1
|
Kakuta Y, Miyagawa S, Matsumura S, Higa-Maegawa Y, Fukae S, Tanaka R, Nakazawa S, Yamanaka K, Kawamura T, Saito S, Miyagawa S, Nonomura N. Complement and complement regulatory protein in allogeneic and xenogeneic kidney transplantation. Transplant Rev (Orlando) 2024; 39:100885. [PMID: 39536474 DOI: 10.1016/j.trre.2024.100885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 10/31/2024] [Accepted: 11/03/2024] [Indexed: 11/16/2024]
Abstract
Kidney transplantation is the most optimal treatment for patients with end-stage renal disease, offering significant improvements in patient outcomes over dialysis. However, the potential for immune rejection, where the recipient's immune system attacks the transplanted kidney, can compromise transplant success. The complement system, a key component of the immune response, plays a crucial role in both acute and chronic rejection, including T-cell- and antibody-mediated rejection. Understanding and controlling the complement system is essential for managing rejection and enhancing graft survival and overall success of kidney transplantation. In allogeneic transplantation, complement activation through various pathways contributes to graft damage and failure. Recent advancements in genetic engineering enable the development of transgenic pigs expressing human complement regulatory proteins, which display potential for reducing rejection in xenotransplantation. Despite these advances, the complex mechanisms of complement activation and regulation are not fully understood, necessitating further research. This review examines the role of the complement system in kidney transplantation, explores the latest developments in complement regulatory strategies, and discusses potential therapeutic approaches to improve transplant outcomes.
Collapse
Affiliation(s)
- Yoichi Kakuta
- Department of Urology, Osaka University Graduate School of Medicine, Japan
| | - Shuji Miyagawa
- Department of Pediatric Surgery, Osaka University Graduate School of Medicine, Japan.
| | - Soichi Matsumura
- Department of Urology, Osaka University Graduate School of Medicine, Japan
| | - Yoko Higa-Maegawa
- Department of Urology, Osaka University Graduate School of Medicine, Japan
| | - Shota Fukae
- Department of Urology, Osaka University Graduate School of Medicine, Japan
| | - Ryo Tanaka
- Department of Urology, Osaka University Graduate School of Medicine, Japan
| | - Shigeaki Nakazawa
- Department of Urology, Osaka University Graduate School of Medicine, Japan
| | - Kazuaki Yamanaka
- Department of Urology, Osaka University Graduate School of Medicine, Japan
| | - Takuji Kawamura
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Japan
| | - Shunsuke Saito
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Japan
| | - Shigeru Miyagawa
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Japan
| | - Norio Nonomura
- Department of Urology, Osaka University Graduate School of Medicine, Japan
| |
Collapse
|
2
|
Nelson P, Dugbartey GJ, McFarlane L, McLeod P, Major S, Jiang J, O'Neil C, Haig A, Sener A. Effect of Sodium Thiosulfate Pre-Treatment on Renal Ischemia-Reperfusion Injury in Kidney Transplantation. Int J Mol Sci 2024; 25:9529. [PMID: 39273476 PMCID: PMC11395123 DOI: 10.3390/ijms25179529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 08/30/2024] [Accepted: 08/31/2024] [Indexed: 09/15/2024] Open
Abstract
We recently reported in a rat model of kidney transplantation that the addition of sodium thiosulfate (STS) to organ preservation solution improved renal graft quality and prolonged recipient survival. The present study investigates whether STS pre-treatment would produce a similar effect. In vitro, rat kidney epithelial cells were treated with 150 μM STS before and/or during exposure to hypoxia followed by reoxygenation. In vivo, donor rats were treated with PBS or 2.4 mg/kg STS 30 min before donor kidneys were procured and stored in UW or UW+150 μM STS solution at 4 °C for 24 h. Renal grafts were then transplanted into bilaterally nephrectomised recipient rats which were then sacrificed on post-operative day 3. STS pre-treatment significantly reduced cell death compared to untreated and other treated cells in vitro (p < 0.05), which corresponded with our in vivo result (p < 0.05). However, no significant differences were observed in other parameters of tissue injury. Our results suggest that STS pre-treatment may improve renal graft function after transplantation.
Collapse
Affiliation(s)
- Pierce Nelson
- Department of Microbiology & Immunology, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 5C1, Canada
- Matthew Mailing Center for Translational Transplant Studies, London Health Sciences Center, Western University, London, ON N6A 5A5, Canada
| | - George J Dugbartey
- Matthew Mailing Center for Translational Transplant Studies, London Health Sciences Center, Western University, London, ON N6A 5A5, Canada
- Multi-Organ Transplant Program, London Health Sciences Center, Western University, London, ON N6A 5A5, Canada
- London Health Sciences Center, Department of Surgery, Western University, London, ON N6A 5A5, Canada
- Department of Pharmacology & Toxicology, School of Pharmacy, College of Health Sciences, University of Ghana, Accra P.O. Box LG43, Ghana
| | - Liam McFarlane
- Department of Microbiology & Immunology, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 5C1, Canada
- Matthew Mailing Center for Translational Transplant Studies, London Health Sciences Center, Western University, London, ON N6A 5A5, Canada
| | - Patrick McLeod
- Matthew Mailing Center for Translational Transplant Studies, London Health Sciences Center, Western University, London, ON N6A 5A5, Canada
| | - Sally Major
- Matthew Mailing Center for Translational Transplant Studies, London Health Sciences Center, Western University, London, ON N6A 5A5, Canada
| | - Jifu Jiang
- Matthew Mailing Center for Translational Transplant Studies, London Health Sciences Center, Western University, London, ON N6A 5A5, Canada
| | - Caroline O'Neil
- The Molecular Pathology Core, Robarts Research Institute, London, ON N6A 5A5, Canada
| | - Aaron Haig
- Department of Pathology and Laboratory Medicine, Western University, London, ON N6A 5A5, Canada
| | - Alp Sener
- Department of Microbiology & Immunology, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 5C1, Canada
- Matthew Mailing Center for Translational Transplant Studies, London Health Sciences Center, Western University, London, ON N6A 5A5, Canada
- Multi-Organ Transplant Program, London Health Sciences Center, Western University, London, ON N6A 5A5, Canada
- London Health Sciences Center, Department of Surgery, Western University, London, ON N6A 5A5, Canada
| |
Collapse
|
3
|
Kösters P, Cazorla-Vázquez S, Krüger R, Daniel C, Vonbrunn E, Amann K, Engel FB. Adhesion G Protein-Coupled Receptor Gpr126 ( Adgrg6) Expression Profiling in Diseased Mouse, Rat, and Human Kidneys. Cells 2024; 13:874. [PMID: 38786096 PMCID: PMC11119830 DOI: 10.3390/cells13100874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/10/2024] [Accepted: 05/15/2024] [Indexed: 05/25/2024] Open
Abstract
Uncovering the function of understudied G protein-coupled receptors (GPCRs) provides a wealth of untapped therapeutic potential. The poorly understood adhesion GPCR Gpr126 (Adgrg6) is widely expressed in developing kidneys. In adulthood, Gpr126 expression is enriched in parietal epithelial cells (PECs) and epithelial cells of the collecting duct and urothelium. Whether Gpr126 plays a role in kidney disease remains unclear. Here, we characterized Gpr126 expression in diseased kidneys in mice, rats, and humans. RT-PCR data show that Gpr126 expression is altered in kidney disease. A quantitative RNAscope® analysis utilizing cell type-specific markers revealed that Gpr126 expression upon tubular damage is mainly increased in cell types expressing Gpr126 under healthy conditions as well as in cells of the distal and proximal tubules. Upon glomerular damage, an increase was mainly detected in PECs. Notably, Gpr126 expression was upregulated in an ischemia/reperfusion model within hours, while upregulation in a glomerular damage model was only detected after weeks. An analysis of kidney microarray data from patients with lupus nephritis, IgA nephropathy, focal segmental glomerulosclerosis (FSGS), hypertension, and diabetes as well as single-cell RNA-seq data from kidneys of patients with acute kidney injury and chronic kidney disease indicates that GPR126 expression is also altered in human kidney disease. In patients with FSGS, an RNAscope® analysis showed that GPR126 mRNA is upregulated in PECs belonging to FSGS lesions and proximal tubules. Collectively, we provide detailed insights into Gpr126 expression in kidney disease, indicating that GPR126 is a potential therapeutic target.
Collapse
Affiliation(s)
- Peter Kösters
- Department of Nephropathology, Experimental Renal and Cardiovascular Research, Institute of Pathology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (P.K.); (S.C.-V.); (C.D.); (E.V.); (K.A.)
| | - Salvador Cazorla-Vázquez
- Department of Nephropathology, Experimental Renal and Cardiovascular Research, Institute of Pathology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (P.K.); (S.C.-V.); (C.D.); (E.V.); (K.A.)
| | - René Krüger
- Department of Nephrology and Hypertension, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany;
| | - Christoph Daniel
- Department of Nephropathology, Experimental Renal and Cardiovascular Research, Institute of Pathology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (P.K.); (S.C.-V.); (C.D.); (E.V.); (K.A.)
| | - Eva Vonbrunn
- Department of Nephropathology, Experimental Renal and Cardiovascular Research, Institute of Pathology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (P.K.); (S.C.-V.); (C.D.); (E.V.); (K.A.)
| | - Kerstin Amann
- Department of Nephropathology, Experimental Renal and Cardiovascular Research, Institute of Pathology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (P.K.); (S.C.-V.); (C.D.); (E.V.); (K.A.)
| | - Felix B. Engel
- Department of Nephropathology, Experimental Renal and Cardiovascular Research, Institute of Pathology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (P.K.); (S.C.-V.); (C.D.); (E.V.); (K.A.)
| |
Collapse
|
4
|
Zhang H, Haun RS, Collin F, Cassol C, Napier JOH, Wilson J, Hassen S, Ararat K, Boils C, Messias N, Caza TN, Cossey LN, Sharma S, Ambruzs JM, Agrawal N, Shekhtman G, Tian W, Srinivas T, Qu K, Woodward RN, Larsen CP, Stone S, Coley SM. Development and Validation of a Multiclass Model Defining Molecular Archetypes of Kidney Transplant Rejection: A Large Cohort Study of the Banff Human Organ Transplant Gene Expression Panel. J Transl Med 2024; 104:100304. [PMID: 38092179 DOI: 10.1016/j.labinv.2023.100304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 11/19/2023] [Accepted: 12/06/2023] [Indexed: 01/15/2024] Open
Abstract
Gene expression profiling from formalin-fixed paraffin-embedded (FFPE) renal allograft biopsies is a promising approach for feasibly providing a molecular diagnosis of rejection. However, large-scale studies evaluating the performance of models using NanoString platform data to define molecular archetypes of rejection are lacking. We tested a diverse retrospective cohort of over 1400 FFPE biopsy specimens, rescored according to Banff 2019 criteria and representing 10 of 11 United Network of Organ Sharing regions, using the Banff Human Organ Transplant panel from NanoString and developed a multiclass model from the gene expression data to assign relative probabilities of 4 molecular archetypes: No Rejection, Antibody-Mediated Rejection, T Cell-Mediated Rejection, and Mixed Rejection. Using Least Absolute Shrinkage and Selection Operator regularized regression with 10-fold cross-validation fitted to 1050 biopsies in the discovery cohort and technically validated on an additional 345 biopsies, our model achieved overall accuracy of 85% in the discovery cohort and 80% in the validation cohort, with ≥75% positive predictive value for each class, except for the Mixed Rejection class in the validation cohort (positive predictive value, 53%). This study represents the technical validation of the first model built from a large and diverse sample of diagnostic FFPE biopsy specimens to define and classify molecular archetypes of histologically defined diagnoses as derived from Banff Human Organ Transplant panel gene expression profiling data.
Collapse
Affiliation(s)
| | | | | | | | | | - Jon Wilson
- Arkana Laboratories, Little Rock, Arkansas
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Fang F, Liu P, Song L, Wagner P, Bartlett D, Ma L, Li X, Rahimian MA, Tseng G, Randhawa P, Xiao K. Diagnosis of T-cell-mediated kidney rejection by biopsy-based proteomic biomarkers and machine learning. Front Immunol 2023; 14:1090373. [PMID: 36814924 PMCID: PMC9939643 DOI: 10.3389/fimmu.2023.1090373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 01/23/2023] [Indexed: 02/08/2023] Open
Abstract
Background Biopsy-based diagnosis is essential for maintaining kidney allograft longevity by ensuring prompt treatment for graft complications. Although histologic assessment remains the gold standard, it carries significant limitations such as subjective interpretation, suboptimal reproducibility, and imprecise quantitation of disease burden. It is hoped that molecular diagnostics could enhance the efficiency, accuracy, and reproducibility of traditional histologic methods. Methods Quantitative label-free mass spectrometry analysis was performed on a set of formalin-fixed, paraffin-embedded (FFPE) biopsies from kidney transplant patients, including five samples each with diagnosis of T-cell-mediated rejection (TCMR), polyomavirus BK nephropathy (BKPyVN), and stable (STA) kidney function control tissue. Using the differential protein expression result as a classifier, three different machine learning algorithms were tested to build a molecular diagnostic model for TCMR. Results The label-free proteomics method yielded 800-1350 proteins that could be quantified with high confidence per sample by single-shot measurements. Among these candidate proteins, 329 and 467 proteins were defined as differentially expressed proteins (DEPs) for TCMR in comparison with STA and BKPyVN, respectively. Comparing the FFPE quantitative proteomics data set obtained in this study using label-free method with a data set we previously reported using isobaric labeling technology, a classifier pool comprised of features from DEPs commonly quantified in both data sets, was generated for TCMR prediction. Leave-one-out cross-validation result demonstrated that the random forest (RF)-based model achieved the best predictive power. In a follow-up blind test using an independent sample set, the RF-based model yields 80% accuracy for TCMR and 100% for STA. When applying the established RF-based model to two public transcriptome datasets, 78.1%-82.9% sensitivity and 58.7%-64.4% specificity was achieved respectively. Conclusions This proof-of-principle study demonstrates the clinical feasibility of proteomics profiling for FFPE biopsies using an accurate, efficient, and cost-effective platform integrated of quantitative label-free mass spectrometry analysis with a machine learning-based diagnostic model. It costs less than 10 dollars per test.
Collapse
Affiliation(s)
- Fei Fang
- Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Peng Liu
- Department of Biostatistics, University of Pittsburgh, Pittsburgh, PA, United States
| | - Lei Song
- Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Patrick Wagner
- Allegheny Health Network Cancer Institute, Pittsburgh, PA, United States
| | - David Bartlett
- Allegheny Health Network Cancer Institute, Pittsburgh, PA, United States
| | - Liane Ma
- Allegheny Health Network Cancer Institute, Pittsburgh, PA, United States
| | - Xue Li
- Department of Chemistry, Michigan State University, East Lansing, MI, United States
| | - M Amin Rahimian
- Department of Industrial Engineering, University of Pittsburgh, Pittsburgh, PA, United States
| | - George Tseng
- Department of Biostatistics, University of Pittsburgh, Pittsburgh, PA, United States
| | - Parmjeet Randhawa
- Department of Pathology, The Thomas E Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA, United States
| | - Kunhong Xiao
- Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States.,Allegheny Health Network Cancer Institute, Pittsburgh, PA, United States.,Center for Proteomics & Artificial Intelligence, Allegheny Health Network Cancer Institute, Pittsburgh, PA, United States.,Center for Clinical Mass Spectrometry, Allegheny Health Network Cancer Institute, Pittsburgh, PA, United States
| |
Collapse
|
6
|
Vonbrunn E, Büttner-Herold M, Amann K, Daniel C. Complement Inhibition in Kidney Transplantation: Where Are We Now? BioDrugs 2023; 37:5-19. [PMID: 36512315 PMCID: PMC9836999 DOI: 10.1007/s40259-022-00567-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/09/2022] [Indexed: 12/14/2022]
Abstract
Kidney transplantation is a life-saving strategy for patients with end-stage renal disease. Although progress has been made in the field of transplantation medicine in recent decades in terms of surgical techniques and immunosuppression, long-term organ survival remains a challenge. Also, for reasons of organ shortage, there is an unmet need for new therapeutic approaches to improve the long-term survival of transplants. There is increasing evidence that the complement system plays a crucial role in various pathological events after transplantation, including ischemia/reperfusion injury as well as rejection episodes. The complement system is part of the innate immune system and plays a crucial role in the defense against pathogens but is also involved in tissue homeostasis. However, the tightly regulated complement system can become dysregulated or activated by non-infectious stimuli, then targeting the organism's own cells and leading to inflammatory tissue damage that exacerbates injury. In this review, we will highlight the role of the complement system after transplantation and discuss ongoing and potential therapeutic approaches.
Collapse
Affiliation(s)
- Eva Vonbrunn
- Department of Nephropathology, Institute of Pathology, Friedrich-Alexander-University (FAU) Erlangen-Nürnberg, Krankenhausstr. 8-10, 91054 Erlangen, Germany
| | - Maike Büttner-Herold
- Department of Nephropathology, Institute of Pathology, Friedrich-Alexander-University (FAU) Erlangen-Nürnberg, Krankenhausstr. 8-10, 91054 Erlangen, Germany
| | - Kerstin Amann
- Department of Nephropathology, Institute of Pathology, Friedrich-Alexander-University (FAU) Erlangen-Nürnberg, Krankenhausstr. 8-10, 91054 Erlangen, Germany
| | - Christoph Daniel
- Department of Nephropathology, Institute of Pathology, Friedrich-Alexander-University (FAU) Erlangen-Nürnberg, Krankenhausstr. 8-10, 91054 Erlangen, Germany
| |
Collapse
|
7
|
Anwar IJ, DeLaura I, Ladowski J, Gao Q, Knechtle SJ, Kwun J. Complement-targeted therapies in kidney transplantation-insights from preclinical studies. Front Immunol 2022; 13:984090. [PMID: 36311730 PMCID: PMC9606228 DOI: 10.3389/fimmu.2022.984090] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 09/28/2022] [Indexed: 01/21/2023] Open
Abstract
Aberrant activation of the complement system contributes to solid-organ graft dysfunction and failure. In kidney transplantation, the complement system is implicated in the pathogenesis of antibody- and cell-mediated rejection, ischemia-reperfusion injury, and vascular injury. This has led to the evaluation of select complement inhibitors (e.g., C1 and C5 inhibitors) in clinical trials with mixed results. However, the complement system is highly complex: it is composed of more than 50 fluid-phase and surface-bound elements, including several complement-activated receptors-all potential therapeutic targets in kidney transplantation. Generation of targeted pharmaceuticals and use of gene editing tools have led to an improved understanding of the intricacies of the complement system in allo- and xeno-transplantation. This review summarizes our current knowledge of the role of the complement system as it relates to rejection in kidney transplantation, specifically reviewing evidence gained from pre-clinical models (rodent and nonhuman primate) that may potentially be translated to clinical trials.
Collapse
Affiliation(s)
| | | | | | | | - Stuart J. Knechtle
- Duke Transplant Center, Department of Surgery, Duke University School of Medicine, Durham, NC, United States
| | - Jean Kwun
- Duke Transplant Center, Department of Surgery, Duke University School of Medicine, Durham, NC, United States
| |
Collapse
|
8
|
Vonbrunn E, Angeloni M, Büttner-Herold M, Müller-Deile J, Heller K, Bleich E, Söllner S, Amann K, Ferrazzi F, Daniel C. Can Gene Expression Analysis in Zero-Time Biopsies Predict Kidney Transplant Rejection? Front Med (Lausanne) 2022; 9:793744. [PMID: 35433772 PMCID: PMC9005644 DOI: 10.3389/fmed.2022.793744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 02/14/2022] [Indexed: 11/13/2022] Open
Abstract
Zero-time biopsies are taken to determine the quality of the donor organ at the time of transplantation. Histological analyses alone have so far not been able to identify parameters that allow the prediction of subsequent rejection episodes or graft survival. This study investigated whether gene expression analyses of zero-time biopsies might support this prediction. Using a well-characterized cohort of 26 zero-time biopsies from renal transplant patients that include 4 living donor (LD) and 22 deceased donor (DD) biopsies that later developed no rejection (Ctrl, n = 7), delayed graft function (DGF, n = 4), cellular (T-cell mediated rejection; TCMR, n = 8), or antibody-mediated rejection (ABMR, n = 7), we analyzed gene expression profiles for different types of subsequent renal transplant complication. To this end, RNA was isolated from formalin-fixed, paraffin-embedded (FFPE) sections and gene expression profiles were quantified. Results were correlated with transplant data and B-cell, and plasma cell infiltration was assessed by immunofluorescence microscopy. Both principal component analysis and clustering analysis of gene expression data revealed marked separation between LDs and DDs. Differential expression analysis identified 185 significant differentially expressed genes (adjusted p < 0.05). The expression of 68% of these genes significantly correlated with cold ischemia time (CIT). Furthermore, immunoglobulins were differentially expressed in zero-time biopsies from transplants later developing rejection (TCMR + ABMR) compared to non-rejected (Ctrl + DGF) transplants. In addition, immunoglobulin expression did not correlate with CIT but was increased in transplants with previous acute renal failure (ARF). In conclusion, gene expression profiles in zero-time biopsies derived from LDs are markedly different from those of DDs. Pre-transplant ARF increased immunoglobulin expression, which might be involved in triggering later rejection events. However, these findings must be confirmed in larger cohorts and the role of early immunoglobulin upregulation in zero-biopsies needs further clarification.
Collapse
Affiliation(s)
- Eva Vonbrunn
- Department of Nephropathology, Institute of Pathology, Friedrich-Alexander-University Erlangen-Nuremberg and University Hospital, Erlangen, Germany
| | - Miriam Angeloni
- Institute of Pathology, Friedrich-Alexander-University Erlangen-Nuremberg and University Hospital, Erlangen, Germany
| | - Maike Büttner-Herold
- Department of Nephropathology, Institute of Pathology, Friedrich-Alexander-University Erlangen-Nuremberg and University Hospital, Erlangen, Germany
| | - Janina Müller-Deile
- Department of Nephrology and Hypertension, Friedrich-Alexander-University Erlangen-Nuremberg and University Hospital, Erlangen, Germany
| | - Katharina Heller
- Department of Nephrology and Hypertension, Friedrich-Alexander-University Erlangen-Nuremberg and University Hospital, Erlangen, Germany
| | - Erik Bleich
- Department of Nephropathology, Institute of Pathology, Friedrich-Alexander-University Erlangen-Nuremberg and University Hospital, Erlangen, Germany
| | - Stefan Söllner
- Department of Nephropathology, Institute of Pathology, Friedrich-Alexander-University Erlangen-Nuremberg and University Hospital, Erlangen, Germany
| | - Kerstin Amann
- Department of Nephropathology, Institute of Pathology, Friedrich-Alexander-University Erlangen-Nuremberg and University Hospital, Erlangen, Germany
| | - Fulvia Ferrazzi
- Department of Nephropathology, Institute of Pathology, Friedrich-Alexander-University Erlangen-Nuremberg and University Hospital, Erlangen, Germany.,Institute of Pathology, Friedrich-Alexander-University Erlangen-Nuremberg and University Hospital, Erlangen, Germany
| | - Christoph Daniel
- Department of Nephropathology, Institute of Pathology, Friedrich-Alexander-University Erlangen-Nuremberg and University Hospital, Erlangen, Germany
| |
Collapse
|
9
|
Dumbill R, Jaques R, Robb M, Johnson R, Ploeg RJ, Kaisar ME, Sharples EJ. Transplant and Recipient Factors in Prediction of Kidney Transplant Outcomes: A UK-Wide Paired Analysis. J Clin Med 2022; 11:jcm11082222. [PMID: 35456312 PMCID: PMC9024822 DOI: 10.3390/jcm11082222] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 04/08/2022] [Accepted: 04/12/2022] [Indexed: 12/03/2022] Open
Abstract
Background: In kidney transplantation, the relative contribution of various donor, procedure and recipient-related factors on clinical outcomes is unknown. Previous paired studies have largely focused on examining factors predicting early outcomes, where the effect of donor factors is thought to be most important. Here, we sought to examine the relationship between early and long-term outcomes in a UK-wide paired kidney analysis. Methods: UK Transplant Registry data covering 24,090 kidney transplants performed between 2001–2018, where both kidneys from each donor were transplanted, were analysed. Case-control studies were constructed using matched pairs of kidneys from the same donor discordant for outcome, to delineate the impact of transplant and recipient factors on longer-term outcomes. Results: Multivariable conditional logistic regression identified HLA mismatch as an important predictor of prolonged delayed graft function (DGF), in the context of a paired study controlling for the influence of donor factors, even when adjusting for early acute rejection. Prolonged DGF, but not human leucocyte antigen (HLA) mismatch, strongly predicted 12-month graft function, and impaired 12-month graft function was associated with an increased risk of graft failure. Conclusions: This study indicates prolonged DGF is associated with adverse long-term outcomes and suggests that alloimmunity may contribute to prolonged DGF by a mechanism distinct from typical early acute rejection.
Collapse
Affiliation(s)
- Richard Dumbill
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford OX3 9DU, UK; (R.J.P.); (M.E.K.)
- Oxford Transplant Unit, Oxford University Hospitals, Oxford OX3 7LE, UK;
- Correspondence:
| | - Roderick Jaques
- Statistics and Clinical Studies, NHS Blood and Transplant, Bristol BS34 7QH, UK; (R.J.); (M.R.); (R.J.)
| | - Matthew Robb
- Statistics and Clinical Studies, NHS Blood and Transplant, Bristol BS34 7QH, UK; (R.J.); (M.R.); (R.J.)
| | - Rachel Johnson
- Statistics and Clinical Studies, NHS Blood and Transplant, Bristol BS34 7QH, UK; (R.J.); (M.R.); (R.J.)
| | - Rutger J. Ploeg
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford OX3 9DU, UK; (R.J.P.); (M.E.K.)
- Research and Development, NHS Blood and Transplant, Oxford OX3 9DU, UK
| | - Maria E. Kaisar
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford OX3 9DU, UK; (R.J.P.); (M.E.K.)
- Research and Development, NHS Blood and Transplant, Oxford OX3 9DU, UK
| | - Edward J. Sharples
- Oxford Transplant Unit, Oxford University Hospitals, Oxford OX3 7LE, UK;
| |
Collapse
|
10
|
Khedraki R, Noguchi H, Baldwin WM. Balancing the View of C1q in Transplantation: Consideration of the Beneficial and Detrimental Aspects. Front Immunol 2022; 13:873479. [PMID: 35401517 PMCID: PMC8988182 DOI: 10.3389/fimmu.2022.873479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 03/07/2022] [Indexed: 11/29/2022] Open
Affiliation(s)
- Raneem Khedraki
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
- Department of Biological, Geological, and Environmental Sciences, Cleveland State University, Cleveland, OH, United States
| | - Hirotsugu Noguchi
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
| | - William M. Baldwin
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
- Department of Biological, Geological, and Environmental Sciences, Cleveland State University, Cleveland, OH, United States
| |
Collapse
|
11
|
Qi R, Qin W. Role of Complement System in Kidney Transplantation: Stepping From Animal Models to Clinical Application. Front Immunol 2022; 13:811696. [PMID: 35281019 PMCID: PMC8913494 DOI: 10.3389/fimmu.2022.811696] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 01/31/2022] [Indexed: 12/23/2022] Open
Abstract
Kidney transplantation is a life-saving strategy for patients with end-stage renal diseases. Despite the advances in surgical techniques and immunosuppressive agents, the long-term graft survival remains a challenge. Growing evidence has shown that the complement system, part of the innate immune response, is involved in kidney transplantation. Novel insights highlighted the role of the locally produced and intracellular complement components in the development of inflammation and the alloreactive response in the kidney allograft. In the current review, we provide the updated understanding of the complement system in kidney transplantation. We will discuss the involvement of the different complement components in kidney ischemia-reperfusion injury, delayed graft function, allograft rejection, and chronic allograft injury. We will also introduce the existing and upcoming attempts to improve allograft outcomes in animal models and in the clinical setting by targeting the complement system.
Collapse
Affiliation(s)
| | - Weijun Qin
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| |
Collapse
|
12
|
Niederreiter J, Eck C, Ries T, Hartmann A, Märkl B, Büttner-Herold M, Amann K, Daniel C. Complement Activation via the Lectin and Alternative Pathway in Patients With Severe COVID-19. Front Immunol 2022; 13:835156. [PMID: 35237273 PMCID: PMC8884149 DOI: 10.3389/fimmu.2022.835156] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 01/11/2022] [Indexed: 01/08/2023] Open
Abstract
Complement plays an important role in the direct defense to pathogens, but can also activate immune cells and the release of pro-inflammatory cytokines. However, in critically ill patients with COVID-19 the immune system is inadequately activated leading to severe acute respiratory syndrome (SARS) and acute kidney injury, which is associated with higher mortality. Therefore, we characterized local complement deposition as a sign of activation in both lungs and kidneys from patients with severe COVID-19. Using immunohistochemistry we investigated deposition of complement factors C1q, MASP-2, factor D (CFD), C3c, C3d and C5b-9 as well as myeloperoxidase (MPO) positive neutrophils and SARS-CoV-2 virus particles in lungs and kidneys from 38 patients who died from COVID-19. In addition, tissue damage was analyzed using semi-quantitative scores followed by correlation with complement deposition. Autopsy material from non-COVID patients who died from cardiovascular causes, cerebral hemorrhage and pulmonary embolism served as control (n=8). Lung injury in samples from COVID-19 patients was significantly more pronounced compared to controls with formation of hyaline membranes, thrombi and edema. In addition, in the kidney tubular injury was higher in these patients and correlated with lung injury (r=0.361*). In autopsy samples SARS-CoV-2 spike protein was detected in 22% of the lungs of COVID-19 patients but was lacking in kidneys. Complement activation was significantly stronger in lung samples from patients with COVID-19 via the lectin and alternative pathway as indicated by deposition of MASP-2, CFD, C3d and C5b9. Deposits in the lung were predominantly detected along the alveolar septa, the hyaline membranes and in the alveolar lumina. In the kidney, complement was significantly more deposited in patients with COVID-19 in peritubular capillaries and tubular basement membranes. Renal COVID-19-induced complement activation occurred via the lectin pathway, while activation of the alternative pathway was similar in both groups. Furthermore, MPO-positive neutrophils were found in significantly higher numbers in lungs and kidneys of COVID-19 patients and correlated with local MASP-2 deposition. In conclusion, in patients who died from SARS-CoV-2 infection complement was activated in both lungs and kidneys indicating that complement might be involved in systemic worsening of the inflammatory response. Complement inhibition might thus be a promising treatment option to prevent deregulated activation and subsequent collateral tissue injury in COVID-19.
Collapse
Affiliation(s)
- Janina Niederreiter
- Department of Nephropathology, University Hospital Erlangen, Friedrich-Alexander-University (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Christine Eck
- Department of Nephropathology, University Hospital Erlangen, Friedrich-Alexander-University (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Tajana Ries
- Department of Nephropathology, University Hospital Erlangen, Friedrich-Alexander-University (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Arndt Hartmann
- Institute of Pathology, University Hospital Erlangen, Friedrich-Alexander-University (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Bruno Märkl
- General Pathology and Molecular Diagnostics, Medical Faculty Augsburg, University Augsburg, Augsburg, Germany
| | - Maike Büttner-Herold
- Department of Nephropathology, University Hospital Erlangen, Friedrich-Alexander-University (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Kerstin Amann
- Department of Nephropathology, University Hospital Erlangen, Friedrich-Alexander-University (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Christoph Daniel
- Department of Nephropathology, University Hospital Erlangen, Friedrich-Alexander-University (FAU) Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|