1
|
Ribeiro TL, Jendrichovsky P, Yu S, Martin DA, Kanold PO, Chialvo DR, Plenz D. Trial-by-trial variability in cortical responses exhibits scaling of spatial correlations predicted from critical dynamics. Cell Rep 2024; 43:113762. [PMID: 38341856 PMCID: PMC10956720 DOI: 10.1016/j.celrep.2024.113762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 01/05/2024] [Accepted: 01/25/2024] [Indexed: 02/13/2024] Open
Abstract
In the mammalian cortex, even simple sensory inputs or movements activate many neurons, with each neuron responding variably to repeated stimuli-a phenomenon known as trial-by-trial variability. Understanding the spatial patterns and dynamics of this variability is challenging. Using cellular 2-photon imaging, we study visual and auditory responses in the primary cortices of awake mice. We focus on how individual neurons' responses differed from the overall population. We find consistent spatial correlations in these differences that are unique to each trial and linearly scale with the cortical area observed, a characteristic of critical dynamics as confirmed in our neuronal simulations. Using chronic multi-electrode recordings, we observe similar scaling in the prefrontal and premotor cortex of non-human primates during self-initiated and visually cued motor tasks. These results suggest that trial-by-trial variability, rather than being random noise, reflects a critical, fluctuation-dominated state in the cortex, supporting the brain's efficiency in processing information.
Collapse
Affiliation(s)
- Tiago L Ribeiro
- Section on Critical Brain Dynamics, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892, USA
| | - Peter Jendrichovsky
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21205, USA; Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Shan Yu
- Section on Critical Brain Dynamics, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892, USA; Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China; CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Beijing 100190, China
| | - Daniel A Martin
- Center for Complex Systems & Brain Sciences (CEMSC3), Instituto de Ciencias Físicas, (ICIFI) Escuela de Ciencia y Tecnología, Universidad Nacional de San Martín (UNSAM), San Martín 1650 Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290 Buenos Aires, Argentina
| | - Patrick O Kanold
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21205, USA; Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Dante R Chialvo
- Center for Complex Systems & Brain Sciences (CEMSC3), Instituto de Ciencias Físicas, (ICIFI) Escuela de Ciencia y Tecnología, Universidad Nacional de San Martín (UNSAM), San Martín 1650 Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290 Buenos Aires, Argentina
| | - Dietmar Plenz
- Section on Critical Brain Dynamics, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
2
|
Camargo S, Martin DA, Trejo EJA, de Florian A, Nowak MA, Cannas SA, Grigera TS, Chialvo DR. Scale-free correlations in the dynamics of a small (N∼10000) cortical network. Phys Rev E 2023; 108:034302. [PMID: 37849108 DOI: 10.1103/physreve.108.034302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 08/16/2023] [Indexed: 10/19/2023]
Abstract
The advent of novel optogenetics technology allows the recording of brain activity with a resolution never seen before. The characterization of these very large data sets offers new challenges as well as unique theory-testing opportunities. Here we discuss whether the spatial and temporal correlations of the collective activity of thousands of neurons are tangled as predicted by the theory of critical phenomena. The analysis shows that both the correlation length ξ and the correlation time τ scale as predicted as a function of the system size. With some peculiarities that we discuss, the analysis uncovers evidence consistent with the view that the large-scale brain cortical dynamics corresponds to critical phenomena.
Collapse
Affiliation(s)
- Sabrina Camargo
- Instituto de Ciencias Físicas (ICIFI-CONICET), Center for Complex Systems and Brain Sciences (CEMSC3), Escuela de Ciencia y Tecnología, Universidad Nacional de Gral. San Martín, Campus Miguelete, 25 de Mayo y Francia, 1650 San Martín, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Godoy Cruz 2290, 1425 Buenos Aires, Argentina
| | - Daniel A Martin
- Instituto de Ciencias Físicas (ICIFI-CONICET), Center for Complex Systems and Brain Sciences (CEMSC3), Escuela de Ciencia y Tecnología, Universidad Nacional de Gral. San Martín, Campus Miguelete, 25 de Mayo y Francia, 1650 San Martín, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Godoy Cruz 2290, 1425 Buenos Aires, Argentina
| | - Eyisto J Aguilar Trejo
- Instituto de Ciencias Físicas (ICIFI-CONICET), Center for Complex Systems and Brain Sciences (CEMSC3), Escuela de Ciencia y Tecnología, Universidad Nacional de Gral. San Martín, Campus Miguelete, 25 de Mayo y Francia, 1650 San Martín, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Godoy Cruz 2290, 1425 Buenos Aires, Argentina
| | - Aylen de Florian
- Instituto de Ciencias Físicas (ICIFI-CONICET), Center for Complex Systems and Brain Sciences (CEMSC3), Escuela de Ciencia y Tecnología, Universidad Nacional de Gral. San Martín, Campus Miguelete, 25 de Mayo y Francia, 1650 San Martín, Buenos Aires, Argentina
| | - Maciej A Nowak
- Mark Kac Center for Complex Systems Research and Institute for Theoretical Physics, Jagiellonian University, PL-30348 Kraków, Poland
| | - Sergio A Cannas
- Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Godoy Cruz 2290, 1425 Buenos Aires, Argentina
- Facultad de Matemática Astronomía Física y Computación, Universidad Nacional de Córdoba, Instituto de Física Enrique Gaviola (IFEG-CONICET), Ciudad Universitaria, 5000 Córdoba, Argentina
| | - Tomás S Grigera
- Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Godoy Cruz 2290, 1425 Buenos Aires, Argentina
- Instituto de Física de Líquidos y Sistemas Biológicos (IFLySiB), CONICET and Universidad Nacional de La Plata, Calle 59 n 789, 1900 La Plata, Argentina
- Departamento de Física, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, 1900 La Plata, Argentina
- Istituto dei Sistemi Complessi, Consiglio Nazionale delle Ricerche, via dei Taurini 19, 00185 Rome, Italy
| | - Dante R Chialvo
- Instituto de Ciencias Físicas (ICIFI-CONICET), Center for Complex Systems and Brain Sciences (CEMSC3), Escuela de Ciencia y Tecnología, Universidad Nacional de Gral. San Martín, Campus Miguelete, 25 de Mayo y Francia, 1650 San Martín, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Godoy Cruz 2290, 1425 Buenos Aires, Argentina
| |
Collapse
|
3
|
Wood KB, Comba A, Motsch S, Grigera TS, Lowenstein PR. Scale-free correlations and potential criticality in weakly ordered populations of brain cancer cells. SCIENCE ADVANCES 2023; 9:eadf7170. [PMID: 37379380 PMCID: PMC10306295 DOI: 10.1126/sciadv.adf7170] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 05/24/2023] [Indexed: 06/30/2023]
Abstract
Collective behavior spans several orders of magnitude of biological organization, from cell colonies to flocks of birds. We used time-resolved tracking of individual glioblastoma cells to investigate collective motion in an ex vivo model of glioblastoma. At the population level, glioblastoma cells display weakly polarized motion in the (directional) velocities of single cells. Unexpectedly, fluctuations in velocities are correlated over distances many times the size of a cell. Correlation lengths scale linearly with the maximum end-to-end length of the population, indicating that they are scale-free and lack a characteristic decay scale other than the size of the system. Last, a data-driven maximum entropy model captures statistical features of the experimental data with only two free parameters: the effective length scale (nc) and strength (J) of local pairwise interactions between tumor cells. These results show that glioblastoma assemblies exhibit scale-free correlations in the absence of polarization, suggesting that they may be poised near a critical point.
Collapse
Affiliation(s)
- Kevin B. Wood
- Department of Biophysics, University of Michigan, Ann Arbor, MI, USA
- Department of Physics, University of Michigan, Ann Arbor, MI, USA
| | - Andrea Comba
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI, USA
- Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Sebastien Motsch
- School of Mathematical and Statistical Sciences, Arizona State University, Tempe, AZ, USA
| | - Tomás S. Grigera
- Instituto de Física de Líquidos y Sistemas Biológicos (IFLySiB), Buenos Aires, Argentina
- Universidad Nacional de La Plata, La Plata, Buenos Aires, Argentina
- CONICET, Godoy Cruz, Buenos Aires, Argentina
- Departamento de Física, Universidad Nacional de La Plata, La Plata, Buenos Aires, Argentina
- Istituto dei Sistemi Complessi, Consiglio Nazionale delle Ricerche, Rome, Italy
| | - Pedro R. Lowenstein
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI, USA
- Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, USA
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
4
|
Moraes JT, Trejo EJA, Camargo S, Ferreira SC, Chialvo DR. Self-tuned criticality: Controlling a neuron near its bifurcation point via temporal correlations. Phys Rev E 2023; 107:034204. [PMID: 37072953 DOI: 10.1103/physreve.107.034204] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 02/28/2023] [Indexed: 04/20/2023]
Abstract
Previous work showed that the collective activity of large neuronal networks can be tamed to remain near its critical point by a feedback control that maximizes the temporal correlations of the mean-field fluctuations. Since such correlations behave similarly near instabilities across nonlinear dynamical systems, it is expected that the principle should control also low-dimensional dynamical systems exhibiting continuous or discontinuous bifurcations from fixed points to limit cycles. Here we present numerical evidence that the dynamics of a single neuron can be controlled in the vicinity of its bifurcation point. The approach is tested in two models: a two-dimensional generic excitable map and the paradigmatic FitzHugh-Nagumo neuron model. The results show that in both cases, the system can be self-tuned to its bifurcation point by modifying the control parameter according to the first coefficient of the autocorrelation function.
Collapse
Affiliation(s)
- Juliane T Moraes
- Departamento de Física, Universidade Federal de Viçosa, 36570-900 Viçosa, Minas Gerais, Brazil
| | - Eyisto J Aguilar Trejo
- Center for Complex Systems and Brain Sciences (CEMSC3), Instituto de Ciencias Físicas (ICIFI), Universidad Nacional de San Martín, Campus Miguelete, 1650 San Martín, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científcas y Tecnológicas (CONICET), 1425 Buenos Aires, Argentina
| | - Sabrina Camargo
- Center for Complex Systems and Brain Sciences (CEMSC3), Instituto de Ciencias Físicas (ICIFI), Universidad Nacional de San Martín, Campus Miguelete, 1650 San Martín, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científcas y Tecnológicas (CONICET), 1425 Buenos Aires, Argentina
| | - Silvio C Ferreira
- Departamento de Física, Universidade Federal de Viçosa, 36570-900 Viçosa, Minas Gerais, Brazil
- National Institute of Science and Technology for Complex Systems, 22290-180 Rio de Janeiro, Brazil
| | - Dante R Chialvo
- Center for Complex Systems and Brain Sciences (CEMSC3), Instituto de Ciencias Físicas (ICIFI), Universidad Nacional de San Martín, Campus Miguelete, 1650 San Martín, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científcas y Tecnológicas (CONICET), 1425 Buenos Aires, Argentina
- Mark Kac Center for Complex Systems Research and Institute for Theoretical Physics, Jagiellonian University, 30-348 Kraków, Poland
| |
Collapse
|
5
|
Trejo EJA, Martin DA, De Zoysa D, Bowen Z, Grigera TS, Cannas SA, Losert W, Chialvo DR. Finite-size correlation behavior near a critical point: A simple metric for monitoring the state of a neural network. Phys Rev E 2022; 106:054313. [PMID: 36559402 DOI: 10.1103/physreve.106.054313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 10/28/2022] [Indexed: 12/03/2022]
Abstract
In this article, a correlation metric κ_{c} is proposed for the inference of the dynamical state of neuronal networks. κ_{C} is computed from the scaling of the correlation length with the size of the observation region, which shows qualitatively different behavior near and away from the critical point of a continuous phase transition. The implementation is first studied on a neuronal network model, where the results of this new metric coincide with those obtained from neuronal avalanche analysis, thus well characterizing the critical state of the network. The approach is further tested with brain optogenetic recordings in behaving mice from a publicly available database. Potential applications and limitations for its use with currently available optical imaging techniques are discussed.
Collapse
Affiliation(s)
- Eyisto J Aguilar Trejo
- Instituto de Ciencias Físicas (ICIFI-CONICET), Center for Complex Systems and Brain Sciences (CEMSC3), Escuela de Ciencia y Tecnología, Universidad Nacional de Gral. San Martín, Campus Miguelete, 25 de Mayo y Francia, 1650, San Martín, Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, 1425, Buenos Aires, Argentina
| | - Daniel A Martin
- Instituto de Ciencias Físicas (ICIFI-CONICET), Center for Complex Systems and Brain Sciences (CEMSC3), Escuela de Ciencia y Tecnología, Universidad Nacional de Gral. San Martín, Campus Miguelete, 25 de Mayo y Francia, 1650, San Martín, Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, 1425, Buenos Aires, Argentina
| | - Dulara De Zoysa
- Department of Physics & Institute for Physical Science and Technology, University of Maryland, College Park, Maryland 20742, USA
| | - Zac Bowen
- Fraunhofer USA Center Mid-Atlantic, Riverdale, Maryland 20737, USA
| | - Tomas S Grigera
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, 1425, Buenos Aires, Argentina.,Departamento de Física, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, 1900, La Plata, Buenos Aires, Argentina.,Instituto de Física de Líquidos y Sistemas Biológicos (IFLySiB-CONICET) Universidad Nacional de La Plata, 1900, La Plata, Buenos Aires, Argentina.,Istituto dei Sistemi Complessi, Consiglio Nazionale delle Ricerche, via dei Taurini 19, 00185 Rome, Italy
| | - Sergio A Cannas
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, 1425, Buenos Aires, Argentina.,Instituto de Física Enrique Gaviola (IFEG-CONICET), Facultad de Matemática Astronomía Física y Computación, Universidad Nacional de Córdoba, 5000, Córdoba, Argentina
| | - Wolfgang Losert
- Department of Physics & Institute for Physical Science and Technology, University of Maryland, College Park, Maryland 20742, USA
| | - Dante R Chialvo
- Instituto de Ciencias Físicas (ICIFI-CONICET), Center for Complex Systems and Brain Sciences (CEMSC3), Escuela de Ciencia y Tecnología, Universidad Nacional de Gral. San Martín, Campus Miguelete, 25 de Mayo y Francia, 1650, San Martín, Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, 1425, Buenos Aires, Argentina
| |
Collapse
|
6
|
Rupasinghe A, Francis N, Liu J, Bowen Z, Kanold PO, Babadi B. Direct extraction of signal and noise correlations from two-photon calcium imaging of ensemble neuronal activity. eLife 2021; 10:68046. [PMID: 34180397 PMCID: PMC8354639 DOI: 10.7554/elife.68046] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 06/27/2021] [Indexed: 12/21/2022] Open
Abstract
Neuronal activity correlations are key to understanding how populations of neurons collectively encode information. While two-photon calcium imaging has created a unique opportunity to record the activity of large populations of neurons, existing methods for inferring correlations from these data face several challenges. First, the observations of spiking activity produced by two-photon imaging are temporally blurred and noisy. Secondly, even if the spiking data were perfectly recovered via deconvolution, inferring network-level features from binary spiking data is a challenging task due to the non-linear relation of neuronal spiking to endogenous and exogenous inputs. In this work, we propose a methodology to explicitly model and directly estimate signal and noise correlations from two-photon fluorescence observations, without requiring intermediate spike deconvolution. We provide theoretical guarantees on the performance of the proposed estimator and demonstrate its utility through applications to simulated and experimentally recorded data from the mouse auditory cortex.
Collapse
Affiliation(s)
- Anuththara Rupasinghe
- Department of Electrical and Computer Engineering, University of Maryland, College Park, United States
| | - Nikolas Francis
- The Institute for Systems Research, University of Maryland, College Park, United States.,Department of Biology, University of Maryland, College Park, United States
| | - Ji Liu
- The Institute for Systems Research, University of Maryland, College Park, United States.,Department of Biology, University of Maryland, College Park, United States
| | - Zac Bowen
- The Institute for Systems Research, University of Maryland, College Park, United States.,Department of Biology, University of Maryland, College Park, United States
| | - Patrick O Kanold
- The Institute for Systems Research, University of Maryland, College Park, United States.,Department of Biology, University of Maryland, College Park, United States.,Department of Biomedical Engineering, Johns Hopkins University, Baltimore, United States
| | - Behtash Babadi
- Department of Electrical and Computer Engineering, University of Maryland, College Park, United States
| |
Collapse
|