1
|
Cordova-Gallardo J, Vargas-Beltran AM, Armendariz-Pineda SM, Ruiz-Manriquez J, Ampuero J, Torre A. Brain reserve in hepatic encephalopathy: Pathways of damage and preventive strategies through lifestyle and therapeutic interventions. Ann Hepatol 2024; 30:101740. [PMID: 39615628 DOI: 10.1016/j.aohep.2024.101740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/19/2024] [Accepted: 10/22/2024] [Indexed: 12/17/2024]
Abstract
Brain reserve is an important concept to understand the variability of damage associated with brain-related diseases and includes the adaptation of cognitive processes to preserve brain function. A good cognitive reserve might delay the onset of clinical manifestations of neurodegenerative diseases as well as hepatic encephalopathy, improving the quality of life in patients with chronic liver diseases. By stimulating activities and maintaining overall health, individuals may be able to enhance their brain's resilience to age-related changes and pathology. This review aims to collect all the data available on the role of brain reserve in hepatic encephalopathy development, and the potential effect of a good brain reserve in slowing down hepatic encephalopathy progression and frequency.
Collapse
Affiliation(s)
- Jacqueline Cordova-Gallardo
- Department of Gastroenterology, Service of Internal Medicine, General Hospital "Dr. Manuel Gea González", 14080 Mexico City, Mexico; Faculty of Medicine. National Autonomous University of Mexico, 04360 Mexico City, Mexico.
| | - Andres Manuel Vargas-Beltran
- Department of Gastroenterology, Service of Internal Medicine, General Hospital "Dr. Manuel Gea González", 14080 Mexico City, Mexico; Faculty of Medicine, Meritorious Autonomous University of Puebla, 72420 Puebla, Mexico.
| | - Samantha Melanie Armendariz-Pineda
- Department of Gastroenterology, Service of Internal Medicine, General Hospital "Dr. Manuel Gea González", 14080 Mexico City, Mexico; Faculty of Medicine. National Autonomous University of Mexico, 04360 Mexico City, Mexico.
| | - Jesus Ruiz-Manriquez
- Department of Gastroenterology, Service of Internal Medicine, General Hospital "Dr. Manuel Gea González", 14080 Mexico City, Mexico
| | - Javier Ampuero
- Unit for the Clinical Management of Digestive Diseases, Virgen del Rocío University Hospital, Institute of Biomedicine of Sevilla (IBIS) University of Sevilla, 41013 Sevilla, Spain.
| | - Aldo Torre
- Metabolic Unit. National Institute of Medical Sciences and Nutrition Salvador Zubiran, 14080 Mexico City, Mexico; Guest Researcher Hepatology, General Hospital of Mexico, Mexico City, Mexico; Gastroenterology Department, ABC Hospital, Mexico City, Mexico.
| |
Collapse
|
2
|
Evstafeva D, Ilievski F, Bao Y, Luo Z, Abramovic B, Kang S, Steuer C, Montanari E, Casalini T, Simicic D, Sessa D, Mitrea SO, Pierzchala K, Cudalbu C, Armbruster CE, Leroux JC. Inhibition of urease-mediated ammonia production by 2-octynohydroxamic acid in hepatic encephalopathy. Nat Commun 2024; 15:2226. [PMID: 38472276 DOI: 10.1038/s41467-024-46481-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 02/28/2024] [Indexed: 03/14/2024] Open
Abstract
Hepatic encephalopathy is a neuropsychiatric complication of liver disease which is partly associated with elevated ammonemia. Urea hydrolysis by urease-producing bacteria in the colon is often mentioned as one of the main routes of ammonia production in the body, yet research on treatments targeting bacterial ureases in hepatic encephalopathy is limited. Herein we report a hydroxamate-based urease inhibitor, 2-octynohydroxamic acid, exhibiting improved in vitro potency compared to hydroxamic acids that were previously investigated for hepatic encephalopathy. 2-octynohydroxamic acid shows low cytotoxic and mutagenic potential within a micromolar concentration range as well as reduces ammonemia in rodent models of liver disease. Furthermore, 2-octynohydroxamic acid treatment decreases cerebellar glutamine, a product of ammonia metabolism, in male bile duct ligated rats. A prototype colonic formulation enables reduced systemic exposure to 2-octynohydroxamic acid in male dogs. Overall, this work suggests that urease inhibitors delivered to the colon by means of colonic formulations represent a prospective approach for the treatment of hepatic encephalopathy.
Collapse
Affiliation(s)
- Diana Evstafeva
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
| | - Filip Ilievski
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
| | - Yinyin Bao
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
| | - Zhi Luo
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
| | - Boris Abramovic
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
| | - Sunghyun Kang
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
| | - Christian Steuer
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
| | - Elita Montanari
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
| | - Tommaso Casalini
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
| | - Dunja Simicic
- CIBM Center for Biomedical Imaging, Lausanne, Switzerland
- Animal Imaging and Technology, EPFL, Lausanne, Switzerland
| | - Dario Sessa
- Swiss Pediatric Liver Center, Department of Pediatrics, Gynecology and Obstetrics, University Hospitals Geneva and University of Geneva, Geneva, Switzerland
| | - Stefanita-Octavian Mitrea
- CIBM Center for Biomedical Imaging, Lausanne, Switzerland
- Animal Imaging and Technology, EPFL, Lausanne, Switzerland
| | - Katarzyna Pierzchala
- CIBM Center for Biomedical Imaging, Lausanne, Switzerland
- Animal Imaging and Technology, EPFL, Lausanne, Switzerland
| | - Cristina Cudalbu
- CIBM Center for Biomedical Imaging, Lausanne, Switzerland
- Animal Imaging and Technology, EPFL, Lausanne, Switzerland
| | - Chelsie E Armbruster
- Department of Microbiology and Immunology, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, USA
| | - Jean-Christophe Leroux
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
3
|
Chabbey I, Cudalbu C, Barras E, Hanquinet S, Maréchal B, Rougemont A, Wacker J, Zangas‐Gheri F, McLin VA. Neurometabolism and brain morphometry in an adolescent female with an extra-hepatic congenital portosystemic shunt. JPGN REPORTS 2024; 5:35-42. [PMID: 38545268 PMCID: PMC10964341 DOI: 10.1002/jpr3.12035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 11/16/2023] [Accepted: 12/05/2023] [Indexed: 11/10/2024]
Abstract
Background Chronic hepatic encephalopathy (CHE) has been reported both in patients with congenital porto-systemic shunts (CPSS) and chronic liver disease. CHE is difficult to recognize in children as there is no clear definition and its manifestations are highly variable. CHE is associated with variations in brain volumes and metabolites that have already been demonstrated using 1.5-3T MRI systems. However, the in-depth study of brain metabolism requires the high spectral resolution of high magnetic fields. Objectives and Methods We analyzed the neurometabolic profile, brain volumes and T1 relaxation times of a child with a CPSS using high field proton magnetic resonance spectroscopy (1H MRS, 7T) combined with MRI and compared it to an age-matched control group. We also evaluated the impact of shunt closure on neurocognitive symptoms using adapted neuropsychological tests. Results 7T MRS revealed a significant increase in glutamine compared to controls, a decrease in brain osmolytes, and a slight elevation in NAA concentrations. 7T MRI scans showed morphological abnormalities but no changes in the signal intensity of the globus pallidus. Neurocognitive testing revealed attention deficit disorder, language difficulties, and mild intellectual disability. Most of these areas improved after shunt closure. Conclusions In this paediatric case of type B HE with normal fasting ammonia, neurometabolic profile was compatible with what has been previously shown in chronic liver disease, while also demonstrating an isolated glutamine peak. In addition, neurocognitive function partially improved after shunt closure, arguing strongly for shunt closure in both presymptomatic and symptomatic patients.
Collapse
Affiliation(s)
- Isaline Chabbey
- Department of Pediatrics, Gynecology and Obstetrics, Swiss Pediatric Liver Center, Division of Pediatric SurgeryUniversity of GenevaGenevaSwitzerland
| | - Cristina Cudalbu
- CIBM Center for Biomedical ImagingVaudSwitzerland
- Animal Imaging and TechnologyEcole Polytechnique Fédérale de LausanneLausanneSwitzerland
| | - Eugénie Barras
- Diagnostic Department, Pediatric Radiology Unit, Radiology DivisionGeneva University HospitalsGenevaSwitzerland
| | - Sylviane Hanquinet
- Diagnostic Department, Pediatric Radiology Unit, Radiology DivisionGeneva University HospitalsGenevaSwitzerland
| | - Bénédicte Maréchal
- Advanced Clinical Imaging TechnologySiemens Healthineers International AGLausanneSwitzerland
- Department of Radiology, Lausanne University Hospital (CHUV)University of LausanneVaudSwitzerland
- LTSS, Ecole Polytechnique Fédérale de Lausanne (EPFL)LausanneSwitzerland
| | - Anne‐Laure Rougemont
- Division of Clinical Pathology, Swiss Pediatric Liver CenterGeneva University HospitalsGenevaSwitzerland
| | - Julie Wacker
- Department of Pediatrics, Gynecology and Obstetrics, Pediatric Cardiology UnitUniversity of Geneva, Geneva, SwitzerlandGenevaSwitzerland
| | | | - Valérie A. McLin
- Department of Pediatrics, Gynecology and Obstetrics, Swiss Pediatric Liver Center, Pediatric Gastroenterology, Hepatology and Nutrition UnitUniversity of GenevaGenevaSwitzerland
| |
Collapse
|
4
|
Cudalbu C, Xin L, Marechal B, Lachat S, Zangas-Gheri F, Valenza N, Hanquinet S, McLin VA. High field brain proton magnetic resonance spectroscopy and volumetry in children with chronic, compensated liver disease - A pilot study. Anal Biochem 2023:115212. [PMID: 37356555 DOI: 10.1016/j.ab.2023.115212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 06/07/2023] [Accepted: 06/08/2023] [Indexed: 06/27/2023]
Abstract
BACKGROUND and rationale: There is increasing evidence that children or young adults having acquired liver disease in childhood display neurocognitive impairment which may become more apparent as they grow older. The molecular, cellular and morphological underpinnings of this clinical problem are incompletely understood. AIM Therefore, we used the advantages of highly-resolved proton magnetic resonance spectroscopy at ultra-high magnetic field to analyze the neurometabolic profile and brain morphometry of children with chronic, compensated liver disease, hypothesizing that with high field spectroscopy we would identify early evidence of rising brain glutamine and decreased myoinositol, such as has been described both in animals and humans with more significant liver disease. METHODS Patients (n = 5) and age-matched controls (n = 19) underwent 7T MR scans and short echo time 1H MR spectra were acquired using the semi-adiabatic SPECIAL sequence in two voxels located in gray and white matter dominated prefrontal cortex, respectively. A 3D MP2RAGE sequence was also acquired for brain volumetry and T1 mapping. Liver disease had to have developed at least 6 months before entering the study. Subjects underwent routine blood analysis and neurocognitive testing using validated methods within 3 months of MRI and MRS. RESULTS Five children currently aged 8-16 years with liver disease acquired in childhood were included. Baseline biological characteristics were similar among patients. There were no statistically significant differences between subjects and controls in brain metabolite levels or brain volumetry. Finally, there were minor neurocognitive fluctuations including attention deficit in one child, but none fell in the statistically significant range. CONCLUSION Children with chronic, compensated liver disease did not display an abnormal neurometabolic profile, neurocognitive abnormalities, or signal intensity changes in the globus pallidus. Despite the absence of neurometabolic changes, it is an opportunity to emphasize that it is only by developing the use of 1H MRS at high field in the clinical arena that we will understand the significance and generalizability of these findings in children with CLD. Attention deficit was observed in one child. Healthy children displayed neurometabolic regional differences as previously reported in adult subjects.
Collapse
Affiliation(s)
- Cristina Cudalbu
- CIBM Center for Biomedical Imaging, Switzerland; Animal Imaging and Technology, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Lijing Xin
- CIBM Center for Biomedical Imaging, Switzerland; Animal Imaging and Technology, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Benedicte Marechal
- Advanced Clinical Imaging Technology, Siemens Healthineers International AG, Lausanne, Switzerland; Department of Radiology, Lausanne University Hospital (CHUV) and University of Lausanne, Lausanne, Switzerland; LTS5, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Sarah Lachat
- Swiss Pediatric Liver Center, Pediatric Gastroenterology, Hepatology and Nutrition Unit, University Hospitals Geneva, Department of Pediatrics, Gynecology and Obstetrics, University of Geneva Medical School, Geneva, Switzerland
| | - Florence Zangas-Gheri
- Pediatric Neurology Unit, University Hospitals Geneva, Department of Pediatrics, Gynecology and Obstetrics, University of Geneva Medical School, Geneva, Switzerland
| | - Nathalie Valenza
- Pediatric Neurology Unit, University Hospitals Geneva, Department of Pediatrics, Gynecology and Obstetrics, University of Geneva Medical School, Geneva, Switzerland
| | - Sylviane Hanquinet
- Pediatric Radiology Unit, Radiology Division, Diagnostic Department, Children's Hospital, University Hospitals of Geneva, Switzerland
| | - Valérie A McLin
- Swiss Pediatric Liver Center, Pediatric Gastroenterology, Hepatology and Nutrition Unit, University Hospitals Geneva, Department of Pediatrics, Gynecology and Obstetrics, University of Geneva Medical School, Geneva, Switzerland.
| |
Collapse
|
5
|
Cellular Pathogenesis of Hepatic Encephalopathy: An Update. Biomolecules 2023; 13:biom13020396. [PMID: 36830765 PMCID: PMC9953810 DOI: 10.3390/biom13020396] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/01/2023] [Accepted: 02/17/2023] [Indexed: 02/22/2023] Open
Abstract
Hepatic encephalopathy (HE) is a neuropsychiatric syndrome derived from metabolic disorders due to various liver failures. Clinically, HE is characterized by hyperammonemia, EEG abnormalities, and different degrees of disturbance in sensory, motor, and cognitive functions. The molecular mechanism of HE has not been fully elucidated, although it is generally accepted that HE occurs under the influence of miscellaneous factors, especially the synergistic effect of toxin accumulation and severe metabolism disturbance. This review summarizes the recently discovered cellular mechanisms involved in the pathogenesis of HE. Among the existing hypotheses, ammonia poisoning and the subsequent oxidative/nitrosative stress remain the mainstream theories, and reducing blood ammonia is thus the main strategy for the treatment of HE. Other pathological mechanisms mainly include manganese toxicity, autophagy inhibition, mitochondrial damage, inflammation, and senescence, proposing new avenues for future therapeutic interventions.
Collapse
|
6
|
Lalonde R, Strazielle C. Probiotic Influences on Motor Skills: A Review. Curr Neuropharmacol 2023; 21:2481-2486. [PMID: 37550907 PMCID: PMC10616912 DOI: 10.2174/1570159x21666230807150523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/20/2023] [Accepted: 03/05/2023] [Indexed: 08/09/2023] Open
Abstract
The effects of probiotics have mostly been shown to be favorable on measures of anxiety and stress. More recent experiments indicate single- and multi-strain probiotics in treating motorrelated diseases. Initial studies in patients with Parkinson's disease and Prader-Willi syndrome are concordant with this hypothesis. In addition, probiotics improved motor coordination in normal animals and models of Parkinson's disease, multiple sclerosis, and spinal cord injury as well as grip strength in hepatic encephalopathy. Further studies should delineate the most optimal bacterial profile under each condition.
Collapse
Affiliation(s)
- Robert Lalonde
- Laboratory of Stress, Immunity, Pathogens (EA7300), Medical School, University of Lorraine, 54500, Vandœuvre-les-Nancy, France
| | - Catherine Strazielle
- Laboratory of Stress, Immunity, Pathogens (EA7300), Medical School, University of Lorraine, 54500, Vandœuvre-les-Nancy, France
- CHRU Nancy, Vandœuvre-les-Nancy, France
| |
Collapse
|
7
|
The current pediatric perspective on type B and C hepatic encephalopathy. Anal Biochem 2022; 643:114576. [DOI: 10.1016/j.ab.2022.114576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Accepted: 01/23/2022] [Indexed: 11/20/2022]
|
8
|
Pierzchala K, Simicic D, Sienkiewicz A, Sessa D, Mitrea S, Braissant O, McLin VA, Gruetter R, Cudalbu C. Central nervous system and systemic oxidative stress interplay with inflammation in a bile duct ligation rat model of type C hepatic encephalopathy. Free Radic Biol Med 2022; 178:295-307. [PMID: 34890769 DOI: 10.1016/j.freeradbiomed.2021.12.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/12/2021] [Accepted: 12/06/2021] [Indexed: 02/07/2023]
Abstract
The role and coexistence of oxidative stress (OS) and inflammation in type C hepatic encephalopathy (C HE) is a subject of intense debate. Under normal conditions the physiological levels of intracellular reactive oxygen species are controlled by the counteracting antioxidant response to maintain redox homeostasis. Our previous in-vivo1H-MRS studies revealed the longitudinal impairment of the antioxidant system (ascorbate) in a bile-duct ligation (BDL) rat model of type C HE. Therefore, the aim of this work was to examine the course of central nervous system (CNS) OS and systemic OS, as well as to check for their co-existence with inflammation in the BDL rat model of type C HE. To this end, we implemented a multidisciplinary approach, including ex-vivo and in-vitro electron paramagnetic resonance spectroscopy (EPR) spin-trapping, which was combined with UV-Vis spectroscopy, and histological assessments. We hypothesized that OS and inflammation act synergistically in the pathophysiology of type C HE. Our findings point to an increased CNS- and systemic-OS and inflammation over the course of type C HE progression. In particular, an increase in the CNS OS was observed as early as 2-weeks post-BDL, while the systemic OS became significant at week 6 post-BDL. The CNS EPR measurements were further validated by a substantial accumulation of 8-Oxo-2'-deoxyguanosine (Oxo-8-dG), a marker of oxidative DNA/RNA modifications on immunohistochemistry (IHC). Using IHC, we also detected increased synthesis of antioxidants, glutathione peroxidase 1 (GPX-1) and superoxide dismutases (i.e.Cu/ZnSOD (SOD1) and MnSOD (SOD2)), along with proinflammatory cytokine interleukin-6 (IL-6) in the brains of BDL rats. The presence of systemic inflammation was observed already at 2-weeks post-surgery. Thus, these results suggest that CNS OS is an early event in type C HE rat model, which seems to precede systemic OS. Finally, our results suggest that the increase in CNS OS is due to enhanced formation of intra- and extra-cellular ROS rather than due to reduced antioxidant capacity, and that OS in parallel with inflammation plays a significant role in type C HE.
Collapse
Affiliation(s)
- K Pierzchala
- Center for Biomedical Imaging, EPFL, Lausanne, Switzerland; Animal Imaging and Technology, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland; Laboratory of Functional and Metabolic Imaging, EPFL, Lausanne, Switzerland.
| | - D Simicic
- Center for Biomedical Imaging, EPFL, Lausanne, Switzerland; Animal Imaging and Technology, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland; Laboratory of Functional and Metabolic Imaging, EPFL, Lausanne, Switzerland
| | - A Sienkiewicz
- Laboratory for Quantum Magnetism, Institute of Physics, EPFL, Lausanne, Switzerland; ADSresonances Sàrl, Préverenges, Switzerland
| | - D Sessa
- Swiss Pediatric Liver Center, Department of Pediatrics, Gynecology and Obstetrics, University Hospitals Geneva and University of Geneva, Geneva, Switzerland
| | - S Mitrea
- Center for Biomedical Imaging, EPFL, Lausanne, Switzerland; Animal Imaging and Technology, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - O Braissant
- Service of Clinical Chemistry, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - V A McLin
- Swiss Pediatric Liver Center, Department of Pediatrics, Gynecology and Obstetrics, University Hospitals Geneva and University of Geneva, Geneva, Switzerland
| | - R Gruetter
- Center for Biomedical Imaging, EPFL, Lausanne, Switzerland; Laboratory of Functional and Metabolic Imaging, EPFL, Lausanne, Switzerland
| | - C Cudalbu
- Center for Biomedical Imaging, EPFL, Lausanne, Switzerland; Animal Imaging and Technology, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| |
Collapse
|
9
|
Kronsten VT, Shawcross DL. Hepatic encephalopathy and depression in chronic liver disease: is the common link systemic inflammation? Anal Biochem 2021; 636:114437. [PMID: 34715068 DOI: 10.1016/j.ab.2021.114437] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 09/26/2021] [Accepted: 10/22/2021] [Indexed: 02/08/2023]
Abstract
Hepatic encephalopathy and depression share a number of clinical features, such as cognitive impairment and psychomotor retardation, and are highly prevalent in patients with chronic liver disease. Both conditions signify a poor prognosis, carry an increased mortality and are major determinants of reduced health related quality of life. The pathophysiology of hepatic encephalopathy is complex. Whilst cerebral accumulation of ammonia is well-recognised as being central to the development of hepatic encephalopathy, systemic inflammation, which acts in synergy with hyperammonaemia, is emerging as a key driver in its development. The pro-inflammatory state is also widely documented in depression, and peripheral to brain communication occurs resulting in central inflammation, behavioural changes and depressive symptoms. Gut dysbiosis, with a similar reduction in beneficial bacteria, increase in pathogens and decreased bacterial diversity, has been observed in both hepatic encephalopathy and depression, and it may be that the resultant increased bacterial translocation causes their shared inflammatory pathophysiology. Whilst the literature on a positive association between hepatic encephalopathy and depression in cirrhosis remains to be substantiated, there is evolving evidence that treatment with psychobiotics may be of dual benefit, improving cognition and mood in cirrhosis.
Collapse
Affiliation(s)
- Victoria Tatiana Kronsten
- Institute of Liver Studies, School of Immunology and Microbial Sciences, Faculty of Life Sciences and Medicine, King's College London, UK.
| | - Debbie Lindsay Shawcross
- Institute of Liver Studies, School of Immunology and Microbial Sciences, Faculty of Life Sciences and Medicine, King's College London, UK
| |
Collapse
|