1
|
Murray T, Binetti N, Venkataramaiyer R, Namboodiri V, Cosker D, Viding E, Mareschal I. Expression perceptive fields explain individual differences in the recognition of facial emotions. COMMUNICATIONS PSYCHOLOGY 2024; 2:62. [PMID: 39242751 PMCID: PMC11332168 DOI: 10.1038/s44271-024-00111-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 06/05/2024] [Indexed: 09/09/2024]
Abstract
Humans can use the facial expressions of another to infer their emotional state, although it remains unknown how this process occurs. Here we suppose the presence of perceptive fields within expression space, analogous to feature-tuned receptive-fields of early visual cortex. We developed genetic algorithms to explore a multidimensional space of possible expressions and identify those that individuals associated with different emotions. We next defined perceptive fields as probabilistic maps within expression space, and found that they could predict the emotions that individuals infer from expressions presented in a separate task. We found profound individual variability in their size, location, and specificity, and that individuals with more similar perceptive fields had similar interpretations of the emotion communicated by an expression, providing possible channels for social communication. Modelling perceptive fields therefore provides a predictive framework in which to understand how individuals infer emotions from facial expressions.
Collapse
Affiliation(s)
- Thomas Murray
- Department of Psychology, University of Cambridge, Cambridge, UK.
- Department of Psychology, Queen Mary University of London, London, UK.
| | - Nicola Binetti
- Department of Cognitive Neuroscience, International School for Advanced Studies, Trieste, Italy
- Dipartimento di Medicina dei Sistemi, Università degli studi di Roma Tor Vergata, Rome, Italy
| | | | | | - Darren Cosker
- Department of Computer Science, University of Bath, Bath, UK
- Mixed Reality & AI Lab - Cambridge, Microsoft, Cambridge, UK
| | - Essi Viding
- Division of Psychology and Language Sciences, University College London, London, UK
| | | |
Collapse
|
2
|
Sladky R, Kargl D, Haubensak W, Lamm C. An active inference perspective for the amygdala complex. Trends Cogn Sci 2024; 28:223-236. [PMID: 38103984 DOI: 10.1016/j.tics.2023.11.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 11/14/2023] [Accepted: 11/16/2023] [Indexed: 12/19/2023]
Abstract
The amygdala is a heterogeneous network of subcortical nuclei with central importance in cognitive and clinical neuroscience. Various experimental designs in human psychology and animal model research have mapped multiple conceptual frameworks (e.g., valence/salience and decision making) to ever more refined amygdala circuitry. However, these predominantly bottom up-driven accounts often rely on interpretations tailored to a specific phenomenon, thus preventing comprehensive and integrative theories. We argue here that an active inference model of amygdala function could unify these fractionated approaches into an overarching framework for clearer empirical predictions and mechanistic interpretations. This framework embeds top-down predictive models, informed by prior knowledge and belief updating, within a dynamical system distributed across amygdala circuits in which self-regulation is implemented by continuously tracking environmental and homeostatic demands.
Collapse
Affiliation(s)
- Ronald Sladky
- Social, Cognitive, and Affective Neuroscience Unit, Department of Cognition, Emotion, and Methods in Psychology, Faculty of Psychology, University of Vienna, Liebiggasse 5, 1010 Vienna, Austria; Vienna Cognitive Science Hub, University of Vienna, 1010 Vienna, Austria.
| | - Dominic Kargl
- Department of Neuronal Cell Biology, Center for Brain Research, Medical University of Vienna, Spitalgasse 4, 1090 Vienna, Austria
| | - Wulf Haubensak
- Department of Neuronal Cell Biology, Center for Brain Research, Medical University of Vienna, Spitalgasse 4, 1090 Vienna, Austria; Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Campus Vienna Biocenter 1, 1030 Vienna, Austria
| | - Claus Lamm
- Social, Cognitive, and Affective Neuroscience Unit, Department of Cognition, Emotion, and Methods in Psychology, Faculty of Psychology, University of Vienna, Liebiggasse 5, 1010 Vienna, Austria; Vienna Cognitive Science Hub, University of Vienna, 1010 Vienna, Austria
| |
Collapse
|
3
|
Novicky F, Parr T, Friston K, Mirza MB, Sajid N. Bistable perception, precision and neuromodulation. Cereb Cortex 2024; 34:bhad401. [PMID: 37950879 PMCID: PMC10793076 DOI: 10.1093/cercor/bhad401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 10/04/2023] [Accepted: 10/05/2023] [Indexed: 11/13/2023] Open
Abstract
Bistable perception follows from observing a static, ambiguous, (visual) stimulus with two possible interpretations. Here, we present an active (Bayesian) inference account of bistable perception and posit that perceptual transitions between different interpretations (i.e. inferences) of the same stimulus ensue from specific eye movements that shift the focus to a different visual feature. Formally, these inferences are a consequence of precision control that determines how confident beliefs are and change the frequency with which one can perceive-and alternate between-two distinct percepts. We hypothesized that there are multiple, but distinct, ways in which precision modulation can interact to give rise to a similar frequency of bistable perception. We validated this using numerical simulations of the Necker cube paradigm and demonstrate the multiple routes that underwrite the frequency of perceptual alternation. Our results provide an (enactive) computational account of the intricate precision balance underwriting bistable perception. Importantly, these precision parameters can be considered the computational homologs of particular neurotransmitters-i.e. acetylcholine, noradrenaline, dopamine-that have been previously implicated in controlling bistable perception, providing a computational link between the neurochemistry and perception.
Collapse
Affiliation(s)
- Filip Novicky
- Department of Neurophysics, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, Netherlands
- Faculty of Psychology and Neuroscience, Maastricht University, Universiteitssingel 406229 ER, Maastricht, Netherlands
| | - Thomas Parr
- Wellcome Centre for Human Neuroimaging, UCL, 12 Queen Square London WC1N 3AR, United Kingdom
| | - Karl Friston
- Wellcome Centre for Human Neuroimaging, UCL, 12 Queen Square London WC1N 3AR, United Kingdom
| | - Muammer Berk Mirza
- Department of Psychology, University of Cambridge, Downing Pl, Cambridge CB2 3EB, United Kingdom
| | - Noor Sajid
- Wellcome Centre for Human Neuroimaging, UCL, 12 Queen Square London WC1N 3AR, United Kingdom
| |
Collapse
|
4
|
Sevi L, Stantic M, Murphy J, Coll MP, Catmur C, Bird G. Egocentric biases are predicted by the precision of self-related predictions. Cortex 2022; 154:322-332. [DOI: 10.1016/j.cortex.2022.04.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 01/16/2022] [Accepted: 04/26/2022] [Indexed: 11/27/2022]
|
5
|
Palaniyappan L, Venkatasubramanian G. The Bayesian brain and cooperative communication in schizophrenia. J Psychiatry Neurosci 2022; 47:E48-E54. [PMID: 35135834 PMCID: PMC8834248 DOI: 10.1503/jpn.210231] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Affiliation(s)
- Lena Palaniyappan
- From the Department of Psychiatry, Schulich School of Medicine & Dentistry, Western University, London, Ont., Canada (Palaniyappan); the Robart Research Institute & Lawson Health Research Institute, London, Ont., Canada (Palaniyappan); and the InSTAR Program, Schizophrenia Clinic, Department of Psychiatry, National Institute of Mental Health and Neuro Sciences, Bangalore, India (Venkatasubramanian)
| | - Ganesan Venkatasubramanian
- From the Department of Psychiatry, Schulich School of Medicine & Dentistry, Western University, London, Ont., Canada (Palaniyappan); the Robart Research Institute & Lawson Health Research Institute, London, Ont., Canada (Palaniyappan); and the InSTAR Program, Schizophrenia Clinic, Department of Psychiatry, National Institute of Mental Health and Neuro Sciences, Bangalore, India (Venkatasubramanian)
| |
Collapse
|