1
|
Alsharksi AN, Sirekbasan S, Gürkök-Tan T, Mustapha A. From Tradition to Innovation: Diverse Molecular Techniques in the Fight Against Infectious Diseases. Diagnostics (Basel) 2024; 14:2876. [PMCID: PMC11674978 DOI: 10.3390/diagnostics14242876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/15/2024] [Accepted: 12/17/2024] [Indexed: 01/02/2025] Open
Abstract
Infectious diseases impose a significant burden on global health systems due to high morbidity and mortality rates. According to the World Health Organization, millions die from infectious diseases annually, often due to delays in accurate diagnosis. Traditional diagnostic methods in clinical microbiology, primarily culture-based techniques, are time-consuming and may fail with hard-to-culture pathogens. Molecular biology advancements, notably the polymerase chain reaction (PCR), have revolutionized infectious disease diagnostics by allowing rapid and sensitive detection of pathogens’ genetic material. PCR has become the gold standard for many infections, particularly highlighted during the COVID-19 pandemic. Following PCR, next-generation sequencing (NGS) has emerged, enabling comprehensive genomic analysis of pathogens, thus facilitating the detection of new strains and antibiotic resistance tracking. Innovative approaches like CRISPR technology are also enhancing diagnostic precision by identifying specific DNA/RNA sequences. However, the implementation of these methods faces challenges, particularly in low- and middle-income countries due to infrastructural and financial constraints. This review will explore the role of molecular diagnostic methods in infectious disease diagnosis, comparing their advantages and limitations, with a focus on PCR and NGS technologies and their future potential.
Collapse
Affiliation(s)
- Ahmed Nouri Alsharksi
- Department of Microbiology, Faculty of Medicine, Misurata University, Misrata 93FH+66F, Libya;
| | - Serhat Sirekbasan
- Department of Medical Laboratory Techniques, Şabanözü Vocational School, Çankırı Karatekin University, Çankırı 18650, Turkey
| | - Tuğba Gürkök-Tan
- Department of Field Crops, Food and Agriculture Vocational School, Çankırı Karatekin University, Çankırı 18100, Turkey;
| | - Adam Mustapha
- Department of Microbiology, Faculty of Life Sciences, University of Maiduguri, Maiduguri 600104, Nigeria;
| |
Collapse
|
2
|
Blanken SL, Barry A, Lanke K, Guelbeogo M, Ouedraogo A, Soulama I, Coulibaly SA, Teelen K, Graumans W, Dumont E, Stone W, Ramjith J, Marti M, Andrade CM, Drakeley C, Collins K, Tiono A, Bousema T. Plasmodium falciparum gametocyte production correlates with genetic markers of parasite replication but is not influenced by experimental exposure to mosquito biting. EBioMedicine 2024; 105:105190. [PMID: 38901148 PMCID: PMC11239461 DOI: 10.1016/j.ebiom.2024.105190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 05/22/2024] [Accepted: 05/24/2024] [Indexed: 06/22/2024] Open
Abstract
BACKGROUND Plasmodium blood-stage parasites balance asexual multiplication with gametocyte development. Few studies link these dynamics with parasite genetic markers in vivo; even fewer in longitudinally monitored infections. Environmental influences on gametocyte formation, such as mosquito exposure, may influence the parasite's investment in gametocyte production. METHODS We investigated gametocyte production and asexual multiplication in two Plasmodium falciparum infected populations; a controlled human malaria infection (CHMI) study and a 28-day observational study in naturally infected individuals in Burkina Faso with controlled mosquito exposure. We measured gene transcript levels previously related to gametocyte formation (ap2-g, surfin1.2, surfin13.1, gexp-2) or inhibition of asexual multiplication (sir2a) and compared transcript levels to ring-stage parasite and mature gametocyte densities. FINDINGS Three of the five markers (ap2-g, surfin1.2, surfin13.1) predicted peak gametocytaemia in the CHMI study. An increase in all five markers in natural infections was associated with an increase in mature gametocytes 14 days later; the effect of sir2a on future gametocytes was strongest (fold change = 1.65, IQR = 1.22-2.24, P = 0.004). Mosquito exposure was not associated with markers of gametocyte formation (ap2-g P = 0.277; sir2a P = 0.499) or carriage of mature gametocytes (P = 0.379). INTERPRETATION All five parasite genetic markers predicted gametocyte formation over a single cycle of gametocyte formation and maturation in vivo; sir2a and ap2-g were most closely associated with gametocyte growth dynamics. We observed no evidence to support the hypothesis that exposure to Anopheles mosquito bites stimulates gametocyte formation. FUNDING This work was funded by the Bill & Melinda Gates Foundation (INDIE OPP1173572), the European Research Council fellowship (ERC-CoG 864180) and UKRI Medical Research Council (MR/T016272/1) and Wellcome Center (218676/Z/19/Z).
Collapse
Affiliation(s)
- Sara Lynn Blanken
- Department of Medical Microbiology, Radboud University Medical Centre, Nijmegen, the Netherlands
| | - Aissata Barry
- Groupe de Recherche Action en Santé (GRAS), Ouagadougou, Burkina Faso
| | - Kjerstin Lanke
- Department of Medical Microbiology, Radboud University Medical Centre, Nijmegen, the Netherlands
| | - Moussa Guelbeogo
- Centre National de Recherche et de Formation sur le Paludisme (CNRFP), Ouagadougou 01, Burkina Faso
| | - Alphonse Ouedraogo
- Centre National de Recherche et de Formation sur le Paludisme (CNRFP), Ouagadougou 01, Burkina Faso
| | - Issiaka Soulama
- Centre National de Recherche et de Formation sur le Paludisme (CNRFP), Ouagadougou 01, Burkina Faso
| | - Sam Aboubacar Coulibaly
- Centre National de Recherche et de Formation sur le Paludisme (CNRFP), Ouagadougou 01, Burkina Faso
| | - Karina Teelen
- Department of Medical Microbiology, Radboud University Medical Centre, Nijmegen, the Netherlands
| | - Wouter Graumans
- Department of Medical Microbiology, Radboud University Medical Centre, Nijmegen, the Netherlands
| | - Elin Dumont
- Department of Immunology and Infection, London School of Hygiene and Tropical Medicine, London, UK
| | - Will Stone
- Department of Immunology and Infection, London School of Hygiene and Tropical Medicine, London, UK
| | - Jordache Ramjith
- Department of Medical Microbiology, Radboud University Medical Centre, Nijmegen, the Netherlands
| | - Matthias Marti
- Wellcome Centre for Integrative Parasitology, Institute of Infection and Immunity, University of Glasgow, Glasgow, Scotland, UK
| | - Carolina M Andrade
- Department of Medical Microbiology, Radboud University Medical Centre, Nijmegen, the Netherlands
| | - Chris Drakeley
- MRC International Statistics and Epidemiology Group, London School of Hygiene and Tropical Medicine, London, UK
| | - Katharine Collins
- Department of Medical Microbiology, Radboud University Medical Centre, Nijmegen, the Netherlands
| | - Alfred Tiono
- Centre National de Recherche et de Formation sur le Paludisme (CNRFP), Ouagadougou 01, Burkina Faso
| | - Teun Bousema
- Department of Medical Microbiology, Radboud University Medical Centre, Nijmegen, the Netherlands; Department of Immunology and Infection, London School of Hygiene and Tropical Medicine, London, UK.
| |
Collapse
|
3
|
Seidl CM, Ferreira FC, Parise KL, Paxton KL, Paxton EH, Atkinson CT, Fleischer RC, Foster JT, Marm Kilpatrick A. Linking avian malaria parasitemia estimates from quantitative PCR and microscopy reveals new infection patterns in Hawai'i. Int J Parasitol 2024; 54:123-130. [PMID: 37922977 DOI: 10.1016/j.ijpara.2023.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 09/29/2023] [Accepted: 10/25/2023] [Indexed: 11/07/2023]
Abstract
Plasmodium parasites infect thousands of species and provide an exceptional system for studying host-pathogen dynamics, especially for multi-host pathogens. However, understanding these interactions requires an accurate assay of infection. Assessing Plasmodium infections using microscopy on blood smears often misses infections with low parasitemias (the fractions of cells infected), and biases in malaria prevalence estimates will differ among hosts that differ in mean parasitemias. We examined Plasmodium relictum infection and parasitemia using both microscopy of blood smears and quantitative polymerase chain reaction (qPCR) on 299 samples from multiple bird species in Hawai'i and fit models to predict parasitemias from qPCR cycle threshold (Ct) values. We used these models to quantify the extent to which microscopy underestimated infection prevalence and to more accurately estimate infection patterns for each species for a large historical study done by microscopy. We found that most qPCR-positive wild-caught birds in Hawaii had low parasitemias (Ct scores ≥35), which were rarely detected by microscopy. The fraction of infections missed by microscopy differed substantially among eight species due to differences in species' parasitemia levels. Infection prevalence was likely 4-5-fold higher than previous microscopy estimates for three introduced species, including Zosterops japonicus, Hawaii's most abundant forest bird, which had low average parasitemias. In contrast, prevalence was likely only 1.5-2.3-fold higher than previous estimates for Himatione sanguinea and Chlorodrepanis virens, two native species with high average parasitemias. Our results indicate that relative patterns of infection among species differ substantially from those observed in previous microscopy studies, and that differences depend on variation in parasitemias among species. Although microscopy of blood smears is useful for estimating the frequency of different Plasmodium stages and host attributes, more sensitive quantitative methods, including qPCR, are needed to accurately estimate and compare infection prevalence among host species.
Collapse
Affiliation(s)
- Christa M Seidl
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, CA, USA; Center for Conservation Genomics, Smithsonian Conservation Biology Institute, Washington, DC, USA.
| | - Francisco C Ferreira
- Center for Conservation Genomics, Smithsonian Conservation Biology Institute, Washington, DC, USA; Center for Vector Biology, Rutgers University, New Brunswick, NJ, USA
| | - Katy L Parise
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ, USA
| | - Kristina L Paxton
- Hawai'i Volcanoes National Park, Resource Management, Hawai'i National Park, HI, USA
| | - Eben H Paxton
- U.S. Geological Survey, Pacific Island Ecosystems Research Center, Hawai'i National Park, HI. USA
| | - Carter T Atkinson
- U.S. Geological Survey, Pacific Island Ecosystems Research Center, Hawai'i National Park, HI. USA
| | - Robert C Fleischer
- Center for Conservation Genomics, Smithsonian Conservation Biology Institute, Washington, DC, USA
| | - Jeffrey T Foster
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ, USA
| | - A Marm Kilpatrick
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, CA, USA
| |
Collapse
|
4
|
Calderaro A, Piccolo G, Chezzi C. The Laboratory Diagnosis of Malaria: A Focus on the Diagnostic Assays in Non-Endemic Areas. Int J Mol Sci 2024; 25:695. [PMID: 38255768 PMCID: PMC10815132 DOI: 10.3390/ijms25020695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/26/2023] [Accepted: 01/03/2024] [Indexed: 01/24/2024] Open
Abstract
Even if malaria is rare in Europe, it is a medical emergency and programs for its control should ensure both an early diagnosis and a prompt treatment within 24-48 h from the onset of the symptoms. The increasing number of imported malaria cases as well as the risk of the reintroduction of autochthonous cases encouraged laboratories in non-endemic countries to adopt diagnostic methods/algorithms. Microscopy remains the gold standard, but with limitations. Rapid diagnostic tests have greatly expanded the ability to diagnose malaria for rapid results due to simplicity and low cost, but they lack sensitivity and specificity. PCR-based assays provide more relevant information but need well-trained technicians. As reported in the World Health Organization Global Technical Strategy for Malaria 2016-2030, the development of point-of-care testing is important for the improvement of diagnosis with beneficial consequences for prompt/accurate treatment and for preventing the spread of the disease. Despite their limitations, diagnostic methods contribute to the decline of malaria mortality. Recently, evidence suggested that artificial intelligence could be utilized for assisting pathologists in malaria diagnosis.
Collapse
Affiliation(s)
- Adriana Calderaro
- Department of Medicine and Surgery, University of Parma, Viale A. Gramsci 14, 43126 Parma, Italy; (G.P.); (C.C.)
| | | | | |
Collapse
|
5
|
do Nascimento Martinez L, Silva DC, Brilhante-da-Silva N, da Silva Rodrigues FL, de Lima AA, Tada MS, Costa JDN. Monitoring the density of Plasmodium spp. gametocytes in isolates from patient samples in the region of Porto Velho, Rondônia. 3 Biotech 2023; 13:405. [PMID: 37987025 PMCID: PMC10657340 DOI: 10.1007/s13205-023-03822-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 05/06/2023] [Indexed: 11/22/2023] Open
Abstract
Gametocytes are the forms of the malaria parasite that are essential for the continuation of the transmission cycle to the vector Anopheles. This study aimed to evaluate the parasite density of Plasmodium spp gametocytes in samples from patients in the region of Porto Velho, Rondônia. Slides containing patient samples were selected from users who sought out care at the Center for Research in Tropical Medicine (CEPEM) during the period from January to December 2016. Samples of Plasmodium vivax and Plasmodium falciparum were selected for analysis of their respective gametocytes. In parallel, monitoring was performed in cultures of NF54 strain P. falciparum gametocytes. Of 248 thick smear slides (EG) evaluated in double blind, 142 (57.2%) were detected with P. vivax, of this total 47 (18.9%) had gametocytes, 1 (0.4%) with LVC negative diagnosis for gametocytes and 1 (0.4%) Pv + Pf (mixed malaria). Regarding P. falciparum, the total number of samples analyzed was 106 (42.7%), of which 20 (8.0%) had gametocytes detected, 6 (2.4%) LVC negative for gametocyte forms, and 3 (1.2%) Pv + Pf (mixed malaria), Plasmodium malariae species was not detected among the samples. The results showed that P. vivax gametocytes were present in the first days of symptoms, with a higher prevalence in patients with two crosses, a fact that was also observed in patients with P. falciparum regarding the prevalence of gametocytes. Faced with this problem, it is necessary to monitor the fluctuation of gametocytes, since these forms are responsible for continuing the malaria cycle within the mosquito vector.
Collapse
Affiliation(s)
- Leandro do Nascimento Martinez
- Plataforma de Bioensaios em Malária e Leishmaniose (PBML)-Fundação Oswaldo Cruz, Fiocruz, Unidade Rondônia, Porto Velho, RO Brazil
- Programa de Pós-Graduação em Biologia Experimental (Pgbioexp), Centro Universitário São Lucas-PVH/ Afya, Porto Velho, RO Brazil
| | | | - Nairo Brilhante-da-Silva
- Laboratório de Engenharia de Anticorpos (LEA)-Fundação Oswaldo Cruz, Fiocruz, Unidade Rondônia, Porto Velho, RO Brazil
- Programa de Pós-Graduação em Biologia Celular E Molecular, Instituto Oswaldo Cruz, IOC, Rio de Janeiro, Brazil
| | | | | | - Mauro Shugiro Tada
- Centro de Pesquisa em Medicina Tropical–CEPEM, Instituto de Pesquisa em Patologias Tropicais, Porto Velho, Rondônia Brazil
| | - Joana D.‘Arc Neves Costa
- Laboratório de Epidemiologia de Malária, Centro de Pesquisa em Medicina Tropical-CEPEM, Instituto de Pesquisa em Patologias Tropicais, Porto Velho, RO Brasil
| |
Collapse
|
6
|
Haemosporidians in Non-Passerine Birds of Colombia: An Overview of the Last 20 Years of Research. DIVERSITY 2023. [DOI: 10.3390/d15010057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The Neotropics are highly diverse in avian species. Neotropical countries contribute a large part of the estimated diversity of haemosporidian parasites reported for the planet’s tropical zones. However, sampling is limited and biased, illustrated by only 30% of the genetic records (barcodes) from non-passerines, most of them not linked to a nominal species. This paper aimed to perform the molecular and morphological characterization of the haemosporidians that infect non-passerine birds from Colombia deposited in the biological collection named “Grupo de Estudio Relación Parásito Hospedero (GERPH)”. We analyzed 1239 samples from twelve biomes and two animal care facilities. Phylogenetic relationships using barcodes and mitochondrial genomes were estimated. In addition, the reports of haemosporidian infections in non-passerine birds from the Neotropics recorded after 1978 were summarized. We reported the presence of thirteen morphological haemosporidian species, four potential new species deposited in GERPH, a host range expansion for two Plasmodium species, and a barcode sequence for Haemoproteus caprimulgi. We confirmed the species associated with 56 molecular lineages reported in other neotropical countries at the genus level. Thus, biological collections and curated databases such as MalAvi are essential to support integrative approaches demanded in modern taxonomy.
Collapse
|