise training (ET) with or without post-exercise sauna treatments (S). Participants in the group ET + S (n = 8) exercised 60 min, 3 times per week, on a bicycle ergometer followed by a 30-min dry Finish sauna treatment. The control group (ET, n = 7) engaged in the same exercise training program without the sauna treatments. Blood and stool samples were collected before and after the 4-week training program. Blood samples were analysed for the concentration of high-sensitivity C-reactive protein (hsCRP) and complete blood counts. Stool samples were analysed for pH, quantitative and qualitative measures of targeted bacteria, zonulin, and secretory immunoglobulin A. Results Interaction effects revealed no differences in the pattern of change over time between groups for the abundance of selected gut microbiome bacteria and stool pH, zonulin, sIgA, and hsCRP. Pre- and post-study fecal concentrations of Bifidobacterium spp., Faecalibacterium prausnitzii, and Akkermansia muciniphila were below reference values for these bacteria in both groups. Conclusions The combination of 4-weeks exercise followed by passive heat exposure did not have a measurable influence on targeted gut microbiota, intestinal barrier function, and hsCRP levels in young males. Trial registration The study was retrospectively registered in the clinical trials registry (Clinicaltrials.gov) under the trial registration number: NCT05277597. Release Date: March 11, 2022.
Collapse
Affiliation(s)
- Joanna Karolkiewicz
- Department of Food and Nutrition, Poznan University of Physical Education, Poznań, Poland.
| | - David C Nieman
- Department of Biology, Appalachian State University, North Carolina Research Campus, Kannapolis, NC, USA
| | - Tomasz Cisoń
- Department of Physiotherapy, Institute of Physical Education, State University of Applied Sciences in Nowy Sącz, Nowy Sącz, Poland
| | - Joanna Szurkowska
- Department of Food and Nutrition, Poznan University of Physical Education, Poznań, Poland
| | | | - Dariusz Sitkowski
- Department of Physiology, Institute of Sport - National Research Institute PL, Warsaw, Poland
| | - Zbigniew Szygula
- Department of Sports Medicine and Human Nutrition, University of Physical Education, Kraków, Poland
| |
Collapse
|
10
|
Garcia CK, Renteria LI, Leite-Santos G, Leon LR, Laitano O. Exertional heat stroke: pathophysiology and risk factors. BMJ MEDICINE 2022; 1:e000239. [PMID: 36936589 PMCID: PMC9978764 DOI: 10.1136/bmjmed-2022-000239] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 09/06/2022] [Indexed: 12/31/2022]
Abstract
Exertional heat stroke, the third leading cause of mortality in athletes during physical activity, is the most severe manifestation of exertional heat illnesses. Exertional heat stroke is characterised by central nervous system dysfunction in people with hyperthermia during physical activity and can be influenced by environmental factors such as heatwaves, which extend the incidence of exertional heat stroke beyond athletics only. Epidemiological data indicate mortality rates of about 27%, and survivors display long term negative health consequences ranging from neurological to cardiovascular dysfunction. The pathophysiology of exertional heat stroke involves thermoregulatory and cardiovascular overload, resulting in severe hyperthermia and subsequent multiorgan injury due to a systemic inflammatory response syndrome and coagulopathy. Research about risk factors for exertional heat stroke remains limited, but dehydration, sex differences, ageing, body composition, and previous illness are thought to increase risk. Immediate cooling remains the most effective treatment strategy. In this review, we provide an overview of the current literature emphasising the pathophysiology and risk factors of exertional heat stroke, highlighting gaps in knowledge with the objective to stimulate future research.
Collapse
Affiliation(s)
- Christian K Garcia
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, USA
| | - Liliana I Renteria
- Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, FL, USA
| | - Gabriel Leite-Santos
- Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, FL, USA
| | - Lisa R Leon
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, USA
| | - Orlando Laitano
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, USA
| |
Collapse
|
11
|
Sakamoto T, Narita H, Suzuki K, Obinata H, Ogawa K, Suga R, Takahashi H, Nakazawa M, Yamada M, Ogawa S, Yokota H, Yokobori S. Wearing a face mask during controlled-intensity exercise is not a risk factor for exertional heatstroke: A pilot study. Acute Med Surg 2021; 8:e712. [PMID: 34868603 PMCID: PMC8622324 DOI: 10.1002/ams2.712] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 10/31/2021] [Accepted: 11/04/2021] [Indexed: 11/06/2022] Open
Abstract
Aim This study aimed to measure the influence of wearing face masks on individuals' physical status in a hot and humid environment. Methods Each participant experienced different physical situations: (i) not wearing a mask (control), (ii) wearing a surgical mask, (iii) wearing a sport mask. An ingestible capsule thermometer was used to measure internal core body temperature during different exercises (standing, walking, and running, each for 20 min) in an artificial weather room with the internal wet-bulb globe temperature set at 28°C. The change in the participants' physical status and urinary liver fatty acid-binding protein (L-FABP) were measured. Results Six healthy male volunteers were enrolled in the study. In each participant, significant changes were observed in the heart rate and internal core temperatures after increased exercise intensity; however, no significant differences were observed between these parameters and urinary L-FABP among the three intervention groups. Conclusion Mask wearing is not a risk factor for heatstroke during increased exercise intensity.
Collapse
Affiliation(s)
- Taigo Sakamoto
- Department of Emergency and Critical Care Medicine Nippon Medical School Tokyo Japan
| | - Hiroyuki Narita
- Graduate School of Medical and Health Science Nippon Sport Science University Tokyo Japan
| | - Kensuke Suzuki
- Graduate School of Medical and Health Science Nippon Sport Science University Tokyo Japan
| | - Hirofumi Obinata
- Department of Emergency and Critical Care Medicine Nippon Medical School Tokyo Japan
| | - Kei Ogawa
- Department of Industrial Administration Tokyo University of Science Tokyo Japan
| | - Ryotaro Suga
- Department of Emergency and Critical Care Medicine Nippon Medical School Tokyo Japan.,Graduate School of Medical and Health Science Nippon Sport Science University Tokyo Japan
| | - Haruka Takahashi
- Graduate School of Medical and Health Science Nippon Sport Science University Tokyo Japan
| | - Mayumi Nakazawa
- Graduate School of Medical and Health Science Nippon Sport Science University Tokyo Japan
| | - Marina Yamada
- Graduate School of Medical and Health Science Nippon Sport Science University Tokyo Japan
| | - Satoo Ogawa
- Graduate School of Medical and Health Science Nippon Sport Science University Tokyo Japan
| | - Hiroyuki Yokota
- Graduate School of Medical and Health Science Nippon Sport Science University Tokyo Japan
| | - Shoji Yokobori
- Department of Emergency and Critical Care Medicine Nippon Medical School Tokyo Japan
| |
Collapse
|