1
|
Goodman SD. Extracellular DNA-protein interactions. Curr Opin Struct Biol 2024; 89:102943. [PMID: 39418796 DOI: 10.1016/j.sbi.2024.102943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 09/23/2024] [Accepted: 09/24/2024] [Indexed: 10/19/2024]
Abstract
Intracellular DNA primarily serves as the cellular genetic material both in eukaryotes and prokaryotes. This function is often regulated by alterations in the DNA structure to accommodate transcription, recombination, and DNA replication. Extracellularly, both eukaryotic and prokaryotic cells take advantage of DNA plenty in addition to a permissive environment and create novel structures to fulfill multiple new roles. As often occurs intracellularly, extracellular DNA requires proteins to facilitate and stabilize these important structures. Here I review, both host and eubacterial nucleoprotein structures, their composition, their functions, and how these distinct structures can interact. Even at this early stage of study, it is clear that extracellular chromatin plays important biological roles in the survival of both prokaryotic and eukaryotic organisms.
Collapse
Affiliation(s)
- Steven D Goodman
- Abigail Wexner Research Institute at Nationwide Children's Hospital, Center for Microbial Pathogenesis The Ohio State University College of Medicine 700 Children's Drive, WA5021 Columbus, OH 43205, USA.
| |
Collapse
|
2
|
Yau HCL, Byard J, Thompson LE, Malekpour AK, Robson T, Bakshani CR, Lelanaite I, Willats WGT, Lant NJ. Enzymatic modification of cotton fibre polysaccharides as an enabler of sustainable laundry detergents. Sci Rep 2024; 14:22049. [PMID: 39333324 PMCID: PMC11436786 DOI: 10.1038/s41598-024-73128-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 09/13/2024] [Indexed: 09/29/2024] Open
Abstract
Cotton is the most common natural fibre used in textile manufacture, used alone or with other fibres to create a wide range of fashion clothing and household textiles. Most of these textiles are cleaned using detergents and domestic or commercial washing machines using processes that require many chemicals and large quantities of water and energy. Enzymes can reduce this environmental footprint by enabling effective detergency at reduced temperatures, mostly by directly attacking substrates present in the soils. In the present study, we report the contribution of a cleaning cellulase enzyme based on the family 44 glycoside hydrolase (GH) endo-beta-1,4-glucanase from Paenibacillus polymyxa. The action of this enzyme on textile fibres improves laundry detergent performance in several vectors including soil anti-redeposition, dye transfer inhibition and stain removal. Molecular probes are used to study how this enzyme is targeting both amorphous cellulose and xyloglucan on textile fibres and the relationship between textile surface effects and observed performance benefits.
Collapse
Affiliation(s)
- Hamish C L Yau
- Procter & Gamble, Newcastle Innovation Centre, Whitley Road, Newcastle upon Tyne, NE12 9BZ, UK.
| | - James Byard
- School of Natural and Environmental Sciences, Newcastle University, Devonshire Building, Newcastle upon Tyne, NE1 7RU, UK
| | - Lily E Thompson
- Procter & Gamble, Newcastle Innovation Centre, Whitley Road, Newcastle upon Tyne, NE12 9BZ, UK
| | - Adam K Malekpour
- Procter & Gamble, Newcastle Innovation Centre, Whitley Road, Newcastle upon Tyne, NE12 9BZ, UK
| | - Timothy Robson
- Procter & Gamble, Newcastle Innovation Centre, Whitley Road, Newcastle upon Tyne, NE12 9BZ, UK
| | - Cassie R Bakshani
- School of Natural and Environmental Sciences, Newcastle University, Devonshire Building, Newcastle upon Tyne, NE1 7RU, UK
- Institute of Microbiology and infection, University of Birmingham, Birmingham, B15 2TT, UK
| | - Ieva Lelanaite
- School of Natural and Environmental Sciences, Newcastle University, Devonshire Building, Newcastle upon Tyne, NE1 7RU, UK
| | - William G T Willats
- School of Natural and Environmental Sciences, Newcastle University, Devonshire Building, Newcastle upon Tyne, NE1 7RU, UK
| | - Neil J Lant
- Procter & Gamble, Newcastle Innovation Centre, Whitley Road, Newcastle upon Tyne, NE12 9BZ, UK
| |
Collapse
|
3
|
Spencer DM, Svenungsson E, Gunnarsson I, Caricchio R, Pisetsky DS. The expression of antibodies to Z-DNA in the blood of patients with systemic lupus erythematosus: Relationship to autoantibodies to B-DNA. Clin Immunol 2023; 255:109763. [PMID: 37673226 DOI: 10.1016/j.clim.2023.109763] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 08/31/2023] [Accepted: 09/02/2023] [Indexed: 09/08/2023]
Abstract
To explore the antibody response to Z-DNA, a DNA conformation with a zig-zag structure, blood of patients with systemic lupus erythematosus (SLE) and otherwise healthy individuals (NHS) were assayed by ELISA using brominated poly(dGdC), a synthetic Z-DNA antigen. These studies showed that SLE patients commonly express antibodies to Z-DNA; NHS also had binding in this assay. In SLE blood, levels of antibodies to Z-DNA were related to those to B-DNA using calf thymus DNA as a source of B-DNA; cross-reactivity was demonstrated by adsorption experiments using DNA cellulose. As shown by dissociation assays, antibody binding of SLE anti-Z-DNA is sensitive to the effects of ionic strength, suggesting electrostatic binding. Since Z-DNA structure can be found in bacterial DNA as well as bacterial biofilms, these findings suggest that, in SLE, anti-DNA antibody responses can result from stimulation by DNA of bacterial origin, with cross-reactivity leading to autoreactivity.
Collapse
Affiliation(s)
- Diane M Spencer
- Division of Rheumatology and Immunology, Duke University Medical Center, Durham, NC 27710, USA
| | - Elisabet Svenungsson
- Division of Rheumatology, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Iva Gunnarsson
- Division of Rheumatology, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Roberto Caricchio
- Division of Rheumatology, University of Massachusetts Memorial Medical Center, Worcester, MA 01605, USA
| | - David S Pisetsky
- Medical Research Service, Durham Veterans Administration Medical Center, Durham, NC 27705, USA; Division of Rheumatology and Immunology, Duke University Medical Center, Durham, NC 27710, USA.
| |
Collapse
|
4
|
Goodman SD, Bakaletz LO. Bacterial Biofilms Utilize an Underlying Extracellular DNA Matrix Structure That Can Be Targeted for Biofilm Resolution. Microorganisms 2022; 10:microorganisms10020466. [PMID: 35208922 PMCID: PMC8878592 DOI: 10.3390/microorganisms10020466] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/11/2022] [Accepted: 02/15/2022] [Indexed: 12/16/2022] Open
Abstract
Bacterial biofilms contribute significantly to the antibiotic resistance, pathogenesis, chronicity and recurrence of bacterial infections. Critical to the stability and survival of extant biofilms is the extracellular DNA (eDNA)-dependent matrix which shields the resident bacteria from hostile environments, allows a sessile metabolic state, but also encourages productive interactions with biofilm-inclusive bacteria. Given the importance of the eDNA, approaches to this area of research have been to target not just the eDNA, but also the additional constituent structural components which appear to be widespread. Chief among these is a ubiquitous two-member family of bacterial nucleoid associated proteins (the DNABII proteins) responsible for providing structural integrity to the eDNA and thereby the biofilm. Moreover, this resultant novel eDNA-rich secondary structure can also be targeted for disruption. Here, we provide an overview of both what is known about the eDNA-dependent matrix, as well as the resultant means that have resulted in biofilm resolution. Results obtained to date have been highly supportive of continued development of DNABII-targeted approaches, which is encouraging given the great global need for improved methods to medically manage, or ideally prevent biofilm-dependent infections, which remains a highly prevalent burden worldwide.
Collapse
|