1
|
Chen L, Li Q, Ma S, Wang B. α-Ketoglutarate promotes autophagic activity under a peri-implant condition to enhance osseointegration of dental implant in rats with osteoporosis. Connect Tissue Res 2024:1-9. [PMID: 39718506 DOI: 10.1080/03008207.2024.2442675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 11/24/2024] [Accepted: 12/10/2024] [Indexed: 12/25/2024]
Abstract
AIM We aimed to investigate whether α-ketoglutarate (AKG) can promote autophagic activity under a peri-implant condition to enhance the osseointegration of dental implant in rats with osteoporosis (OP). METHODS Con, Model and AKG groups were established for the random allocation of thirty rats (n = 10). Their bone metabolism indicators were measured. The peri-implant bone morphology was detected by toluidine blue staining, the peri-implant bone tissue healing was detected, and the implant torque was measured. RESULTS In comparison to the Con group, the bone metabolism indicators [bone volume/tissue volume ratio (BV/TV), trabecular number (Tb.N), and osseointegration index (OI)], bone-implant contact (BIC) rate, bone mass in the cancellous area, dislocation torque, protein and mRNA expressions of bone morphogenetic protein-2 (BMP-2), RUNX2 and Beclin1, and LC3II/LC3I ratio in bone tissues decreased significantly in the Model group, with a significant enlargement of trabecular space (Tb.Sp) (p < 0.05). In comparison with the Model group, the AKG group had significant increases in Tb.N, BV/TV, OI, BIC rate, bone mass in the cancellous area, dislocation torque, mRNA plus protein expressions of BMP-2, Runt-related transcription factor 2 and Beclin1, and LC3II/light chain 3I ratio in bone tissues, in addition to a significant reduction of Tb.Sp (p < 0.05). CONCLUSIONS AKG may relieve the bone metabolism disorders and enhance the osteogenic differentiation and osseointegration of implants in OP rats by promoting peri-implant autophagy.
Collapse
Affiliation(s)
- Luyuan Chen
- Stomatology Center, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Qisen Li
- Stomatology Center, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Shengnan Ma
- Stomatology Center, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Bohua Wang
- Graduate School of Medical and Dental Sciences, Institute of Science Tokyo, Tokyo, Japan
| |
Collapse
|
2
|
İnan S, Barış E. The role of autophagy in odontogenesis, dental implant surgery, periapical and periodontal diseases. J Cell Mol Med 2024; 28:e18297. [PMID: 38613351 PMCID: PMC11015398 DOI: 10.1111/jcmm.18297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 03/03/2024] [Accepted: 03/25/2024] [Indexed: 04/14/2024] Open
Abstract
Autophagy is a cellular process that is evolutionarily conserved, involving the sequestration of damaged organelles and proteins into autophagic vesicles, which subsequently fuse with lysosomes for degradation. Autophagy controls the development of many diseases by influencing apoptosis, inflammation, the immune response and different cellular processes. Autophagy plays a significant role in the aetiology of disorders associated with dentistry. Autophagy controls odontogenesis. Furthermore, it is implicated in the pathophysiology of pulpitis and periapical disorders. It enhances the survival, penetration and colonization of periodontal pathogenic bacteria into the host periodontal tissues and facilitates their escape from host defences. Autophagy plays a crucial role in mitigating exaggerated inflammatory reactions within the host's system during instances of infection and inflammation. Autophagy also plays a role in the relationship between periodontal disease and systemic diseases. Autophagy promotes wound healing and may enhance implant osseointegration. This study reviews autophagy's dento-alveolar effects, focusing on its role in odontogenesis, periapical diseases, periodontal diseases and dental implant surgery, providing valuable insights for dentists on tooth development and dental applications. A thorough examination of autophagy has the potential to discover novel and efficacious treatment targets within the field of dentistry.
Collapse
Affiliation(s)
- Sevinç İnan
- Department of Oral Pathology, Faculty of DentistryGazi UniversityAnkaraTurkey
| | - Emre Barış
- Department of Oral Pathology, Faculty of DentistryGazi UniversityAnkaraTurkey
| |
Collapse
|
3
|
Zhang Q, Zhang Q, Yan X, Wang L, Yuan X. Wrinkled topography regulates osteogenesis via autophagy-mediated Wnt/β-catenin signaling pathway in MC3T3-E1 cells. Arch Oral Biol 2023; 151:105700. [PMID: 37094411 DOI: 10.1016/j.archoralbio.2023.105700] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/30/2023] [Accepted: 04/13/2023] [Indexed: 04/26/2023]
Abstract
OBJECTIVE In this study, we aimed to evaluate the effects of different dimensional wrinkled in topography on the osteogenic differentiation of MC3T3-E1 cells and explored the underlying mechanisms. DESIGN Polydimethylsiloxane (PDMS) with a wrinkled topography was synthesized using an elastomer base and crosslinking while observing by atomic force microscopy. MC3T3-E1 proliferation was detected by Cell Counting Kit-8(CCK-8) assays and the cell morphology was determined by phalloidin staining. Osteogenetic genes expression levels were measured by quantitative real-time polymerase chain reaction (qRT-PCR) and western blotting. In addition, Autophagy-related genes expression levels were evaluated by immunostaining and western blotting in MC3T3-E1 in order to assess the induction of autophagy. RESULTS In this experiment, the 0.7 µm amplitude and 3 µm wavelength (W3) group increased the expression of osteogenic markers, whereas the 4.3 µm amplitude and 27 µm wavelength (W27) group showed inhibition. Both the cytoplasm and the nucleus of β-catenin, compared with those of the Flat, W3 increased, whereas W27 decreased. At the same time, the autophagy was consistent with the influence of the topography on osteogenic differentiation. Moreover, using CQ or RAPA significantly inhibited or promoted autophagy, as well as partially decreasing or increasing osteogenesis, respectively. Infecting siRNA-β-catenin decreased the expression of RUNX2 and OSX in MC3T3-E1 cells both treated with CQ and RAPA. CONCLUSIONS Wrinkled topographies activated the autophagy-mediated Wnt/β-catenin signaling pathway and affected the osteogenic differentiation of MC3T3-E1 cells. The introduction of aligned topographies on biomaterial scaffolds could provide physical cues with which modulate MC3T3-E1 responses for bone engineering constructs.
Collapse
Affiliation(s)
- Qiang Zhang
- Department of Orthodontics, The Affiliated Hospital of Qingdao University, Qingdao 266003, China; School of Stomatology, Qingdao University, Qingdao 266003, China
| | - Qi Zhang
- Department of Orthodontics, The Affiliated Hospital of Qingdao University, Qingdao 266003, China; Chongqing Key Laboratory of Oral Disease and Biomedical Sciences and Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education and Stomatological Hospital of Chongqing Medical University, Chongqing 401174, China
| | - Xiao Yan
- Department of Orthodontics, The Affiliated Hospital of Qingdao University, Qingdao 266003, China; School of Stomatology, Qingdao University, Qingdao 266003, China
| | - Liping Wang
- Qingdao Stomatological Hospital Affiliated to Qingdao University, Qingdao 266003, China.
| | - Xiao Yuan
- Department of Orthodontics, The Affiliated Hospital of Qingdao University, Qingdao 266003, China; School of Stomatology, Qingdao University, Qingdao 266003, China.
| |
Collapse
|
4
|
Albrektsson T, Tengvall P, Amengual L, Coli P, Kotsakis GA, Cochran D. Osteoimmune regulation underlies oral implant osseointegration and its perturbation. Front Immunol 2023; 13:1056914. [PMID: 36761175 PMCID: PMC9902598 DOI: 10.3389/fimmu.2022.1056914] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 12/20/2022] [Indexed: 01/26/2023] Open
Abstract
In the field of biomaterials, an endosseous implant is now recognized as an osteoimmunomodulatory but not bioinert biomaterial. Scientific advances in bone cell biology and in immunology have revealed a close relationship between the bone and immune systems resulting in a field of science called osteoimmunology. These discoveries have allowed for a novel interpretation of osseointegration as representing an osteoimmune reaction rather than a classic bone healing response, in which the activation state of macrophages ((M1-M2 polarization) appears to play a critical role. Through this viewpoint, the immune system is responsible for isolating the implant biomaterial foreign body by forming bone around the oral implant effectively shielding off the implant from the host bone system, i.e. osseointegration becomes a continuous and dynamic host defense reaction. At the same time, this has led to the proposal of a new model of osseointegration, the foreign body equilibrium (FBE). In addition, as an oral wound, the soft tissues are involved with all their innate immune characteristics. When implant integration is viewed as an osteoimmune reaction, this has implications for how marginal bone is regulated. For example, while bacteria are constitutive components of the soft tissue sulcus, if the inflammatory front and immune reaction is at some distance from the marginal bone, an equilibrium is established. If however, this inflammation approaches the marginal bone, an immune osteoclastic reaction occurs and marginal bone is removed. A number of clinical scenarios can be envisioned whereby the osteoimmune equilibrium is disturbed and marginal bone loss occurs, such as complications of aseptic nature and the synergistic activation of pro-inflammatory pathways (implant/wear debris, DAMPs, and PAMPs). Understanding that an implant is a foreign body and that the host reacts osteoimmunologically to shield off the implant allows for a distinction to be drawn between osteoimmunological conditions and peri-implant bone loss. This review will examine dental implant placement as an osteoimmune reaction and its implications for marginal bone loss.
Collapse
Affiliation(s)
- T. Albrektsson
- Department of Biomaterials, University of Gothenburg, Gothenburg, Sweden
| | - P. Tengvall
- Department of Biomaterials, University of Gothenburg, Gothenburg, Sweden,*Correspondence: P. Tengvall,
| | - L. Amengual
- Dental Implantology Unit, Hospital Leonardo Guzmán, Antofagasta, Chile
| | - P. Coli
- Edinburgh Dental Specialists, Edinburgh, United Kingdom,Department of Prosthetic Dentistry and Dental Material Science, The Sahlgrenska Academy at Gothenburg University, Gothenburg, Sweden,Department of Dental Material Science, The Sahlgrenska Academy at Gothenburg University, Gothenburg, Sweden
| | - G. A. Kotsakis
- Department of Periodontology, University of Texas, San Antonio, TX, United States
| | - D. Cochran
- Department of Periodontology, University of Texas, San Antonio, TX, United States
| |
Collapse
|
5
|
Ho WF, Wong KK, Lee MH, Thomas JL, Chang YC, Wu SC, Hsu HC, Lin HY. Biocompatibility of a Ti-Rich Medium-Entropy Alloy with Glioblastoma Astrocytoma Cells. Int J Mol Sci 2022; 23:ijms232314552. [PMID: 36498880 PMCID: PMC9741175 DOI: 10.3390/ijms232314552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/11/2022] [Accepted: 11/16/2022] [Indexed: 11/24/2022] Open
Abstract
Titanium and titanium alloys are widely used in medical devices and implants; thus, the biocompatibility of these metals is of great importance. In this study, glioblastoma astrocytoma cellular responses to Ti65-Zr18-Nb16-Mo1 (Ti65M, metastable medium-entropy alloy), Ti-13Nb-7Sn-4Mo (TNSM, titanium alloy), and commercially pure titanium (CP-Ti) were studied. Several physical parameters (crystal phase structure, surface roughness and hardness) of the titanium alloys were measured, and the correlation with the cellular viability was investigated. Finally, the relative protein expression in cellular proliferation pathways was measured and compared with mRNA expression assessed with quantitative real-time reverse transcription polymerase chain reaction assay (qRT-PCR).
Collapse
Affiliation(s)
- Wen-Fu Ho
- Department of Chemical and Materials Engineering, National University of Kaohsiung, Kaohsiung 81148, Taiwan
- Correspondence: (W.-F.H.); (H.-Y.L.)
| | - Ka-Kin Wong
- Department of Chemical and Materials Engineering, National University of Kaohsiung, Kaohsiung 81148, Taiwan
| | - Mei-Hwa Lee
- Department of Materials Science and Engineering, I-Shou University, Kaohsiung 84001, Taiwan
| | - James L. Thomas
- Department of Physics and Astronomy, University of New Mexico, Albuquerque, NM 87131, USA
| | - Ya-Chun Chang
- Department of Chemical and Materials Engineering, National University of Kaohsiung, Kaohsiung 81148, Taiwan
| | - Shih-Ching Wu
- Department of Dental Technology and Materials Science, Central Taiwan University of Science and Technology, Taichung 40601, Taiwan
| | - Hsueh-Chuan Hsu
- Department of Dental Technology and Materials Science, Central Taiwan University of Science and Technology, Taichung 40601, Taiwan
| | - Hung-Yin Lin
- Department of Chemical and Materials Engineering, National University of Kaohsiung, Kaohsiung 81148, Taiwan
- Correspondence: (W.-F.H.); (H.-Y.L.)
| |
Collapse
|
6
|
Wang G, Luo J, Qiao Y, Zhang D, Liu Y, Zhang W, Liu X, Jiang X. AMPK/mTOR Pathway Is Involved in Autophagy Induced by Magnesium-Incorporated TiO 2 Surface to Promote BMSC Osteogenic Differentiation. J Funct Biomater 2022; 13:jfb13040221. [PMID: 36412862 PMCID: PMC9680369 DOI: 10.3390/jfb13040221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 10/28/2022] [Accepted: 10/30/2022] [Indexed: 11/09/2022] Open
Abstract
Magnesium has been extensively utilized to modify titanium implant surfaces based on its important function in promoting osteogenic differentiation. Autophagy has been proven to play a vital role in bone metabolism. Whether there is an association between autophagy and magnesium in promoting osteogenic differentiation remains unclear. In the present study, we focused on investigating the role of magnesium ions in early osteogenic activity and the underlying mechanism related to autophagy. Different concentrations of magnesium were embedded in micro-structured titanium surface layers using the micro-arc oxidation (MAO) technique. The incorporation of magnesium benefited cell adhesion, spreading, and viability; attenuated intracellular ATP concentrations and p-mTOR levels; and upregulated p-AMPK levels. This indicates the vital role of the ATP-related AMPK/mTOR signaling pathway in the autophagy process associated with osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) induced by magnesium modification on titanium surfaces. The enhanced osteogenic differentiation and improved cellular autophagy activity of BMSCs in their extraction medium further confirmed the function of magnesium ions. The results of the present study advance our understanding of the mechanism by which magnesium regulates BMSC osteogenic differentiation through autophagy regulation. Moreover, endowing implants with the ability to activate autophagy may be a promising strategy for enhancing osseointegration in the translational medicine field in the future.
Collapse
Affiliation(s)
- Guifang Wang
- Department of Prosthodontics, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, China
- College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Engineering Research Center of Advanced Dental Technology and Materials, 639 Zhizaoju Road, Shanghai 200011, China
| | - Jiaxin Luo
- Department of Prosthodontics, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, China
- College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Engineering Research Center of Advanced Dental Technology and Materials, 639 Zhizaoju Road, Shanghai 200011, China
| | - Yuqin Qiao
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, No. 1295 Dingxi Road, Shanghai 200050, China
- Correspondence: (Y.Q.); (X.J.)
| | - Dongdong Zhang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, No. 1295 Dingxi Road, Shanghai 200050, China
| | - Yulan Liu
- Department of Prosthodontics, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, China
- College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Engineering Research Center of Advanced Dental Technology and Materials, 639 Zhizaoju Road, Shanghai 200011, China
| | - Wenjie Zhang
- Department of Prosthodontics, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, China
- College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Engineering Research Center of Advanced Dental Technology and Materials, 639 Zhizaoju Road, Shanghai 200011, China
| | - Xuanyong Liu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, No. 1295 Dingxi Road, Shanghai 200050, China
| | - Xinquan Jiang
- Department of Prosthodontics, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, China
- College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Engineering Research Center of Advanced Dental Technology and Materials, 639 Zhizaoju Road, Shanghai 200011, China
- Correspondence: (Y.Q.); (X.J.)
| |
Collapse
|
7
|
Ripszky Totan A, Imre MM, Parvu S, Meghea D, Radulescu R, Enasescu DSA, Moisa MR, Pituru SM. Autophagy Plays Multiple Roles in the Soft-Tissue Healing and Osseointegration in Dental Implant Surgery-A Narrative Review. MATERIALS (BASEL, SWITZERLAND) 2022; 15:6041. [PMID: 36079421 PMCID: PMC9457242 DOI: 10.3390/ma15176041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/21/2022] [Accepted: 08/30/2022] [Indexed: 06/15/2023]
Abstract
Dental endo-osseous implants have become a widely used treatment for replacing missing teeth. Dental implants are placed into a surgically created osteotomy in alveolar bone, the healing of the soft tissue lesion and the osseointegration of the implant being key elements to long-term success. Autophagy is considered the major intracellular degradation system, playing important roles in various cellular processes involved in dental implant integration. The aim of this review is an exploration of autophagy roles in the main cell types involved in the healing and remodeling of soft tissue lesions and implant osseointegration, post-implant surgery. We have focused on the autophagy pathway in macrophages, endothelial cells; osteoclasts, osteoblasts; fibroblasts, myofibroblasts and keratinocytes. In macrophages, autophagy modulates innate and adaptive immune responses playing a key role in osteo-immunity. Autophagy induction in endothelial cells promotes apoptosis resistance, cell survival, and protection against oxidative stress damage. The autophagic machinery is also involved in transporting stromal vesicles containing mineralization-related factors to the extracellular matrix and regulating osteoblasts' functions. Alveolar bone remodeling is achieved by immune cells differentiation into osteoclasts; autophagy plays an important and active role in this process. Autophagy downregulation in fibroblasts induces apoptosis, leading to better wound healing by improving excessive deposition of extracellular matrix and inhibiting fibrosis progression. Autophagy seems to be a dual actor on the scene of dental implant surgery, imposing further research in order to completely reveal its positive features which may be essential for clinical efficacy.
Collapse
Affiliation(s)
- Alexandra Ripszky Totan
- Department of Biochemistry, Faculty of Dental Medicine, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Marina Melescanu Imre
- Department of Complete Denture, Faculty of Dental Medicine, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Simona Parvu
- Department of Complementary Sciences, Hygiene and Medical Ecology Discipline, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Daniela Meghea
- Department of Complete Denture, Faculty of Dental Medicine, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Radu Radulescu
- Department of Biochemistry, Faculty of Dental Medicine, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Dan Sebastian Alexandru Enasescu
- Department of Biochemistry, Faculty of Dental Medicine, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Mihai Radu Moisa
- Department of Biochemistry, Faculty of Dental Medicine, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Silviu Mirel Pituru
- Department of Professional Organization and Medical Legislation-Malpractice, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania
| |
Collapse
|
8
|
Titanium Surface Characteristics Induce the Specific Reprogramming of Toll-like Receptor Signaling in Macrophages. Int J Mol Sci 2022; 23:ijms23084285. [PMID: 35457102 PMCID: PMC9030374 DOI: 10.3390/ijms23084285] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/05/2022] [Accepted: 04/08/2022] [Indexed: 02/04/2023] Open
Abstract
Most of the research on titanium-based dental implants (Ti-discs) is focused on how they are able to stimulate the formation of new tissue and/or cytotoxic studies, with very scarce data on their effects on functional responses by immunocompetent cells. In particular, the link between the rewiring of innate immune responses and surface biomaterials properties is poorly understood. To address this, we characterize the functional response of macrophage cultures to four different dental titanium surfaces (MA: mechanical abrasion; SB + AE: sandblasting plus etching; SB: sandblasting; AE: acid etching). We use different Toll-like receptor (TLR) ligands towards cell surface receptors (bacterial lipopolysaccharide LPS for TLR4; imiquimod for TLR7; synthetic bacterial triacylated lipoprotein for TLR2/TLR1) and endosomal membrane receptor (poly I:C for TLR3) to simulate bacterial (cell wall bacterial components) or viral infections (dsRNA and ssRNA). The extracellular and total LDH levels indicate that exposure to the different Ti-surfaces is not cytotoxic for macrophages under resting or TLR-stimulated conditions, although there is a tendency towards an impairment in macrophage proliferation, viability or adhesion under TLR4, TLR3 and TLR2/1 stimulations in SB discs cultures. The secreted IL-6 and IL-10 levels are not modified upon resting macrophage exposure to the Ti-surfaces studied as well as steady state levels of iNos or ArgI mRNA. However, macrophage exposure to MA Ti-surface do display an enhanced immune response to TLR4, TLR7 or TLR2/1 compared to other Ti-surfaces in terms of soluble immune mediators secreted and M1/M2 gene expression profiling. This change of characteristics in cellular phenotype might be related to changes in cellular morphology. Remarkably, the gene expression of Tlr3 is the only TLR that is differentially affected by distinct Ti-surface exposure. These results highlight the relevance of patterned substrates in dental implants to achieve a smart manipulation of the immune responses in the context of personalized medicine, cell-based therapies, preferential lineage commitment of precursor cells or control of tissue architecture in oral biology.
Collapse
|