1
|
Rodriguez de Los Santos M, Kopell BH, Buxbaum Grice A, Ganesh G, Yang A, Amini P, Liharska LE, Vornholt E, Fullard JF, Dong P, Park E, Zipkowitz S, Kaji DA, Thompson RC, Liu D, Park YJ, Cheng E, Ziafat K, Moya E, Fennessy B, Wilkins L, Silk H, Linares LM, Sullivan B, Cohen V, Kota P, Feng C, Johnson JS, Rieder MK, Scarpa J, Nadkarni GN, Wang M, Zhang B, Sklar P, Beckmann ND, Schadt EE, Roussos P, Charney AW, Breen MS. Divergent landscapes of A-to-I editing in postmortem and living human brain. Nat Commun 2024; 15:5366. [PMID: 38926387 PMCID: PMC11208617 DOI: 10.1038/s41467-024-49268-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 05/23/2024] [Indexed: 06/28/2024] Open
Abstract
Adenosine-to-inosine (A-to-I) editing is a prevalent post-transcriptional RNA modification within the brain. Yet, most research has relied on postmortem samples, assuming it is an accurate representation of RNA biology in the living brain. We challenge this assumption by comparing A-to-I editing between postmortem and living prefrontal cortical tissues. Major differences were found, with over 70,000 A-to-I sites showing higher editing levels in postmortem tissues. Increased A-to-I editing in postmortem tissues is linked to higher ADAR and ADARB1 expression, is more pronounced in non-neuronal cells, and indicative of postmortem activation of inflammation and hypoxia. Higher A-to-I editing in living tissues marks sites that are evolutionarily preserved, synaptic, developmentally timed, and disrupted in neurological conditions. Common genetic variants were also found to differentially affect A-to-I editing levels in living versus postmortem tissues. Collectively, these discoveries offer more nuanced and accurate insights into the regulatory mechanisms of RNA editing in the human brain.
Collapse
Affiliation(s)
| | - Brian H Kopell
- Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | | | - Gauri Ganesh
- Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Andy Yang
- Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Pardis Amini
- Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Lora E Liharska
- Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Eric Vornholt
- Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - John F Fullard
- Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Pengfei Dong
- Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Eric Park
- Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Sarah Zipkowitz
- Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Deepak A Kaji
- Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Ryan C Thompson
- Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Donjing Liu
- Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - You Jeong Park
- Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Esther Cheng
- Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Kimia Ziafat
- Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Emily Moya
- Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Brian Fennessy
- Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Lillian Wilkins
- Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Hannah Silk
- Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Lisa M Linares
- Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Brendan Sullivan
- Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Vanessa Cohen
- Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Prashant Kota
- Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Claudia Feng
- Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | | | | | - Joseph Scarpa
- Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | | | - Minghui Wang
- Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Bin Zhang
- Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Pamela Sklar
- Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Noam D Beckmann
- Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Eric E Schadt
- Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Panos Roussos
- Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | | | - Michael S Breen
- Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| |
Collapse
|
2
|
de los Santos MR, Kopell BH, Grice AB, Ganesh G, Yang A, Amini P, Liharska LE, Vornholt E, Fullard JF, Dong P, Park E, Zipkowitz S, Kaji DA, Thompson RC, Liu D, Park YJ, Cheng E, Ziafat K, Moya E, Fennessy B, Wilkins L, Silk H, Linares LM, Sullivan B, Cohen V, Kota P, Feng C, Johnson JS, Rieder MK, Scarpa J, Nadkarni GN, Wang M, Zhang B, Sklar P, Beckmann ND, Schadt EE, Roussos P, Charney AW, Breen MS. Divergent landscapes of A-to-I editing in postmortem and living human brain. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.05.06.24306763. [PMID: 38765961 PMCID: PMC11100843 DOI: 10.1101/2024.05.06.24306763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Adenosine-to-inosine (A-to-I) editing is a prevalent post-transcriptional RNA modification within the brain. Yet, most research has relied on postmortem samples, assuming it is an accurate representation of RNA biology in the living brain. We challenge this assumption by comparing A-to-I editing between postmortem and living prefrontal cortical tissues. Major differences were found, with over 70,000 A-to-I sites showing higher editing levels in postmortem tissues. Increased A-to-I editing in postmortem tissues is linked to higher ADAR1 and ADARB1 expression, is more pronounced in non-neuronal cells, and indicative of postmortem activation of inflammation and hypoxia. Higher A-to-I editing in living tissues marks sites that are evolutionarily preserved, synaptic, developmentally timed, and disrupted in neurological conditions. Common genetic variants were also found to differentially affect A-to-I editing levels in living versus postmortem tissues. Collectively, these discoveries illuminate the nuanced functions and intricate regulatory mechanisms of RNA editing within the human brain.
Collapse
Affiliation(s)
| | - Brian H. Kopell
- Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | | | - Gauri Ganesh
- Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Andy Yang
- Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Pardis Amini
- Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Lora E. Liharska
- Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Eric Vornholt
- Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - John F. Fullard
- Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Pengfei Dong
- Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Eric Park
- Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Sarah Zipkowitz
- Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Deepak A. Kaji
- Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Ryan C. Thompson
- Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Donjing Liu
- Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - You Jeong Park
- Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Esther Cheng
- Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Kimia Ziafat
- Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Emily Moya
- Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Brian Fennessy
- Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Lillian Wilkins
- Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Hannah Silk
- Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Lisa M. Linares
- Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Brendan Sullivan
- Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Vanessa Cohen
- Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Prashant Kota
- Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Claudia Feng
- Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | | | | | - Joseph Scarpa
- Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | | | - Minghui Wang
- Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Bin Zhang
- Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Pamela Sklar
- Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Noam D. Beckmann
- Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Eric E. Schadt
- Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Panos Roussos
- Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | | | - Michael S. Breen
- Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| |
Collapse
|
3
|
Kong X, Chen G, Li J, Li Y, Wu X. Identification and characterization of BmNPV Bm5 protein required for the formation of nuclear vesicle structures. J Gen Virol 2023; 104. [PMID: 37185135 DOI: 10.1099/jgv.0.001853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023] Open
Abstract
BmNPV infection induces nuclear vesicle-like structures and its Bm5 protein mediates the intranuclear lipid accumulation, which is thought to participate in the formation of nuclear vesicles. However, the relationship between viral-induced nuclear vesicles and Bm5 protein is still unclear. Here, our results indicated that BmNPV Bm5 protein participated in the baculovirus infection-induced nuclear vesicle-like structures' invagination thereby influencing the production of occlusion-derived virion (ODV) and occlusion body (OB). The process of nuclear vesicle-like structures' formation was dispensable for the transport or recruitment of ODV major envelope proteins, such as P74 and Bm14. Furthermore, baculovirus-induced nuclear F-actin might provide a direct mechanical force to mediate the scission of large vesicle-like structures from the nuclear membrane. Collectively, these findings illustrated a BmNPV Bm5 protein-induced nuclear membrane invagination pathway and revealed the function of nuclear vesicle-like structures in ODV production.
Collapse
Affiliation(s)
- Xiangshuo Kong
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China
- Key Laboratory of Silkworm and Bee Resource Utilization and Innovation of Zhejiang Province, Hangzhou, PR China
| | - Guanping Chen
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China
- Key Laboratory of Silkworm and Bee Resource Utilization and Innovation of Zhejiang Province, Hangzhou, PR China
| | - Jiale Li
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China
- Key Laboratory of Silkworm and Bee Resource Utilization and Innovation of Zhejiang Province, Hangzhou, PR China
| | - Yuedong Li
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China
- Key Laboratory of Silkworm and Bee Resource Utilization and Innovation of Zhejiang Province, Hangzhou, PR China
| | - Xiaofeng Wu
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China
- Key Laboratory of Silkworm and Bee Resource Utilization and Innovation of Zhejiang Province, Hangzhou, PR China
| |
Collapse
|
4
|
Host Cytoskeleton Gene Expression Is Correlated with the Formation of Ascovirus Reproductive Viral Vesicles. Viruses 2022; 14:v14071444. [PMID: 35891423 PMCID: PMC9319082 DOI: 10.3390/v14071444] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/27/2022] [Accepted: 06/28/2022] [Indexed: 01/10/2023] Open
Abstract
Ascoviruses are large DNA viruses that primarily infect lepidopteran larvae. They differ markedly from other plant or animal viruses by initiating replication in the nucleus, then inducing nuclear lysis followed by extensive cellular hypertrophy and subsequent cleavage of the entire enlarged cell into numerous viral vesicles. Most progeny virions are assembled in these vesicles as they circulate in the hemolymph. Here, we report transcriptome studies of host cytoskeletal genes in larvae infected with ascoviruses from 6 h to 21 days post-infection (dpi). We focused on the cabbage looper, Trichoplusia ni, infected with the Trichoplusia ni ascovirus (TnAV), along with supporting studies on the fall armyworm, Spodoptera frugiperda, infected with the Spodoptera frugiperda ascovirus (SfAV). In T. ni, many cytoskeleton genes were upregulated at 48 hours post-infection (hpi), including 29 tubulins, 21 actins, 21 dyneins, and 13 kinesins. Mitochondrial genes were upregulated as much as two-fold at 48 hpi and were expressed at levels comparable to controls in both T. ni and S. frugiperda, even after 21 dpi, when several cytoskeleton genes remained upregulated. Our studies suggest a temporal correlation between increases in the expression of certain host cytoskeletal genes and viral vesicle formation. However, these results need confirmation through functional genetic studies of proteins encoded by these genes.
Collapse
|
5
|
Cellular and genetic drivers of RNA editing variation in the human brain. Nat Commun 2022; 13:2997. [PMID: 35637184 PMCID: PMC9151768 DOI: 10.1038/s41467-022-30531-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 05/02/2022] [Indexed: 11/08/2022] Open
Abstract
Posttranscriptional adenosine-to-inosine modifications amplify the functionality of RNA molecules in the brain, yet the cellular and genetic regulation of RNA editing is poorly described. We quantify base-specific RNA editing across three major cell populations from the human prefrontal cortex: glutamatergic neurons, medial ganglionic eminence-derived GABAergic neurons, and oligodendrocytes. We identify more selective editing and hyper-editing in neurons relative to oligodendrocytes. RNA editing patterns are highly cell type-specific, with 189,229 cell type-associated sites. The cellular specificity for thousands of sites is confirmed by single nucleus RNA-sequencing. Importantly, cell type-associated sites are enriched in GTEx RNA-sequencing data, edited ~twentyfold higher than all other sites, and variation in RNA editing is largely explained by neuronal proportions in bulk brain tissue. Finally, we uncover 661,791 cis-editing quantitative trait loci across thirteen brain regions, including hundreds with cell type-associated features. These data reveal an expansive repertoire of highly regulated RNA editing sites across human brain cell types and provide a resolved atlas linking cell types to editing variation and genetic regulatory effects. Here the authors provide a deep catalogue of cell-specific A-to-I editing sites in the human cortex. Thousands of sites are enriched and elevated in neurons relative to glial cells, and are genetically regulated across multiple brain regions.
Collapse
|
6
|
Zaghloul HAH, Hice R, Arensburger P, Federici BA. Early in vivo transcriptome of Trichoplusia ni ascovirus core genes. J Gen Virol 2022; 103. [PMID: 35441589 DOI: 10.1099/jgv.0.001737] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Ascoviruses are large double-stranded DNA insect viruses that destroy the nucleus and transform each cell into 20 or more viral vesicles for replication. In the present study we used RNA-sequencing to compare the expression of Trichoplusia ni ascovirus 6a1 (TnAV-6a1) core genes during the first week of infection, with emphasis on the first 48 h, comparing transcript levels in major somatic tissues (epidermis, tracheal matrix and fat body), the sites infected initially, with those of the haemolymph, where viral vesicles circulate and most replication occurs. By 48 h post-infection (p.i.), only 26 genes were expressed in somatic tissues at ≥5 log2 reads per kilobase per million, whereas in the haemolymph 48 genes were expressed at a similar level by the same time. Early and high expression of TnAV caspase-2-like gene occurred in all tissues, implying it is required for replication, but that it is probably not associated with apoptosis induction, which occurs in infections of Spodoptera frugiperda ascovirus 1 a (SfAV-1a), the ascovirus type species. Other highly expressed viral genes at 48 h p.i. in viral vesicles included a dynein-like beta chain and lipid-modifying enzymes, suggesting their importance to vesicle formation and growth as well as virion synthesis. Finally, as occurs in SfAV expression, we found bicistronic and tricistronic mRNA messages produced by TnAV.
Collapse
Affiliation(s)
- Heba A H Zaghloul
- Interdepartmental Graduate Program in Microbiology and Institute for Integrative Genome Biology, Riverside Country, CA, USA.,Department of Botany and Microbiology, Faculty of Science, Alexandria University, Egypt
| | - Robert Hice
- Interdepartmental Graduate Program in Microbiology and Institute for Integrative Genome Biology, Riverside Country, CA, USA
| | - Peter Arensburger
- Department of Biological Sciences, California State Polytechnic University, Pomona, 3801 West Temple Avenue, Pomona CA 91768, USA
| | - Brian A Federici
- Interdepartmental Graduate Program in Microbiology and Institute for Integrative Genome Biology, Riverside Country, CA, USA.,Department of Entomology, University of California, Riverside, Riverside, CA 92521, USA
| |
Collapse
|