1
|
Villadangos L, Serrador JM. Subcellular Localization Guides eNOS Function. Int J Mol Sci 2024; 25:13402. [PMID: 39769167 PMCID: PMC11678294 DOI: 10.3390/ijms252413402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 12/03/2024] [Accepted: 12/06/2024] [Indexed: 01/11/2025] Open
Abstract
Nitric oxide synthases (NOS) are enzymes responsible for the cellular production of nitric oxide (NO), a highly reactive signaling molecule involved in important physiological and pathological processes. Given its remarkable capacity to diffuse across membranes, NO cannot be stored inside cells and thus requires multiple controlling mechanisms to regulate its biological functions. In particular, the regulation of endothelial nitric oxide synthase (eNOS) activity has been shown to be crucial in vascular homeostasis, primarily affecting cardiovascular disease and other pathophysiological processes of importance for human health. Among other factors, the subcellular localization of eNOS plays an important role in regulating its enzymatic activity and the bioavailability of NO. The aim of this review is to summarize pioneering studies and more recent publications, unveiling some of the factors that influence the subcellular compartmentalization of eNOS and discussing their functional implications in health and disease.
Collapse
Affiliation(s)
| | - Juan M. Serrador
- Interactions with the Environment Program, Immune System Development and Function Unit, Centro de Biología Molecular Severo Ochoa (CBM), Consejo Superior de Investigaciones Científicas (CSIC)—Universidad Autónoma de Madrid, 28049 Madrid, Spain;
| |
Collapse
|
2
|
Giménez-Bastida JA, Ávila-Gálvez MÁ, Martínez-López A, García-Moreno D, Espín JC, González-Sarrías A. ( R, S)-Equol 7-β-D-glucuronide, but not other circulating isoflavone metabolites, modulates migration and tubulogenesis in human aortic endothelial cells targeting the VEGF pathway. Food Funct 2024; 15:7387-7399. [PMID: 38078511 DOI: 10.1039/d3fo03946c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Current knowledge indicates that the consumption of isoflavone-rich foodstuffs can have a beneficial impact on cardiovascular health. To what extent these isoflavones act as the main actors of that benefit is less clear. Genistein (GEN), daidzein (DAZ), and the DAZ-derived microbial metabolite equol (Eq) exhibit antiangiogenic effects in vitro, but their low bloodstream concentrations make it difficult to rationalize the in vivo effects. Their derived phase-II metabolites (glucuronides and sulfates) are major metabolites found in plasma, but their role as antiangiogenic molecules remains unexplored. We aimed here to first assess the anti-angiogenic activities of the main circulating isoflavone metabolites (glucuronides and sulfates) and compare them with their corresponding free forms at physiological concentrations (0.1-10 μM). The effects of the conjugated vs. free forms on tubulogenesis, cell migration, and VEGF-induced signalling were investigated in primary human aortic endothelial cells (HAECs). While (R,S)-equol 7-β-D-glucuronide (Eq 7-glur) exerted dose-dependent inhibition of tubulogenesis and endothelial migration comparable to that exerted by the free forms (GEN, DAZ, and Eq), the rest of the phase-II conjugates exhibited no significant effects. The underlying molecular mechanisms were independent of the bFGF but related to the modulation of the VEGF pathway. Besides, the observed dissimilar cellular metabolism (conjugation/deconjugation) places the phase-II metabolites as precursors of the free forms; however, the question of whether this metabolism impacts their biological activity requires additional studies. These new insights suggest that isoflavones and their circulating metabolites, including Eq 7-glur, may be involved in cardiovascular health (e.g., targeting angiogenesis).
Collapse
Affiliation(s)
- Juan Antonio Giménez-Bastida
- Laboratory of Food & Health, Research Group on Quality, Safety and Bioactivity of Plant Foods, CEBAS-CSIC, Murcia, Spain.
| | - María Ángeles Ávila-Gálvez
- Laboratory of Food & Health, Research Group on Quality, Safety and Bioactivity of Plant Foods, CEBAS-CSIC, Murcia, Spain.
- NOVA Medical School|Faculdade de Ciências Médicas, NMS|FCM, Universidade NOVA de Lisboa, Lisboa, Portugal
| | - Alicia Martínez-López
- Center for Biomedical Research in Rare Diseases Network (CIBERER), Carlos III Health Institute, 28029, Madrid, Spain
- Biomedical Research Institute of Murcia (IMIB)-Pascual Parrilla, 30120, Murcia, Spain
| | - Diana García-Moreno
- Center for Biomedical Research in Rare Diseases Network (CIBERER), Carlos III Health Institute, 28029, Madrid, Spain
- Biomedical Research Institute of Murcia (IMIB)-Pascual Parrilla, 30120, Murcia, Spain
| | - Juan Carlos Espín
- Laboratory of Food & Health, Research Group on Quality, Safety and Bioactivity of Plant Foods, CEBAS-CSIC, Murcia, Spain.
| | - Antonio González-Sarrías
- Laboratory of Food & Health, Research Group on Quality, Safety and Bioactivity of Plant Foods, CEBAS-CSIC, Murcia, Spain.
| |
Collapse
|
3
|
Ho SJ, Chaput D, Sinkey RG, Garces AH, New EP, Okuka M, Sang P, Arlier S, Semerci N, Steffensen TS, Rutherford TJ, Alsina AE, Cai J, Anderson ML, Magness RR, Uversky VN, Cummings DAT, Tsibris JCM. Proteomic studies of VEGFR2 in human placentas reveal protein associations with preeclampsia, diabetes, gravidity, and labor. Cell Commun Signal 2024; 22:221. [PMID: 38594674 PMCID: PMC11003095 DOI: 10.1186/s12964-024-01567-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 03/09/2024] [Indexed: 04/11/2024] Open
Abstract
VEGFR2 (Vascular endothelial growth factor receptor 2) is a central regulator of placental angiogenesis. The study of the VEGFR2 proteome of chorionic villi at term revealed its partners MDMX (Double minute 4 protein) and PICALM (Phosphatidylinositol-binding clathrin assembly protein). Subsequently, the oxytocin receptor (OT-R) and vasopressin V1aR receptor were detected in MDMX and PICALM immunoprecipitations. Immunogold electron microscopy showed VEGFR2 on endothelial cell (EC) nuclei, mitochondria, and Hofbauer cells (HC), tissue-resident macrophages of the placenta. MDMX, PICALM, and V1aR were located on EC plasma membranes, nuclei, and HC nuclei. Unexpectedly, PICALM and OT-R were detected on EC projections into the fetal lumen and OT-R on 20-150 nm clusters therein, prompting the hypothesis that placental exosomes transport OT-R to the fetus and across the blood-brain barrier. Insights on gestational complications were gained by univariable and multivariable regression analyses associating preeclampsia with lower MDMX protein levels in membrane extracts of chorionic villi, and lower MDMX, PICALM, OT-R, and V1aR with spontaneous vaginal deliveries compared to cesarean deliveries before the onset of labor. We found select associations between higher MDMX, PICALM, OT-R protein levels and either gravidity, diabetes, BMI, maternal age, or neonatal weight, and correlations only between PICALM-OT-R (p < 2.7 × 10-8), PICALM-V1aR (p < 0.006), and OT-R-V1aR (p < 0.001). These results offer for exploration new partnerships in metabolic networks, tissue-resident immunity, and labor, notably for HC that predominantly express MDMX.
Collapse
Grants
- Department of Obstetrics and Gynecology, University of South Florida
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida
- Lisa Muma Weitz Microscopy Laboratory, University of South Florida
- Department of Chemistry, University of South Florida
- Tampa General Hospital, Tampa, Florida
- Teasley Foundation
- Department of Molecular Medicine, University of South Florida
- Department of Biology, University of Florida
- Emerging Pathogens Institute, University of Florida
Collapse
Affiliation(s)
- Shannon J Ho
- Department of Obstetrics and Gynecology, University of South Florida, Tampa, FL, USA
| | - Dale Chaput
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, FL, USA
| | - Rachel G Sinkey
- Department of Obstetrics and Gynecology, University of South Florida, Tampa, FL, USA
| | - Amanda H Garces
- Lisa Muma Weitz Microscopy Laboratory, University of South Florida, Tampa, FL, USA
| | - Erika P New
- Department of Obstetrics and Gynecology, University of South Florida, Tampa, FL, USA
| | - Maja Okuka
- Department of Obstetrics and Gynecology, University of South Florida, Tampa, FL, USA
| | - Peng Sang
- Department of Chemistry, University of South Florida, Tampa, FL, USA
| | - Sefa Arlier
- Department of Obstetrics and Gynecology, University of South Florida, Tampa, FL, USA
| | - Nihan Semerci
- Department of Obstetrics and Gynecology, University of South Florida, Tampa, FL, USA
| | | | - Thomas J Rutherford
- Department of Obstetrics and Gynecology, University of South Florida, Tampa, FL, USA
- Cancer Center, Tampa General Hospital, Tampa, FL, USA
| | - Angel E Alsina
- Transplant Surgery Center, Tampa General Hospital, Tampa, FL, USA
| | - Jianfeng Cai
- Department of Chemistry, University of South Florida, Tampa, FL, USA
| | - Matthew L Anderson
- Department of Obstetrics and Gynecology, University of South Florida, Tampa, FL, USA
- Cancer Center, Tampa General Hospital, Tampa, FL, USA
| | - Ronald R Magness
- Department of Obstetrics and Gynecology, University of South Florida, Tampa, FL, USA
| | - Vladimir N Uversky
- Department of Molecular Medicine, University of South Florida, Tampa, FL, USA
| | - Derek A T Cummings
- Department of Biology and Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA
| | - John C M Tsibris
- Department of Obstetrics and Gynecology, University of South Florida, Tampa, FL, USA.
- Department of Molecular Medicine, University of South Florida, Tampa, FL, USA.
| |
Collapse
|
4
|
Cho HD, Nhàn NTT, Zhou C, Tu K, Nguyen T, Sarich NA, Yamada KH. KIF13B mediates VEGFR2 recycling to modulate vascular permeability. Cell Mol Life Sci 2023; 80:91. [PMID: 36928770 PMCID: PMC10165967 DOI: 10.1007/s00018-023-04752-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 03/04/2023] [Accepted: 03/06/2023] [Indexed: 03/18/2023]
Abstract
Excessive vascular endothelial growth factor-A (VEGF-A) signaling induces vascular leakage and angiogenesis in diseases. VEGFR2 trafficking to the cell surface, mediated by kinesin-3 family protein KIF13B, is essential to respond to VEGF-A when inducing angiogenesis. However, the precise mechanism of how KIF13B regulates VEGF-induced signaling and its effects on endothelial permeability is largely unknown. Here we show that KIF13B-mediated recycling of internalized VEGFR2 through Rab11-positive recycling vesicle regulates endothelial permeability. Phosphorylated VEGFR2 at the cell-cell junction was internalized and associated with KIF13B in Rab5-positive early endosomes. KIF13B mediated VEGFR2 recycling through Rab11-positive recycling vesicle. Inhibition of the function of KIF13B attenuated phosphorylation of VEGFR2 at Y951, SRC at Y416, and VE-cadherin at Y685, which are necessary for endothelial permeability. Failure of VEGFR2 trafficking to the cell surface induced accumulation and degradation of VEGFR2 in lysosomes. Furthermore, in the animal model of the blinding eye disease wet age-related macular degeneration (AMD), inhibition of KIF13B-mediated VEGFR2 trafficking also mitigated vascular leakage. Thus, the present results identify the fundamental role of VEGFR2 recycling to the cell surface in mediating vascular permeability, which suggests a promising strategy for mitigating vascular leakage associated with inflammatory diseases.
Collapse
Affiliation(s)
- Hyun-Dong Cho
- Department of Pharmacology and Regenerative Medicine, University of Illinois College of Medicine, Chicago, IL, 60612, USA
- Department of Food and Nutrition, Sunchon National University, Sunchon, 57922, Republic of Korea
| | - Nguyễn Thị Thanh Nhàn
- Department of Pharmacology and Regenerative Medicine, University of Illinois College of Medicine, Chicago, IL, 60612, USA
| | - Christopher Zhou
- Department of Pharmacology and Regenerative Medicine, University of Illinois College of Medicine, Chicago, IL, 60612, USA
| | - Kayeman Tu
- Department of Pharmacology and Regenerative Medicine, University of Illinois College of Medicine, Chicago, IL, 60612, USA
| | - Tara Nguyen
- Department of Ophthalmology and Visual Sciences, University of Illinois College of Medicine, Chicago, IL, 60612, USA
| | - Nicolene A Sarich
- Department of Pharmacology and Regenerative Medicine, University of Illinois College of Medicine, Chicago, IL, 60612, USA
| | - Kaori H Yamada
- Department of Pharmacology and Regenerative Medicine, University of Illinois College of Medicine, Chicago, IL, 60612, USA.
- Department of Ophthalmology and Visual Sciences, University of Illinois College of Medicine, Chicago, IL, 60612, USA.
| |
Collapse
|
5
|
Li T, Tian Y, Ren W, Chen P, Luo M, Sang H. Gab1 regulates invadopodia and autocrine VEGF through SHP2/ERK1/2 in hilar cholangiocarcinoma cells. Am J Transl Res 2022; 14:8934-8946. [PMID: 36628230 PMCID: PMC9827304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 12/03/2022] [Indexed: 01/12/2023]
Abstract
OBJECTIVES Hilar cholangiocarcinoma is the most common malignant tumors of the biliary tract and it has high invasiveness. Invadopodia and autocrine vascular endothelial growth factor (VEGF) are closely related to tumor invasiveness. We investigated the role of Grb2-associated binder 1 (Gab1) in invadopodia and autocrine VEGF in hilar cholangiocarcinoma cells. METHODS The expression of Gab1 and vascular endothelial growth factor receptor 2 (VEGFR-2) in tumor cells was detected by real-time PCR. MTT, flow cytometry and transwell assays were used to determine the effect of Gab1 on the biological behavior of tumor cells. In situ gelatin zymogram, western blotting, ELISA and immunofluorescence were used to study Gab1- and apatinib-regulated invadopodia, epithelial-mesenchymal transition (EMT), and VEGF autocrine signaling through the SHP2/ERK1/2 pathway. RESULTS Gab1 controlled invadopodia maturation via the regulation of cortactin and EMT. Additionally, Gab1-regulated autocrine VEGF was observed in tumor cells expressing VEGFR-2, and endogenous and exogenous VEGF regulated VEGF expression through p-VEGFR-2 nuclear aggregation. Furthermore, the Gab1/SHP2/ERK1/2 axis regulated invadopodia and VEGF autocrine function in tumor cells. Finally, apatinib inhibited the malignant behavior of tumor cells and the nuclear aggregation of p-VEGFR-2 by inhibiting the phosphorylation of VEGFR-2 (direct) and the expression of Gab1 (indirect) in tumor cells. CONCLUSIONS This study demonstrates that Gab1 and apatinib affect tumor cell invadopodia and autocrine VEGF expression through the Gab1/SHP2/ERK1/2 axis in hilar cholangiocarcinoma cells.
Collapse
Affiliation(s)
- Tingting Li
- Department of Clinical Genetics, Shengjing Hospital of China Medical UniversityShenyang 110004, Liaoning, P. R. China
| | - Ye Tian
- Department of Thoracic Surgery, The Fourth Affiliated Hospital of China Medical UniversityShenyang 110032, Liaoning, P. R. China
| | - Weiqiang Ren
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical UniversityShenyang 110032, Liaoning, P. R. China
| | - Peng Chen
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical UniversityShenyang 110032, Liaoning, P. R. China
| | - Mingxiao Luo
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical UniversityShenyang 110032, Liaoning, P. R. China
| | - Haiquan Sang
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical UniversityShenyang 110032, Liaoning, P. R. China
| |
Collapse
|
6
|
Thirugnanam K, Prabhudesai S, Van Why E, Pan A, Gupta A, Foreman K, Zennadi R, Rarick KR, Nauli SM, Palecek SP, Ramchandran R. Ciliogenesis mechanisms mediated by PAK2-ARL13B signaling in brain endothelial cells is responsible for vascular stability. Biochem Pharmacol 2022; 202:115143. [PMID: 35700757 PMCID: PMC11274820 DOI: 10.1016/j.bcp.2022.115143] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 06/06/2022] [Accepted: 06/07/2022] [Indexed: 11/02/2022]
Abstract
In the developing vasculature, cilia, microtubule-based organelles that project from the apical surface of endothelial cells (ECs), have been identified to function cell autonomously to promote vascular integrity and prevent hemorrhage. To date, the underlying mechanisms of endothelial cilia formation (ciliogenesis) are not fully understood. Understanding these mechanisms is likely to open new avenues for targeting EC-cilia to promote vascular stability. Here, we hypothesized that brain ECs ciliogenesis and the underlying mechanisms that control this process are critical for brain vascular stability. To investigate this hypothesis, we utilized multiple approaches including developmental zebrafish model system and primary cell culture systems. In the p21 activated kinase 2 (pak2a) zebrafish vascular stability mutant [redhead (rhd)] that shows cerebral hemorrhage, we observed significant decrease in cilia-inducing protein ADP Ribosylation Factor Like GTPase 13B (Arl13b), and a 4-fold decrease in cilia numbers. Overexpressing ARL13B-GFP fusion mRNA rescues the cilia numbers (1-2-fold) in brain vessels, and the cerebral hemorrhage phenotype. Further, this phenotypic rescue occurs at a critical time in development (24 h post fertilization), prior to initiation of blood flow to the brain vessels. Extensive biochemical mechanistic studies in primary human brain microvascular ECs implicate ligands platelet-derived growth factor-BB (PDGF-BB), and vascular endothelial growth factor-A (VEGF-A) trigger PAK2-ARL13B ciliogenesis and signal through cell surface VEGFR-2 receptor. Thus, collectively, we have implicated a critical brain ECs ciliogenesis signal that converges on PAK2-ARL13B proteins to promote vascular stability.
Collapse
Affiliation(s)
- Karthikeyan Thirugnanam
- Department of Pediatrics, Division of Neonatology, Developmental Vascular Biology Program, Medical College of Wisconsin, Children's Research Institute (CRI), Milwaukee, WI, United States
| | - Shubhangi Prabhudesai
- Department of Pediatrics, Division of Neonatology, Developmental Vascular Biology Program, Medical College of Wisconsin, Children's Research Institute (CRI), Milwaukee, WI, United States
| | - Emma Van Why
- Department of Pediatrics, Division of Neonatology, Developmental Vascular Biology Program, Medical College of Wisconsin, Children's Research Institute (CRI), Milwaukee, WI, United States
| | - Amy Pan
- Department of Pediatrics, Division of Quantitative Health Sciences, Medical College of Wisconsin, CRI, Milwaukee, WI, United States
| | - Ankan Gupta
- Department of Pediatrics, Division of Neonatology, Developmental Vascular Biology Program, Medical College of Wisconsin, Children's Research Institute (CRI), Milwaukee, WI, United States
| | - Koji Foreman
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI, United States
| | - Rahima Zennadi
- Department of Medicine, Duke University, Durham, NC, United States
| | - Kevin R Rarick
- Department of Pediatrics, Division of Critical Care, Medical College of Wisconsin, CRI, Milwaukee, WI, United States
| | - Surya M Nauli
- Department of Pharmaceutical Sciences, Chapman University, Irvine, CA, United States
| | - Sean P Palecek
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI, United States
| | - Ramani Ramchandran
- Department of Pediatrics, Division of Neonatology, Developmental Vascular Biology Program, Medical College of Wisconsin, Children's Research Institute (CRI), Milwaukee, WI, United States.
| |
Collapse
|